Lecture 3: Modeling with differential algebraic equations

Moritz Diehl and Armin Nurkanović
Systems Control and Optimization Laboratory (syscop)

Summer School on Direct Methods for Optimal Control of Nonsmooth Systems
September 11-15, 2023

universitätfreiburg

Outline of the lecture

1 Introduction to differential algebraic equations

2 The differential index

3 Index reduction

4 Runge-Kutta methods for differential algebraic equations

Differential algebraic equations

Let:

- $t \in \mathbb{R}$ be the time
- $x(t) \in \mathbb{R}^{n_{x}}$ the differential states
- $u(t) \in \mathbb{R}^{n_{u}}$ a given control function
- denote by $\dot{x}(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t}$

Ordinary differential and differential algebraic equations

Differential algebraic equations

Let:

- $t \in \mathbb{R}$ be the time
- $x(t) \in \mathbb{R}^{n_{x}}$ the differential states
- $u(t) \in \mathbb{R}^{n_{u}}$ a given control function
- denote by $\dot{x}(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t}$

Ordinary differential and differential algebraic equations

- Let $F: \mathbb{R} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{x}}$ be a function such that the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is invertible. The system of equations:

$$
F(t, \dot{x}(t), x(t), u(t))=0,
$$

is called an Ordinary Differential Equation (ODE).

Differential algebraic equations

Let:

- $t \in \mathbb{R}$ be the time
- $x(t) \in \mathbb{R}^{n_{x}}$ the differential states
- $u(t) \in \mathbb{R}^{n_{u}}$ a given control function
- denote by $\dot{x}(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t}$

Ordinary differential and differential algebraic equations

- Let $F: \mathbb{R} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{x}}$ be a function such that the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is invertible. The system of equations:

$$
F(t, \dot{x}(t), x(t), u(t))=0,
$$

is called an Ordinary Differential Equation (ODE).

- .. if the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is NOT invertible, then the system of equations:

$$
F(t, \dot{x}(t), x(t), u(t))=0
$$

is called an Differential Algebraic Equation (DAE).

Some historical remarks

DAE theory is much more recent than ODE theory

In the old days pioneered by:

- Euler-Lagrange equations in 1788 : J. L. Lagrange, Mechanique analytique. Libraire chez la Veuve Desaint, Paris

image source: wikipedia

Some historical remarks

DAE theory is much more recent than ODE theory
1847. ANNALEN NO. 12
DER PHYSIK UND CHEMIE.

In the old days pioneered by:

- Euler-Lagrange equations in 1788 : J. L. Lagrange, Mechanique analytique. Libraire chez la Veuve Desaint, Paris
- Kirchhoff's laws in 1847:
G. Kirchhoff Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik 148.12 (1847): 497-508.

1. Ueher die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird;
son G. Kirchhoff.
$\mathbf{I}_{\text {st ein }}$ System von n Drabten: 1, $2 \ldots n$ gegeben, welche auf eine beliebige Weise unter einander verbunden sind, und hat in einem jeden derselben eine beliebige elektro motorische Kraft ihren Sitz, so findet man zur Bestimmung der Intensitititen der Ströme, von welchen die Druhte durchflossen werden, $\boldsymbol{I}_{1}, I_{2} \ldots \boldsymbol{I}_{4}$, die nothige Anzahl linearer Gleichungen durch Benutzung der beiden folgenden Satze '):
I. