Lecture 4: Introduction to Nonsmooth Differential Equations

Moritz Diehl and Armin Nurkanović

Systems Control and Optimization Laboratory (syscop) Summer School on Direct Methods for Optimal Control of Nonsmooth Systems September 11-15, 2023

universität freiburg

- 1 Some classifications of nonsmooth and hybrid systems
- 2 Phenomena specific to nonsmooth dynamical systems
- 3 Time discretization of nonsmooth systems
- 4 Mathematical formalisms for modeling of nonsmooth systems

Hybrid and nonsmooth dynamical systems exhibit both continuous and discrete behavior.

Hybrid and nonsmooth dynamical systems exhibit both continuous and discrete behavior.

Why hybrid systems?

- Arise whenever first principles are coupled with *if-else* statements.
- From macroscopic empirical laws (Coulomb friction).
- Discrete events cause switches and/or jumps in the dynamics or the trajectory itself.

Hybrid and nonsmooth dynamical systems exhibit both continuous and discrete behavior.

Why hybrid systems?

- Arise whenever first principles are coupled with *if-else* statements.
- From macroscopic empirical laws (Coulomb friction).
- Discrete events cause switches and/or jumps in the dynamics or the trajectory itself.
- Discrete/integer control decisions.



1. What is the difference between nonsmooth and hybrid systems?

- 1. What is the difference between nonsmooth and hybrid systems?
- 2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?

- 1. What is the difference between nonsmooth and hybrid systems?
- 2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?
- 3. How to classify nonsmooth systems?

- 1. What is the difference between nonsmooth and hybrid systems?
- 2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?
- 3. How to classify nonsmooth systems?
- 4. What is so special about nonsmoothness?

- 1. What is the difference between nonsmooth and hybrid systems?
- 2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?
- 3. How to classify nonsmooth systems?
- 4. What is so special about nonsmoothness?
- 5. How to treat nonsmooth systems numerically?
- 6. How to mathematically describe such systems?

- 1. What is the difference between nonsmooth and hybrid systems?
- 2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?
- 3. How to classify nonsmooth systems?
- 4. What is so special about nonsmoothness?
- 5. How to treat nonsmooth systems numerically?
- 6. How to mathematically describe such systems?
- 7. Why not smooth everything?

1. What is the difference between nonsmooth and hybrid systems?

Nonsmooth dynamical systems

• Abstract nonsmooth ODE: $\dot{x} = f(x(t))$

Hybrid dynamical systems

 Hybrid system: very general term covers also nonsmooth sys.

1. What is the difference between nonsmooth and hybrid systems?

Nonsmooth dynamical systems

- Abstract nonsmooth ODE: $\dot{x} = f(x(t))$
- The solution x(t) and dynamics f do not have smoothness properties

- Hybrid system: very general term covers also nonsmooth sys.
- In literature often hybrid finite automaton meant

1. What is the difference between nonsmooth and hybrid systems?

Nonsmooth dynamical systems

- Abstract nonsmooth ODE: $\dot{x} = f(x(t))$
- The solution x(t) and dynamics f do not have smoothness properties
- Combinatorial structure implicitly encoded in nonsmooth equations

- Hybrid system: very general term covers also nonsmooth sys.
- In literature often hybrid finite automaton meant
- Combinatorial structure explicitly encoded in finite automaton

1. What is the difference between nonsmooth and hybrid systems?

Nonsmooth dynamical systems

- Abstract nonsmooth ODE: $\dot{x} = f(x(t))$
- The solution x(t) and dynamics f do not have smoothness properties
- Combinatorial structure implicitly encoded in nonsmooth equations
- Easy to write down, difficult to solve

- Hybrid system: very general term covers also nonsmooth sys.
- In literature often hybrid finite automaton meant
- Combinatorial structure explicitly encoded in finite automaton
- Difficult to write down, easier to solve

1. What is the difference between nonsmooth and hybrid systems?

Nonsmooth dynamical systems

- Abstract nonsmooth ODE: $\dot{x} = f(x(t))$
- The solution x(t) and dynamics f do not have smoothness properties
- Combinatorial structure implicitly encoded in nonsmooth equations
- Easy to write down, difficult to solve
- More present in applied mathematics literature

- Hybrid system: very general term covers also nonsmooth sys.
- In literature often hybrid finite automaton meant
- Combinatorial structure explicitly encoded in finite automaton
- Difficult to write down, easier to solve
- More present in control theory literature

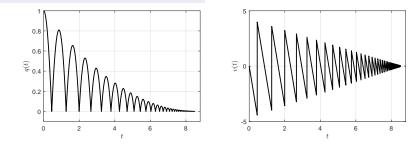
Nonsmooth dynamical system

$$\begin{split} \ddot{q} &= -g + \lambda \\ 0 &\leq q \perp \lambda \geq 0 \\ \text{if } q(t) &= 0, \ v(t^{-}) \text{ and } \leq 0, \\ \text{then } v(t^{+}) &= -\epsilon_{\mathrm{r}} v(t^{-}) \end{split}$$

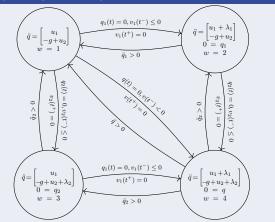
$$q(t) = 0, v(t^{-}) \leq 0$$

$$\overrightarrow{q} = -q$$

$$v(t^{+}) = -\epsilon_{r}v(t^{-})$$



Nonsmooth dynamical system $\begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} = \begin{bmatrix} u_1 + \lambda_1 \\ -g + u_2 + \lambda_2 \end{bmatrix}$ $0 \le q_1 \perp \lambda_1 \ge 0$ $0 \le q_2 \perp \lambda_2 \ge 0$ if $q_i(t) = 0$ and $v_i(t^-) \le 0$, then $v_i(t^+) = 0$ i = 1, 2



Classification of hybrid systems w.r.t. what triggers a switch

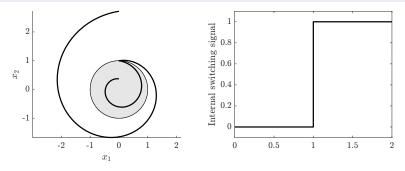
2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?

Nonsmooth/hybrid systems experience switches and jumps

Type of switches

Depending on how the discrete events or switches are triggered, we distinguish between:

1.) internal switches: triggered implicitly, depending on the systems' differential state



Switch can happen only when x(t) reaches some surface in the state space

Classification of hybrid systems w.r.t. what triggers a switch

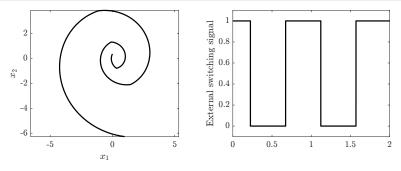
2. Are systems with integer controls (on/off decisions) nonsmooth or hybrid systems?

