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Outline of the lecture

1 Some classifications of nonsmooth and hybrid systems

2 Phenomena specific to nonsmooth dynamical systems

3 Time discretization of nonsmooth systems

4 Mathematical formalisms for modeling of nonsmooth systems
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Introduction

Hybrid and nonsmooth dynamical systems exhibit both continuous
and discrete behavior.

Why hybrid systems?

▶ Arise whenever first principles are coupled with if-else statements.

▶ From macroscopic empirical laws (Coulomb friction).

▶ Discrete events cause switches and/or jumps in the dynamics or the trajectory itself.

▶ Discrete/integer control decisions.
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What is so special about nonsmooth system?

Some basic questions arise

1. What is the difference between nonsmooth and hybrid systems?

2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?

3. How to classify nonsmooth systems?

4. What is so special about nonsmoothness?

5. How to treat nonsmooth systems numerically?

6. How to mathematically describe such systems?

7. Why not smooth everything?
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Hybrid and/or nonsmooth systems
1. What is the difference between nonsmooth and hybrid systems?

Nonsmooth dynamical systems

▶ Abstract nonsmooth ODE: ẋ = f(x(t))

▶ The solution x(t) and dynamics f do not
have smoothness properties

▶ Combinatorial structure implicitly
encoded in nonsmooth equations

▶ Easy to write down, difficult to solve

▶ More present in applied mathematics
literature

Hybrid dynamical systems

▶ Hybrid system: very general term covers
also nonsmooth sys.

▶ In literature often hybrid finite automaton
meant

▶ Combinatorial structure explicitly
encoded in finite automaton

▶ Difficult to write down, easier to solve

▶ More present in control theory literature
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Hybrid and/or nonsmooth systems
1. What is the difference between nonsmooth and hybrid systems?

Nonsmooth dynamical systems

▶ Abstract nonsmooth ODE: ẋ = f(x(t))
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Difference between hybrid and nonsmooth systems - Example 1

Nonsmooth dynamical system

q̈ = −g + λ

0 ≤ q ⊥ λ ≥ 0

if q(t) = 0, v(t−) and ≤ 0,

then v(t+) = −ϵrv(t
−)

Hybrid dynamical system

q̈ = −q

q(t) = 0, v(t−) ≤ 0

v(t+) = −ϵrv(t
−)

0 2 4 6 8

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8
-5

0

5

04. Introduction to Nonsmooth Differential Equations M. Diehl and A. Nurkanović 5/34



Difference between hybrid and nonsmooth systems - Example 2

Nonsmooth dynamical system

[
q̈1
q̈2

]
=

[
u1 + λ1

−g + u2 + λ2

]
0 ≤ q1 ⊥ λ1 ≥ 0

0 ≤ q2 ⊥ λ2 ≥ 0

if qi(t) = 0 and vi(t
−) ≤ 0,

then vi(t
+) = 0 i = 1, 2

Hybrid dynamical system

q̈=

[
u1

−g+u2

]
w = 1

q̈=

[
u1 + λ1

−g+u2

]
0 = q1
w = 2

q̈=

[
u1

−g+u2+λ2

]
0 = q2
w = 3

q̈=

[
u1+λ1

−g+u2+λ2

]
0 = q
w = 4

q1(t) = 0, v1(t
−) ≤ 0

v1(t
+) = 0

q̈1 > 0

q
2 (t)

=
0
, v

2 (t −
)
≤

0

v
2 (t

+
)
=

0q̈ 2
>

0

q
2 (t)

=
0
, v

2 (t −
)
≤

0

v
2 (t

+
)
=

0q̈ 2
>

0

q1(t) = 0, v1(t
−) ≤ 0

v1(t
+) = 0

q̈2 > 0

q(t) =
0, v(t −

) <
0

v(t +
) =

0
q̈
>
0
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Classification of hybrid systems w.r.t. what triggers a switch
2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?

Nonsmooth/hybrid systems experience switches and jumps

Type of switches

Depending on how the discrete events or switches are triggered, we distinguish between:

1.) internal switches: triggered implicitly, depending on the systems’ differential state

2.) external switches: triggered explicitly, independent of the differential state
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Switch can happen only when x(t) reaches some surface in the state space
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Switch can happen anytime - no matter where x(t) is in the state space
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Nonsmooth Dynamics (NSD) - a classification
3. How to classify nonsmooth systems?

Regard an ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).
Distinguish three cases:

NSD1: nondifferentiable RHS, e.g., ẋ = 1 + |x|

NSD2: state dependent switch of RHS, e.g., ẋ = 2− sign(x)

NSD3: state dependent jump, e.g., bouncing ball, v(t+) = −0.9 v(t−)
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Outline of the lecture
4. What is so special about nonsmootness?

1 Some classifications of nonsmooth and hybrid systems

2 Phenomena specific to nonsmooth dynamical systems

3 Time discretization of nonsmooth systems

4 Mathematical formalisms for modeling of nonsmooth systems
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Infinitely many switches in finite time - Zeno’s phenomenon

The bouncing ball example - NSD3

q̇(t) = v(t)

m v̇(t) = −g

v(t+) = −ϵrv(t
−), if v(t−) ≤ 0 and q(t) = 0

q(0) = 0, v(0) > 0

▶ Coefficient of restitution ϵr ∈ [0, 1], e.g.,
ϵr = 0.9

▶ t1 = 2v(0)
g , t2 = t1 +

2ϵrv(0)
g , . . .

▶ ∆k+1 = tk+1 − tk =
2 ϵkr v(0)

g

▶ Since ϵr < 1 it follows that
limk→∞ ∆k = 0
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Infinitely many switches in finite time - Zeno’s phenomenon

A Filippov system - NSD2

ẋ1 ∈ −sign(x1) + 2sign(x2)

ẋ2 ∈ −2sign(x1)− sign(x2)

▶ Real world system do not experience Zeno

▶ By modeling and design one wants to
avoid this behavior

▶ Might complicate the numerical
computations sometimes

Zoom in: trajectories spiral down
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ẋ1 ∈ −sign(x1) + 2sign(x2)
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Reduced systems dimensions and sliding modes

A sliding mode example

ẋ ∈ −sign(x)

▶ System evolves on surface of discontinuity

▶ Need to define meaningful dynamics
(treated later in detail)

▶ Reduced system dimension

▶ Solution not unique backwards in time

▶ Dynamics switch from ODE to DAE of
higher index
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Reduced systems dimensions and sliding modes

A sliding mode example
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Nonunique solutions

Nonunique solutions example

ẋ ∈ sign(x), x(0) = 0

▶ In nonsmooth systems examples with
nonunique solutions easily constructed

▶ It may not be clear what numerical
algorithms do

▶ To be avoided in controller design

▶ Dynamics switch from DAE of higher
index to ODE
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Stability and instability due to switches and jumps

Unstable piecewise affine systems

ẋ = f(x) :=

{
A1x, if x1x2 ≤ 0

A2x, if x1x2 > 0

with

A1 =

[
−1 1
−10 −1

]
, A2 =

[
−1 10
−1 −1

]

▶ First and third quadrant: ẋ = A1x

▶ Second and fourth quadrant: ẋ = A2x

▶ Nonsmooth systems can have stable
modes but still be overall unstable

ẋ = A1x - stable
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▶ Second and fourth quadrant: ẋ = A2x
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▶ Second and fourth quadrant: ẋ = A2x
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ẋ = f(x) - unstable

04. Introduction to Nonsmooth Differential Equations M. Diehl and A. Nurkanović 13/34
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Numerical chattering in sliding mode examples

Explicit Euler for nonsmooth systems

xk+1 = xk − h sign(xk)

▶ In presence of discontinuities numerical
solutions can chatter around a
discontinuity

▶ Decreasing the step size might worsen
things

▶ Even sophisticated codes may struggle

▶ Method converges - but qualitative
behavior is not good

▶ Nonsmooth implicit methods resolve the
issue (treated later)
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Sensitivities - derivatives of ODE solutions

▶ Direct optimal control solves nonlinear programs via Newton-type methods

▶ Newton-type optimization (SQP or IP), needs to compute 1st and 2nd-order derivatives

▶ Given a solution x(T ;x0, û) of the IVP: ẋ = f(x, û), x(0) = x0, the sensitivities are:
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∂x(T ;x0, û)
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∂û
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∂x0
,
∂x(T ;x0, û)