Nonsmooth/hybrid systems experience switches and jumps

Type of switches

Depending on how the discrete events or switches are triggered, we distinguish between:

- 1.) internal switches: triggered implicitly, depending on the systems' differential state
- 2.) external switches: triggered explicitly, independent of the differential state



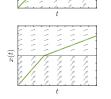
Switch can happen anytime - no matter where x(t) is in the state space

Nonsmooth Dynamics (NSD) - a classification

3. How to classify nonsmooth systems?

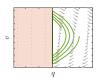
Regard an ordinary differential equation (ODE) with a **nonsmooth** right-hand side (RHS). Distinguish three cases:

NSD1: nondifferentiable RHS, e.g., $\dot{x} = 1 + |x|$



x(t)

NSD2: state dependent switch of RHS, e.g.,
$$\dot{x} = 2 - \operatorname{sign}(x)$$



NSD3: state dependent jump, e.g., bouncing ball, $v(t_{+}) = -0.9 v(t_{-})$

Outline of the lecture

4. What is so special about nonsmootness?

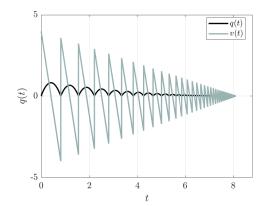
- 1 Some classifications of nonsmooth and hybrid systems
- 2 Phenomena specific to nonsmooth dynamical systems
- 3 Time discretization of nonsmooth systems
- 4 Mathematical formalisms for modeling of nonsmooth systems

The bouncing ball example - NSD3

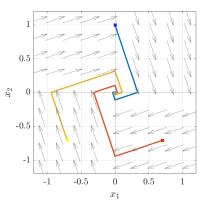
$$\begin{split} \dot{q}(t) &= v(t) \\ m \; \dot{v}(t) &= -g \\ v(t^+) &= -\epsilon_{\rm r} v(t^-), \; {\rm if} \; v(t^-) \leq 0 \; {\rm and} \; q(t) = 0 \\ q(0) &= 0, \; v(0) > 0 \end{split}$$

- Coefficient of restitution $\epsilon_{\rm r} \in [0, 1]$, e.g., $\epsilon_{\rm r} = 0.9$
- $t_1 = \frac{2v(0)}{g}, t_2 = t_1 + \frac{2\epsilon_r v(0)}{g}, \dots$ • $\Delta_{k+1} = t_{k+1} - t_k = \frac{2\epsilon_r^k v(0)}{g}$

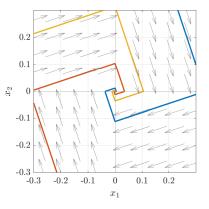
Since $\epsilon_r < 1$ it follows that $\lim_{k \to \infty} \Delta_k = 0$



- Real world system do not experience Zeno
- By modeling and design one wants to avoid this behavior
- Might complicate the numerical computations sometimes

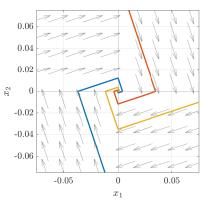


- Real world system do not experience Zeno
- By modeling and design one wants to avoid this behavior
- Might complicate the numerical computations sometimes



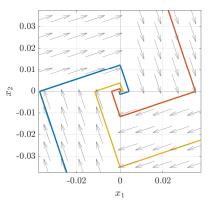
Zoom in: trajectories spiral down

- Real world system do not experience Zeno
- By modeling and design one wants to avoid this behavior
- Might complicate the numerical computations sometimes



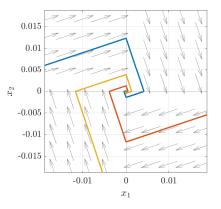
Zoom in: trajectories spiral down

- Real world system do not experience Zeno
- By modeling and design one wants to avoid this behavior
- Might complicate the numerical computations sometimes



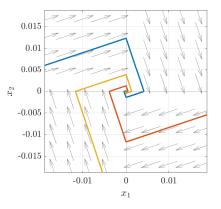
Zoom in: trajectories spiral down

- Real world system do not experience Zeno
- By modeling and design one wants to avoid this behavior
- Might complicate the numerical computations sometimes



Zoom in: trajectories spiral down

- Real world system do not experience Zeno
- By modeling and design one wants to avoid this behavior
- Might complicate the numerical computations sometimes



Zoom in: trajectories spiral down

A sliding mode example

 $\dot{x} \in -\operatorname{sign}(x)$

- System evolves on surface of discontinuity
- Need to define meaningful dynamics (treated later in detail)

1.5

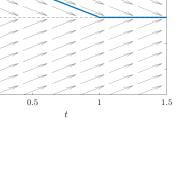
0.5

-0.5

-1.5

-0

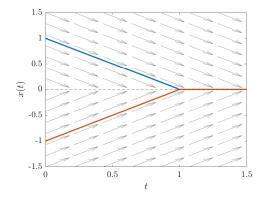
r(t)



A sliding mode example

 $\dot{x} \in -\operatorname{sign}(x)$

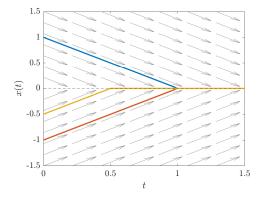
- System evolves on surface of discontinuity
- Need to define meaningful dynamics (treated later in detail)
- Reduced system dimension



A sliding mode example

 $\dot{x} \in -\operatorname{sign}(x)$

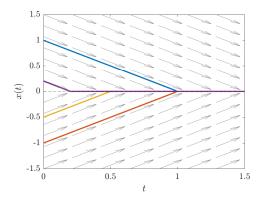
- System evolves on surface of discontinuity
- Need to define meaningful dynamics (treated later in detail)
- Reduced system dimension
- Solution not unique backwards in time



A sliding mode example

 $\dot{x} \in -\operatorname{sign}(x)$

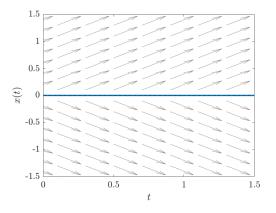
- System evolves on surface of discontinuity
- Need to define meaningful dynamics (treated later in detail)
- Reduced system dimension
- Solution not unique backwards in time
- Dynamics switch from ODE to DAE of higher index



Nonunique solutions example

 $\dot{x} \in \operatorname{sign}(x), \, x(0) = 0$

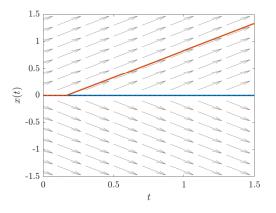
- In nonsmooth systems examples with nonunique solutions easily constructed
- It may not be clear what numerical algorithms do



Nonunique solutions example

 $\dot{x} \in \operatorname{sign}(x), \, x(0) = 0$

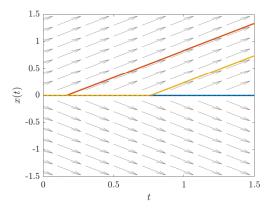
- In nonsmooth systems examples with nonunique solutions easily constructed
- It may not be clear what numerical algorithms do
- To be avoided in controller design



Nonunique solutions example

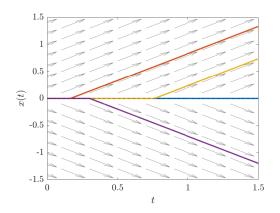
 $\dot{x} \in \operatorname{sign}(x), \, x(0) = 0$

- In nonsmooth systems examples with nonunique solutions easily constructed
- It may not be clear what numerical algorithms do
- To be avoided in controller design
- Dynamics switch from DAE of higher index to ODE



 $\dot{x} \in \operatorname{sign}(x), \, x(0) = 0$

- In nonsmooth systems examples with nonunique solutions easily constructed
- It may not be clear what numerical algorithms do
- To be avoided in controller design
- Dynamics switch from DAE of higher index to ODE

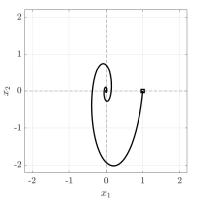


$$\dot{x} = f(x) \coloneqq \begin{cases} A_1 x, & \text{if } x_1 x_2 \le 0 \\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases}$$

with

$$A_1 = \begin{bmatrix} -1 & 1 \\ -10 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 10 \\ -1 & -1 \end{bmatrix}$$

First and third quadrant: $\dot{x} = A_1 x$



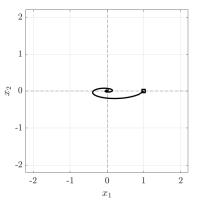
$\dot{x} = A_1 x$ - stable

$$\dot{x} = f(x) \coloneqq \begin{cases} A_1 x, & \text{if } x_1 x_2 \le 0 \\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases}$$

with

$$A_1 = \begin{bmatrix} -1 & 1\\ -10 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 10\\ -1 & -1 \end{bmatrix}$$

- First and third quadrant: $\dot{x} = A_1 x$
- Second and fourth quadrant: $\dot{x} = A_2 x$



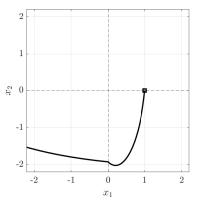
 $\dot{x} = A_2 x$ - stable

$$\dot{x} = f(x) \coloneqq \begin{cases} A_1 x, & \text{if } x_1 x_2 \le 0 \\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases}$$

with

$$A_1 = \begin{bmatrix} -1 & 1\\ -10 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 10\\ -1 & -1 \end{bmatrix}$$

- First and third quadrant: $\dot{x} = A_1 x$
- Second and fourth quadrant: $\dot{x} = A_2 x$
- Nonsmooth systems can have stable modes but still be overall unstable



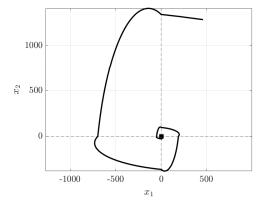
 $\dot{x} = f(x)$ - unstable

$$\dot{x} = f(x) \coloneqq \begin{cases} A_1 x, & \text{if } x_1 x_2 \le 0 \\ A_2 x, & \text{if } x_1 x_2 > 0 \end{cases}$$

with

$$A_1 = \begin{bmatrix} -1 & 1 \\ -10 & -1 \end{bmatrix}, \ A_2 = \begin{bmatrix} -1 & 10 \\ -1 & -1 \end{bmatrix}$$

- First and third quadrant: $\dot{x} = A_1 x$
- Second and fourth quadrant: $\dot{x} = A_2 x$
- Nonsmooth systems can have stable modes but still be overall unstable

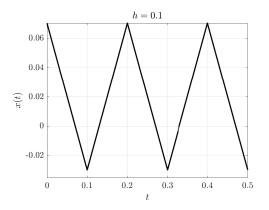


 $\dot{x} = f(x)$ - unstable

Explicit Euler for nonsmooth systems

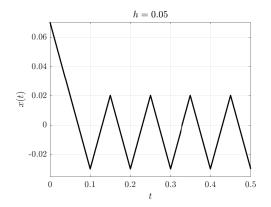
 $x_{k+1} = x_k - h\operatorname{sign}(x_k)$

In presence of discontinuities numerical solutions can *chatter* around a discontinuity



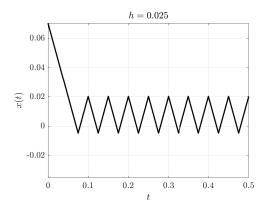
Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity
- Decreasing the step size might worsen things



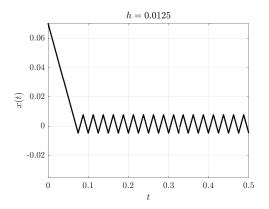
Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity
- Decreasing the step size might worsen things



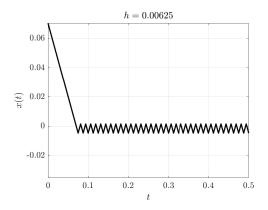
Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity
- Decreasing the step size might worsen things



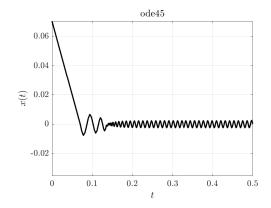
Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity
- Decreasing the step size might worsen things



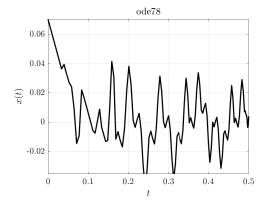
Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity
- Decreasing the step size might worsen things
- Even sophisticated codes may struggle



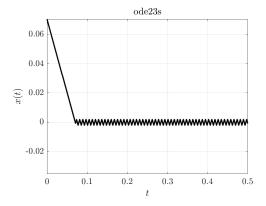
Explicit Euler for nonsmooth systems

- In presence of discontinuities numerical solutions can *chatter* around a discontinuity
- Decreasing the step size might worsen things
- Even sophisticated codes may struggle
- Method converges but qualitative behavior is not good