∂û
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Sensitivities - derivatives of ODE solutions

▶ Direct optimal control solves nonlinear programs via Newton-type methods

▶ Newton-type optimization (SQP or IP), needs to compute 1st and 2nd-order derivatives
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∂x0
,
∂x(T ;x0, û)
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∂û
∆û
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The sensitivities are nonsmooth

NSD2 tutorial example

ẋ(t) =

{
3, if x < 0

1, if x > 0
, t ∈ [0, T ]

x(0) = x0

▶ Solution map x(T, x0) has kinks

▶ Sensitivity ∂x(T ;x0)
∂x0

has jumps

▶ When does limh→0
∂xN

∂x0
= ∂x(T ;x0)

∂x0
?

▶ What do nonsmooth sensitivities mean
for Newton’s method?

-5 -4 -3 -2 -1 0 1 2
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The sensitivities are nonsmooth

NSD3 tutorial example

q̈ =

[
λ1

−g + λ2

]
0 ≤ q2 + 2q1 ⊥ λ1 ≥ 0

0 ≤ q2 ⊥ λ2 ≥ 0

if ci(q(t)) = 0 and ni(q)
⊤v(t−) ≤ 0, then

ni(q)
⊤v(t+) = −ϵrni(q)

⊤v(t−), i = 1, 2,

▶ c1(q) = q2 + 2q1, c2(q) = q2 gap
functions

▶ λ1, λ2 - normal contact forces, n1(q) and
n2(q) contact normals

▶ Sensitivity ∂x(T ;x0)
∂x0

has kinks and jumps

▶ When does limh→0
∂xN

∂x0
= ∂x(T ;x0)

∂x0
?
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Outline of this lecture

1 Some classifications of nonsmooth and hybrid systems

2 Phenomena specific to nonsmooth dynamical systems

3 Time discretization of nonsmooth systems

4 Mathematical formalisms for modeling of nonsmooth systems

04. Introduction to Nonsmooth Differential Equations M. Diehl and A. Nurkanović 17/34



Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)

2) smoothing and penalty methods (low accuracy, easy to implement)

3) event-driven, switch-detecting, active-set methods (cannot handle Zeno, high accuracy)
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Integration order plots for different simulation methods
Compute global integration error E(T ) using different strategies

Tutorial example

ẋ =

{
A1x, ∥x∥22 < 1,

A2x, ∥x∥22 > 1,

with A1 =

[
1 2π

−2π 1

]
, A2 =[

1 −2π
2π 1

]
, x(0) = (e−1, 0) for t ∈ [0, T ].

Compute solution approximation:

1. with fixed step size IRK methods (time-stepping),

2. with sophisticated adaptive step size methods
(time-stepping),

3. with switch detecting integrators,

4. via smoothed approximations.
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Integration order plots fixed step size Implicit Runge-Kutta methods

10!3 10!2 10!1

h

10!10

10!5

100

E
x
(T

)

ODE integrated with IRK Radau II-A

O(h)

O(h2)

Radau IIA 1
Radau IIA 3
Radau IIA 5

10!3 10!2 10!1

h

10!10

10!5

100

E
x
(T

)

ODE integrated with IRK Gauss-Legendre

O(h)

O(h2)

GL2
GL4
GL6

Simulation time T = 1 - no switch - high accuracy
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Integration order plots fixed step size Implicit Runge-Kutta methods
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Radau IIA 1
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ODE integrated with IRK Gauss-Legendre

O(h)

O(h2)

GL2
GL4
GL6

Simulation time T = π/2 - switch happens - low accuracy
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Integration order plots fixed step size Implicit Runge-Kutta methods
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ODE integrated with IRK Gauss-Legendre

O(h)

O(h2)

GL2
GL4
GL6

The nonsmoothness leads to sever order reduction, all methods have O(h) accuracy.
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Integration order plots adaptive step size methods

10!10 10!5 100

hmin

10!15

10!10

10!5
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E
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ode45

ode15s

ode23

ode89

O(h)
O(h2)

Very small step size necessary to achieve high accuracy even with very sophisticated methods.
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Integration order plots adaptive step size methods