Explicit Euler for nonsmooth systems

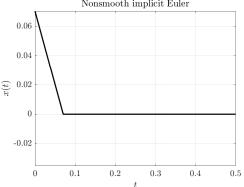
- In presence of discontinuities numerical solutions can *chatter* around a discontinuity
- Decreasing the step size might worsen things
- Even sophisticated codes may struggle
- Method converges but qualitative behavior is not good



Explicit Euler for nonsmooth systems

 $x_{k+1} = x_k - h\operatorname{sign}(x_k)$

- In presence of discontinuities numerical solutions can chatter around a discontinuity
- Decreasing the step size might worsen things
- Even sophisticated codes may struggle
- Method converges but qualitative behavior is not good
- Nonsmooth implicit methods resolve the issue (treated later)



Nonsmooth implicit Euler

- Direct optimal control solves nonlinear programs via Newton-type methods
- \blacktriangleright Newton-type optimization (SQP or IP), needs to compute 1^{st} and 2^{nd}-order derivatives

- Direct optimal control solves nonlinear programs via Newton-type methods
- \blacktriangleright Newton-type optimization (SQP or IP), needs to compute 1^{st} and 2^{nd}-order derivatives
- Given a solution $x(T; x_0, \hat{u})$ of the IVP: $\dot{x} = f(x, \hat{u}), x(0) = x_0$, the sensitivities are:

$$rac{\partial x(T;x_0,\hat{u})}{\partial x_0}, \ rac{\partial x(T;x_0,\hat{u})}{\partial \hat{u}}$$

- Direct optimal control solves nonlinear programs via Newton-type methods
- \blacktriangleright Newton-type optimization (SQP or IP), needs to compute 1^{st} and 2^{nd} -order derivatives
- Given a solution $x(T; x_0, \hat{u})$ of the IVP: $\dot{x} = f(x, \hat{u}), x(0) = x_0$, the sensitivities are:

$$rac{\partial x(T;x_0,\hat{u})}{\partial x_0}, \; rac{\partial x(T;x_0,\hat{u})}{\partial \hat{u}}$$

▶ In direct optimal control we need to linearize $x_{k+1} = \phi_f(x_k, \hat{u})$ and have

$$\Delta x_{k+1} = \frac{\partial \phi_f(x_k, \hat{u})}{\partial x_k} \Delta x_k + \frac{\partial \phi_f(x_k, \hat{u})}{\partial \hat{u}} \Delta \hat{u}$$

- Direct optimal control solves nonlinear programs via Newton-type methods
- Newton-type optimization (SQP or IP), needs to compute 1^{st} and 2^{nd} -order derivatives
- Given a solution $x(T; x_0, \hat{u})$ of the IVP: $\dot{x} = f(x, \hat{u}), x(0) = x_0$, the sensitivities are:

$$rac{\partial x(T;x_0,\hat{u})}{\partial x_0}, \ rac{\partial x(T;x_0,\hat{u})}{\partial \hat{u}}$$

▶ In direct optimal control we need to linearize $x_{k+1} = \phi_f(x_k, \hat{u})$ and have

$$\Delta x_{k+1} = \frac{\partial \phi_f(x_k, \hat{u})}{\partial x_k} \Delta x_k + \frac{\partial \phi_f(x_k, \hat{u})}{\partial \hat{u}} \Delta \hat{u}$$

Under mild assumptions:

$$\lim_{h \to 0} \frac{\partial x_N}{\partial x_0} = \frac{\partial x(T; x_0, \hat{u})}{\partial x_0}$$

- Direct optimal control solves nonlinear programs via Newton-type methods
- Newton-type optimization (SQP or IP), needs to compute 1^{st} and 2^{nd} -order derivatives
- Given a solution $x(T; x_0, \hat{u})$ of the IVP: $\dot{x} = f(x, \hat{u}), x(0) = x_0$, the sensitivities are:

$$rac{\partial x(T;x_0,\hat{u})}{\partial x_0}, \ rac{\partial x(T;x_0,\hat{u})}{\partial \hat{u}}$$

▶ In direct optimal control we need to linearize $x_{k+1} = \phi_f(x_k, \hat{u})$ and have

$$\Delta x_{k+1} = \frac{\partial \phi_f(x_k, \hat{u})}{\partial x_k} \Delta x_k + \frac{\partial \phi_f(x_k, \hat{u})}{\partial \hat{u}} \Delta \hat{u}$$

Under mild assumptions:

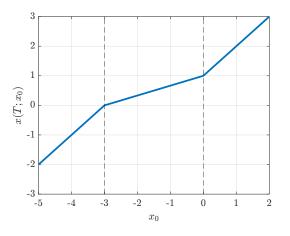
$$\lim_{h \to 0} \frac{\partial x_N}{\partial x_0} = \frac{\partial x(T; x_0, \hat{u})}{\partial x_0}$$

What do the sensitivities look like if $x(T; x_0, \hat{u})$ has kinks and jumps?

NSD2 tutorial example

$$\dot{x}(t) = \begin{cases} 3, & \text{if } x < 0\\ 1, & \text{if } x > 0 \end{cases}, \quad t \in [0, T]$$
$$x(0) = x_0$$

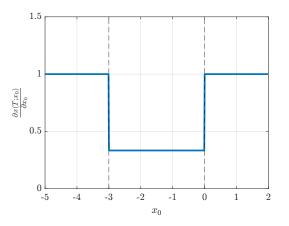
Solution map $x(T, x_0)$ has kinks



NSD2 tutorial example

$$\dot{x}(t) = \begin{cases} 3, & \text{if } x < 0\\ 1, & \text{if } x > 0 \end{cases}, \quad t \in [0, T]$$
$$x(0) = x_0$$

Solution map x(T, x₀) has kinks
 Sensitivity
 ^{dx(T;x_0)}/_{∂x_0} has jumps

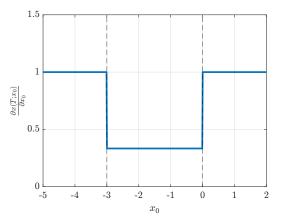


NSD2 tutorial example

$$\dot{x}(t) = \begin{cases} 3, & \text{if } x < 0\\ 1, & \text{if } x > 0 \end{cases}, \quad t \in [0, T]$$
$$x(0) = x_0$$

- ▶ Solution map $x(T, x_0)$ has kinks
- Sensitivity $\frac{\partial x(T;x_0)}{\partial x_0}$ has jumps

• When does
$$\lim_{h\to 0} \frac{\partial x_N}{\partial x_0} = \frac{\partial x(T;x_0)}{\partial x_0}$$
?



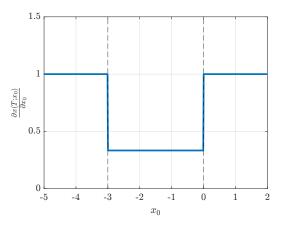
NSD2 tutorial example

$$\dot{x}(t) = \begin{cases} 3, & \text{if } x < 0\\ 1, & \text{if } x > 0 \end{cases}, \quad t \in [0, T]$$
$$x(0) = x_0$$

- ▶ Solution map $x(T, x_0)$ has kinks
- Sensitivity $\frac{\partial x(T;x_0)}{\partial x_0}$ has jumps

• When does
$$\lim_{h\to 0} \frac{\partial x_N}{\partial x_0} = \frac{\partial x(T;x_0)}{\partial x_0}$$
?

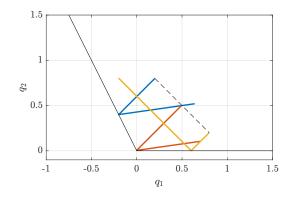
What do nonsmooth sensitivities mean for Newton's method?



NSD3 tutorial example

$$\begin{split} \ddot{q} &= \begin{bmatrix} \lambda_1 \\ -g + \lambda_2 \end{bmatrix} \\ 0 &\leq q_2 + 2q_1 \perp \lambda_1 \geq 0 \\ 0 &\leq q_2 \perp \lambda_2 \geq 0 \\ \text{if } c_i(q(t)) &= 0 \text{ and } n_i(q)^\top v(t^-) \leq 0, \text{ then } \\ n_i(q)^\top v(t^+) &= -\epsilon_{\mathbf{r}} n_i(q)^\top v(t^-), i = 1, 2, \end{split}$$

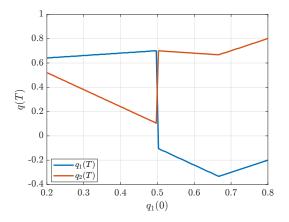
- ▶ $c_1(q) = q_2 + 2q_1$, $c_2(q) = q_2$ gap functions
- \blacktriangleright λ_1,λ_2 normal contact forces, $n_1(q)$ and $n_2(q)$ contact normals



NSD3 tutorial example

 $\begin{aligned} \ddot{q} &= \begin{bmatrix} \lambda_1 \\ -g + \lambda_2 \end{bmatrix} \\ 0 &\leq q_2 + 2q_1 \perp \lambda_1 \geq 0 \\ 0 &\leq q_2 \perp \lambda_2 \geq 0 \\ \text{if } c_i(q(t)) &= 0 \text{ and } n_i(q)^\top v(t^-) \leq 0, \text{ then } \\ n_i(q)^\top v(t^+) &= -\epsilon_r n_i(q)^\top v(t^-), \ i = 1, 2, \end{aligned}$

- ▶ $c_1(q) = q_2 + 2q_1$, $c_2(q) = q_2$ gap functions
- \blacktriangleright λ_1,λ_2 normal contact forces, $n_1(q)$ and $n_2(q)$ contact normals
- Sensitivity $\frac{\partial x(T;x_0)}{\partial x_0}$ has kinks and jumps

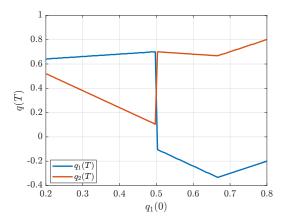


NSD3 tutorial example

 $\begin{aligned} \ddot{q} &= \begin{bmatrix} \lambda_1 \\ -g + \lambda_2 \end{bmatrix} \\ 0 &\leq q_2 + 2q_1 \perp \lambda_1 \geq 0 \\ 0 &\leq q_2 \perp \lambda_2 \geq 0 \\ \text{if } c_i(q(t)) &= 0 \text{ and } n_i(q)^\top v(t^-) \leq 0, \text{ then } \\ n_i(q)^\top v(t^+) &= -\epsilon_r n_i(q)^\top v(t^-), \ i = 1, 2, \end{aligned}$

- ▶ $c_1(q) = q_2 + 2q_1$, $c_2(q) = q_2$ gap functions
- \blacktriangleright λ_1,λ_2 normal contact forces, $n_1(q)$ and $n_2(q)$ contact normals
- Sensitivity $\frac{\partial x(T;x_0)}{\partial x_0}$ has kinks and jumps

• When does
$$\lim_{h\to 0} \frac{\partial x_N}{\partial x_0} = \frac{\partial x(T;x_0)}{\partial x_0}$$
?

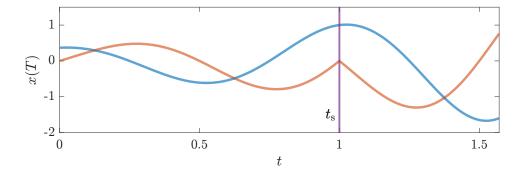


- 1 Some classifications of nonsmooth and hybrid systems
- 2 Phenomena specific to nonsmooth dynamical systems
- 3 Time discretization of nonsmooth systems
- 4 Mathematical formalisms for modeling of nonsmooth systems

Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

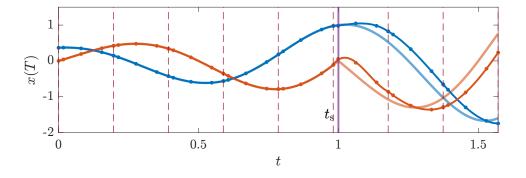
1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)



Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

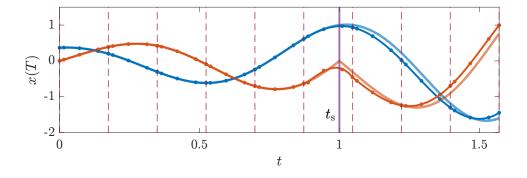
1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)



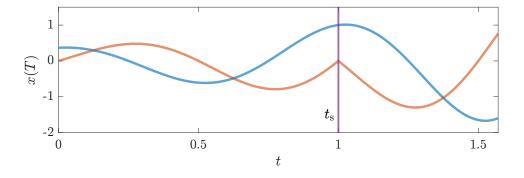
Time discretization methods for nonsmooth ODEs

Approaches to discretize and simulate a nonsmooth ODE

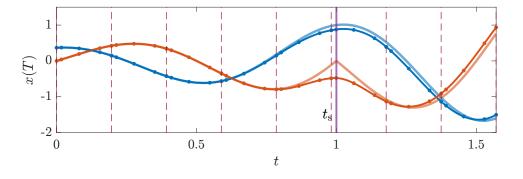
1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)