0 1
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Step size small around switch - many switches = very slow integration.
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Adaptive step size methods with switch detection
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Switch detected explicitly - high accuracy properties recovered.
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Adaptive step size methods with switch detection
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No extremely small step sizes around the switch.
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Accuracy order plots for smoothing
Error dominated by σ

Smooth approximation parameterized by σ

ẋ = (1− ασ(x))A1x+ ασ(x)A2x, ασ(x) =
1

2

(
1− tanh

(∥x∥22 − 1

σ

))
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Accuracy order plots for smoothing
Error dominated by σ

Smooth approximation parameterized by σ

ẋ = (1− ασ(x))A1x+ ασ(x)A2x, ασ(x) =
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Smoothed sliding mode example
Error dominated by σ

Smooth approximation parameterized by σ = 10−5

ẋ = −sign(x)
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Small σ makes system very stiff - small step sizes.

04. Introduction to Nonsmooth Differential Equations M. Diehl and A. Nurkanović 24/34



Smoothed sliding mode example
Error dominated by σ

Smooth approximation parameterized by σ = 10−5

ẋ = − tanh
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Outline of this lecture
6. How to mathematically described nonsmooth systems?

1 Some classifications of nonsmooth and hybrid systems

2 Phenomena specific to nonsmooth dynamical systems

3 Time discretization of nonsmooth systems

4 Mathematical formalisms for modeling of nonsmooth systems
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Differential inclusions

A very general class of nonsmooth dynamical systems is obtained by replacing the right-hand
side of a smooth ODE with a set.

Differential Inclusions (DI)

The following equations is called a differential inclusion:

ẋ(t) ∈ F (t, x(t)) for almost all t ∈ [0, T ], (1)

Here F : R× Rnx → P(Rnx) is a set-valued map which assigns to any point in time t and
x ∈ Rnx a set F (t, x) ⊆ Rnx . An element y ∈ F (t, x(t)) for a fixed (t, x(t)) is called a
selection.
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Outer and inner semi-continuous set-valued functions

Definition (OSC, ISC, continuity)

A set-valued function F (·) is outer-semi continuous (OSC) (resp. inner semi-continuous (ISC))
at x0 ∈ X if for every ϵ > 0 there exists a δ > 0 such that F (x) ⊂ F (x0) + ϵB(0) (resp.
F (x0) ⊂ F (x) + ϵB(0)) for all x ∈ x0 + δB(0). It is called continuous at x0 if it both OSC and
ISC at this point.
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Existence of solutions to differential inclusions

Theorem (Existence of solution, Theorem 4, p. 101 in Aubin, J. P., and Cellina, A., 1994 )

Regard the initial value problem related to the DI (1) with the initial value x(0) = x0. Suppose
that the function F : [0, T ]× Rnx → P(Rnx) satisfies the following conditions:.

i) ∥y∥ ≤ C(t)(1 + ∥x∥) for all x and y ∈ F (t, x), where C(·) is an integrable function,

ii) F (t, ·) is outer semi-continuous for all t,

iii) the set F (t, x) is nonempty and closed convex set for all t and x,

Then there exists an absolutely continuous solution x(·) to this initial value problem.

04. Introduction to Nonsmooth Differential Equations M. Diehl and A. Nurkanović 27/34



Variational inequalities

Definition

Let K ⊆ Rn be a closed convex set and F : Rn → Rn.
A variational inequality, denoted by VI(K,F ), is the
problem of finding x ∈ Rn such that

x ∈ K, F (x)⊤(y − x) ≥ 0, for all y ∈ K.

The set of solutions to this problem is denoted by
SOL(K,F ).

▶ x ∈ K is a solution of VI(K,F ) iff either
F (x) = 0 or F (x) forms a non-obtuse angle with
every vector y − x for all y ∈ K

▶ NK(x) = {v ∈ Rn | v⊤(y − x) ≤ 0, for all y ∈
K}, VI(K,F ) is the same as: 0 ∋ F (x) +NK(x)

x1, x3 and x5 are solutions, x2 and x4

are not
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Differential variational inequalities

Definition (Differential variational inequalities)

Given an initial value x(0) = x0, a Differential Variational Inequality (DVI) is the problem of
finding functions x : [0, T ] → Rnx and z : [0, T ] → Rnz such that

ẋ(t) = f(t, x(t), z(t)), (2a)

z(t) ∈ K, for almost all t, (2b)

0 ≤ (ẑ − z(t))⊤F (t, x(t), z(t)), for all ẑ ∈ K and for almost all t. (2c)

▶ DVI can be easily cast into differential inclusions

▶ Denote the set of all solutions, parameterized by x(t), of the VI (2c) by
SOL(F (t, x(t), ·),K).