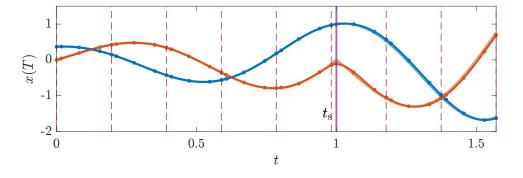
- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)



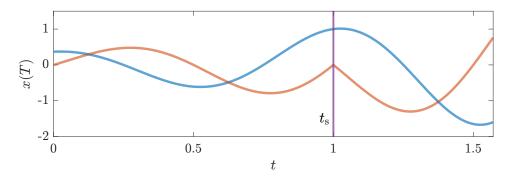
- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)



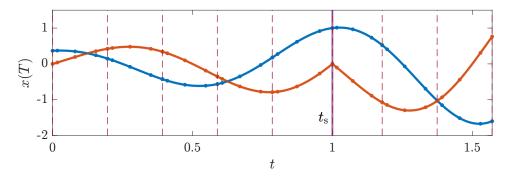
- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)



- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)
- 3) event-driven, switch-detecting, active-set methods (cannot handle Zeno, high accuracy)



- 1) event-capturing, time-stepping methods (can handle Zeno, low accuracy)
- 2) smoothing and penalty methods (low accuracy, easy to implement)
- 3) event-driven, switch-detecting, active-set methods (cannot handle Zeno, high accuracy)



Integration order plots for different simulation methods

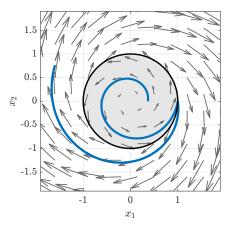
Compute global integration error ${\cal E}({\cal T})$ using different strategies

Tutorial example

$$\dot{x} = \begin{cases} A_1 x, & \|x\|_2^2 < 1, \\ A_2 x, & \|x\|_2^2 > 1, \end{cases}$$
with $A_1 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & -2\pi \\ -2\pi & 1 \end{bmatrix}, x(0) = (e^{-1}, 0) \text{ for } t \in [0, T]$

Compute solution approximation:

1. with fixed step size IRK methods (time-stepping),



Integration order plots for different simulation methods

Compute global integration error E(T) using different strategies

Tutorial example

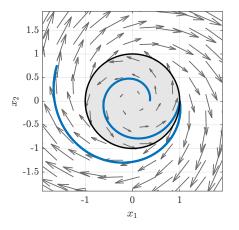
 2π

$$\dot{x} = \begin{cases} A_1 x, & \|x\|_2^2 < 1, \\ A_2 x, & \|x\|_2^2 > 1, \end{cases}$$

ith $A_1 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & -2\pi \\ -2\pi & 1 \end{bmatrix}, x(0) = (e^{-1}, 0) \text{ for } t \in [0, T].$

Compute solution approximation:

- 1. with fixed step size IRK methods (time-stepping),
- 2. with sophisticated adaptive step size methods (time-stepping),



Integration order plots for different simulation methods

Compute global integration error E(T) using different strategies

Tutorial example

w

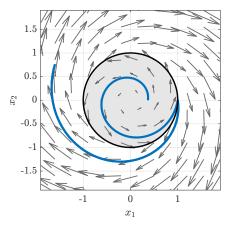
 2π

$$\dot{x} = \begin{cases} A_1 x, & \|x\|_2^2 < 1, \\ A_2 x, & \|x\|_2^2 > 1, \end{cases}$$

ith $A_1 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & -2\pi \\ -2\pi & 1 \end{bmatrix}, x(0) = (e^{-1}, 0) \text{ for } t \in [0, T].$

Compute solution approximation:

- 1. with fixed step size IRK methods (time-stepping),
- 2. with sophisticated adaptive step size methods (time-stepping),
- 3. with switch detecting integrators,



Integration order plots for different simulation methods

Compute global integration error ${\cal E}({\cal T})$ using different strategies

Tutorial example

wit

 2π

$$\dot{x} = \begin{cases} A_1 x, & \|x\|_2^2 < 1, \\ A_2 x, & \|x\|_2^2 > 1, \end{cases}$$

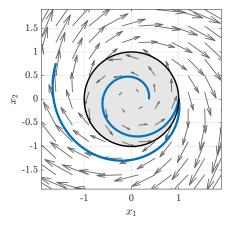
th $A_1 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}, A_2 = \begin{bmatrix} 1 & 2\pi \\ -2\pi & 1 \end{bmatrix}$

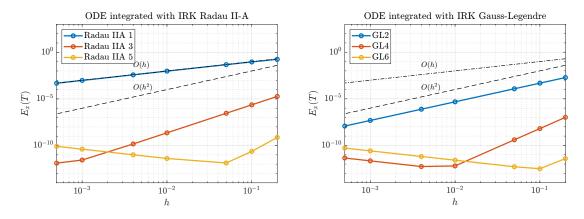
Compute solution approximation:

1. with fixed step size IRK methods (time-stepping),

 $\begin{bmatrix} -2\pi \\ 1 \end{bmatrix}, \ x(0) = (e^{-1}, 0) \text{ for } t \in [0, T].$

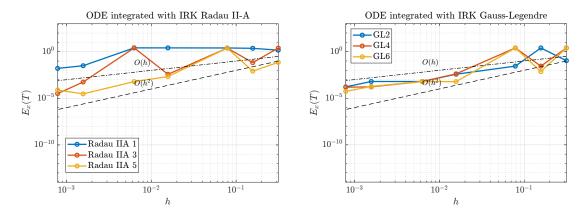
- 2. with sophisticated adaptive step size methods (time-stepping),
- 3. with switch detecting integrators,
- 4. via smoothed approximations.





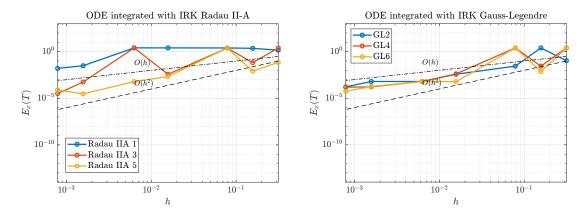
Simulation time T = 1 - no switch - high accuracy

Integration order plots fixed step size Implicit Runge-Kutta methods



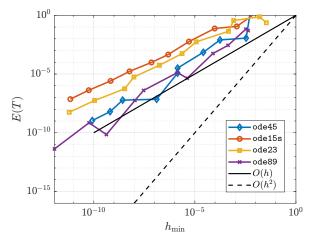
Simulation time $T = \pi/2$ - switch happens - low accuracy

Integration order plots fixed step size Implicit Runge-Kutta methods



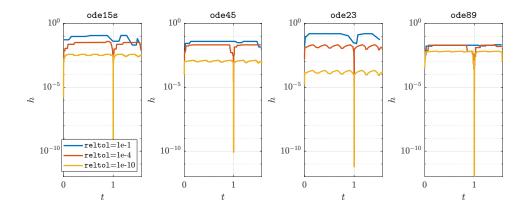
The nonsmoothness leads to sever order reduction, all methods have O(h) accuracy.

Integration order plots adaptive step size methods



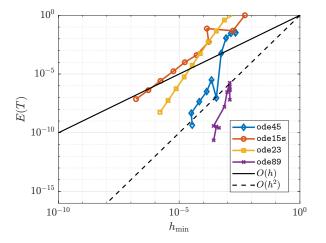
Very small step size necessary to achieve high accuracy even with very sophisticated methods.

Integration order plots adaptive step size methods



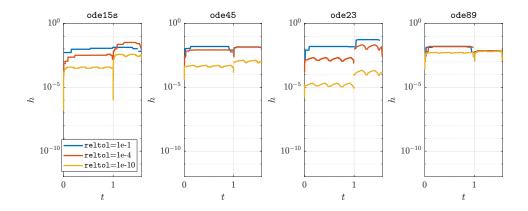
Step size small around switch - many switches = very slow integration.

Adaptive step size methods with switch detection



Switch detected explicitly - high accuracy properties recovered.

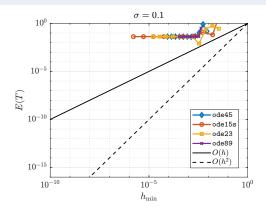
Adaptive step size methods with switch detection



No extremely small step sizes around the switch.

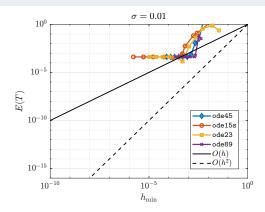
Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\|x\|_2^2 - 1}{\sigma}\right) \right)$$



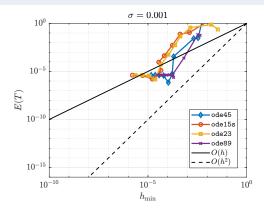
Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\|x\|_2^2 - 1}{\sigma}\right) \right)$$



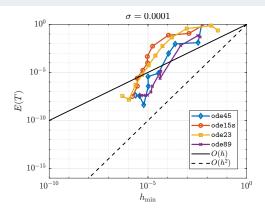
Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\|x\|_2^2 - 1}{\sigma}\right) \right)$$



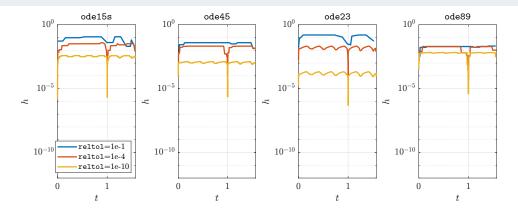
Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\|x\|_2^2 - 1}{\sigma}\right) \right)$$



Error dominated by σ

$$\dot{x} = (1 - \alpha_{\sigma}(x))A_1x + \alpha_{\sigma}(x)A_2x, \ \alpha_{\sigma}(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{\|x\|_2^2 - 1}{\sigma}\right) \right)$$

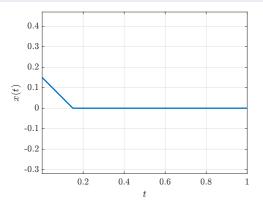


Smoothed sliding mode example

Error dominated by σ

Smooth approximation parameterized by $\sigma = 10^{-5}$

$$\dot{x} = -\operatorname{sign}(x)$$

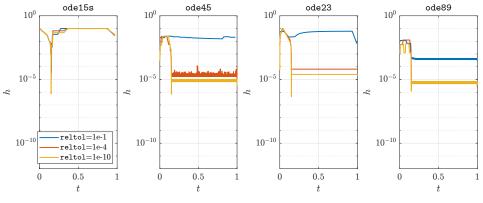


Smoothed sliding mode example

Error dominated by σ

Smooth approximation parameterized by $\sigma = 10^{-5}$

$$\dot{x} = -\tanh\left(\frac{x}{\sigma}\right)$$



Small σ makes system very stiff - small step sizes.

Outline of this lecture

6. How to mathematically described nonsmooth systems?

- 1 Some classifications of nonsmooth and hybrid systems
- 2 Phenomena specific to nonsmooth dynamical systems
- 3 Time discretization of nonsmooth systems
- 4 Mathematical formalisms for modeling of nonsmooth systems

A very general class of nonsmooth dynamical systems is obtained by replacing the right-hand side of a smooth ODE with a set.

Differential Inclusions (DI)

The following equations is called a differential inclusion:

$$\dot{x}(t) \in F(t, x(t))$$
 for almost all $t \in [0, T]$, (1)

Here $F : \mathbb{R} \times \mathbb{R}^{n_x} \to \mathcal{P}(\mathbb{R}^{n_x})$ is a set-valued map which assigns to any point in time t and $x \in \mathbb{R}^{n_x}$ a set $F(t,x) \subseteq \mathbb{R}^{n_x}$. An element $y \in F(t,x(t))$ for a fixed (t,x(t)) is called a *selection*.

Definition (OSC, ISC, continuity)

A set-valued function $F(\cdot)$ is outer-semi continuous (OSC) (resp. inner semi-continuous (ISC)) at $x_0 \in X$ if for every $\epsilon > 0$ there exists a $\delta > 0$ such that $F(x) \subset F(x_0) + \epsilon \mathcal{B}(0)$ (resp. $F(x_0) \subset F(x) + \epsilon \mathcal{B}(0)$) for all $x \in x_0 + \delta \mathcal{B}(0)$. It is called continuous at x_0 if it both OSC and ISC at this point.



Regard the initial value problem related to the DI (1) with the initial value $x(0) = x_0$. Suppose that the function $F : [0,T] \times \mathbb{R}^{n_x} \to \mathcal{P}(\mathbb{R}^{n_x})$ satisfies the following conditions:.

- i) $||y|| \le C(t)(1 + ||x||)$ for all x and $y \in F(t, x)$, where $C(\cdot)$ is an integrable function,
- ii) $F(t, \cdot)$ is outer semi-continuous for all t,
- iii) the set F(t, x) is nonempty and closed convex set for all t and x,

Then there exists an absolutely continuous solution $x(\cdot)$ to this initial value problem.