ẋ(t) ∈ f(t, x(t),SOL(F (t, x(t), ·),K)), x(0) = x0.
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Dynamic complementarity systems

Definition (Dynamic complementarity systems)

Given an initial value x(0) = x0, a dynamic complementarity system is the problem of finding
functions x : [0, T ] → Rnx and z : [0, T ] → Rnz such that

ẋ(t) = f(t, x(t), z(t)), x(0) = x0,

0 ≤ z(t) ⊥ F (t, x(t), z(t)) ≥ 0, for almost all t,

▶ Discrete-time counterpart: nonlinear complementarity problems (e.g. KKT conditions of
an NLP)

▶ Computationally very useful as NCPs can often be solved efficiently

▶ Found in nonsmooth mechanics: complementarity between gap function and normal
contact forces

▶ Filippov systems can be casted into DCS (next lecture)

▶ DI ⊃ DVI ⊃ DCS ⊃ ODE.
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Discontinuous ODEs and Filippov systems

Regard an ODE with a discontinuous right-hand side and study the following IVP

ẋ = f(t, x(t)), x(0) = x0.

Consider the following initial value problem:

ẋ =

{
1, x < 0,

−1, x ≥ 0,
, x(0) = x0.

▶ For x0 > 0, there exist the solution x(t) = x(0)− t for t ∈ [0, x0)

▶ For x0 < 0, there exist the solution x(t) = x(0) + t for t ∈ [0,−x0).

▶ As t beyond |x0| in both cases, each solution reaches the point x(t) = 0 and cannot leave
it

▶ Since ẋ = 0 ̸= −1, we have no solution in the classical or Carathéodory sense.

▶ To resolve this, we can use Filippov’s solution concept - next lecture.
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Summary

▶ External state depended switches and jumps are qualitatively different from integer
controls - different numerical treatment.

▶ Nonsmooth systems exhibit rich behavior not seen in smooth systems.

▶ Accurate smooth approximation kill the performance of smooth solvers and,

▶ ... behave numerically as nonsmooth systems, but with smoothing ignore exploitable
structure.

▶ Different classes of numerical methods for time discretization.

▶ There are many mathematical formalism to treat nonsmoothness.

▶ Depending on the formalism and degree of nonsmoothness, numerical methods must be
adapted.
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Relating CCP to VIs

Proposition (Proposition 1.1.3. in Facchinei and Pang 2003)

Let K be a closed convex cone. A vector x ∈ Rn is a solution to VI(K,F ) if and only if it is a
solution to the cone complementarity problem:

K ∋ x ⊥ F (x) ∈ K∗, (3)

where this compact notation means that x ∈ K,F (x) ∈ K∗ and F (x)⊤x = 0.

Proof. Let x be a solution to the VI(K,F ). On one hand, since K is a cone, setting
y = 0 ∈ K we have from x ∈ K, F (x)⊤(y − x) ≥ 0, for all y ∈ K, that F (x)⊤x ≤ 0. On
the other hand, from the definition of a cone x ∈ K it follows that 2x ∈ K. Again, from the VI
and setting y = 2x we obtain that F (x)⊤x ≥ 0. Therefore, F (x)⊤x = 0. We further exploit
that F (x)⊤x ≥ 0, i.e., we can see that F (x)⊤(y − x) ≥ 0 implies that F (x)⊤y ≥ 0 for all
y ∈ K, which is equivalent to F (x) ∈ K∗. Thus we have proven that x solves also (3).
Conversely, if x solves (3), we have from the definition that F (x)⊤y ≥ 0 for all y ∈ K and
F (x)⊤x = 0. Subtracting these relations we obtain that the VI holds.
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