Definition

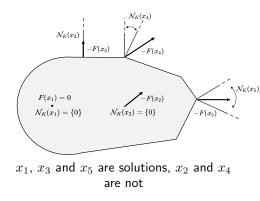
Let $K \subseteq \mathbb{R}^n$ be a closed convex set and $F : \mathbb{R}^n \to \mathbb{R}^n$. A variational inequality, denoted by VI(K, F), is the problem of finding $x \in \mathbb{R}^n$ such that

 $x \in K, \ F(x)^{\top}(y-x) \ge 0, \text{ for all } y \in K.$

The set of solutions to this problem is denoted by $\mathrm{SOL}(K,F).$

• $x \in K$ is a solution of VI(K, F) iff either F(x) = 0 or F(x) forms a non-obtuse angle with every vector y - x for all $y \in K$

•
$$\mathcal{N}_K(x) = \{ v \in \mathbb{R}^n \mid v^\top (y - x) \le 0, \text{ for all } y \in K \}$$
, $\operatorname{VI}(K, F)$ is the same as: $0 \ni F(x) + \mathcal{N}_K(x)$



Definition (Differential variational inequalities)

Given an initial value $x(0) = x_0$, a Differential Variational Inequality (DVI) is the problem of finding functions $x : [0,T] \to \mathbb{R}^{n_x}$ and $z : [0,T] \to \mathbb{R}^{n_z}$ such that

$$\dot{x}(t) = f(t, x(t), z(t)), \tag{2a}$$

$$z(t) \in K$$
, for almost all t ,

$$0 \le (\hat{z} - z(t))^\top F(t, x(t), z(t)), \text{ for all } \hat{z} \in K \text{ and for almost all } t.$$

DVI can be easily cast into differential inclusions

▶ Denote the set of all solutions, parameterized by x(t), of the VI (2c) by SOL(F(t, x(t), ·), K).

$$\dot{x}(t) \in f(t, x(t), \text{SOL}(F(t, x(t), \cdot), K)), \ x(0) = x_0.$$

(2b) (2c)

Definition (Dynamic complementarity systems)

Given an initial value $x(0) = x_0$, a dynamic complementarity system is the problem of finding functions $x : [0,T] \to \mathbb{R}^{n_x}$ and $z : [0,T] \to \mathbb{R}^{n_z}$ such that

 $\dot{x}(t) = f(t, x(t), z(t)), \ x(0) = x_0, \\ 0 \le z(t) \perp F(t, x(t), z(t)) \ge 0, \text{ for almost all } t,$

- Discrete-time counterpart: nonlinear complementarity problems (e.g. KKT conditions of an NLP)
- Computationally very useful as NCPs can often be solved efficiently
- Found in nonsmooth mechanics: complementarity between gap function and normal contact forces
- Filippov systems can be casted into DCS (next lecture)
- ▶ $DI \supset DVI \supset DCS \supset ODE$.

Regard an ODE with a discontinuous right-hand side and study the following IVP

$$\dot{x} = f(t, x(t)), \ x(0) = x_0.$$

Consider the following initial value problem:

$$\dot{x} = \begin{cases} 1, & x < 0, \\ -1, & x \ge 0, \end{cases}, \quad x(0) = x_0.$$

- For $x_0 > 0$, there exist the solution x(t) = x(0) t for $t \in [0, x_0)$
- For $x_0 < 0$, there exist the solution x(t) = x(0) + t for $t \in [0, -x_0)$.
- As t beyond $|x_0|$ in both cases, each solution reaches the point x(t) = 0 and cannot leave it
- Since $\dot{x} = 0 \neq -1$, we have no solution in the classical or Carathéodory sense.
- ► To resolve this, we can use Filippov's solution concept next lecture.

- External state depended switches and jumps are qualitatively different from integer controls - different numerical treatment.
- Nonsmooth systems exhibit rich behavior not seen in smooth systems.
- Accurate smooth approximation kill the performance of smooth solvers and,
- behave numerically as nonsmooth systems, but with smoothing ignore exploitable structure.
- Different classes of numerical methods for time discretization.
- ▶ There are many mathematical formalism to treat nonsmoothness.
- Depending on the formalism and *degree of nonsmoothness*, numerical methods must be adapted.

- Stewart, D. E. Dynamics with Inequalities: impacts and hard constraints. SIAM, 2011.
- Aubin, J. P., and Cellina, A. Differential Inclusions: Set-Valued Maps and Viability Theory. Springer-Verlag, 1984.
- Brogliato, B., and Tanwani, A. Dynamical systems coupled with monotone set-valued operators: Formalisms, applications, well-posedness, and stability. Siam Review 62, 1 (2020), 3–129.
- Acary, V., and Brogliato, B. Numerical methods for nonsmooth dynamical systems: applications in mechanics and electronics. Springer, Science and Business Media, 2008
- Smirnov, G. V. Introduction to the Theory of Differential Inclusions, vol. 41. American Mathematical Soc., 2002.
- Facchinei, F., and Pang, J.-S. Finite-dimensional variational inequalities and complementarity problems, vol. 1-2. Springer-Verlag, 2003.
- Nurkanović. A., Numerical Methods for Optimal Control of Nonsmooth Dynamical Systems, to appear end of 2023

Proposition (Proposition 1.1.3. in Facchinei and Pang 2003)

Let K be a closed convex cone. A vector $x \in \mathbb{R}^n$ is a solution to VI(K, F) if and only if it is a solution to the cone complementarity problem:

$$K \ni x \perp F(x) \in K^*, \tag{3}$$

where this compact notation means that $x \in K, F(x) \in K^*$ and $F(x)^{\top}x = 0$.

Proof. Let x be a solution to the VI(K, F). On one hand, since K is a cone, setting $y = 0 \in K$ we have from $x \in K$, $F(x)^{\top}(y - x) \ge 0$, for all $y \in K$, that $F(x)^{\top}x \le 0$. On the other hand, from the definition of a cone $x \in K$ it follows that $2x \in K$. Again, from the VI and setting y = 2x we obtain that $F(x)^{\top}x \ge 0$. Therefore, $F(x)^{\top}x = 0$. We further exploit that $F(x)^{\top}x \ge 0$, i.e., we can see that $F(x)^{\top}(y - x) \ge 0$ implies that $F(x)^{\top}y \ge 0$ for all $y \in K$, which is equivalent to $F(x) \in K^*$. Thus we have proven that x solves also (3). Conversely, if x solves (3), we have from the definition that $F(x)^{\top}y \ge 0$ for all $y \in K$ and $F(x)^{\top}x = 0$. Subtracting these relations we obtain that the VI holds.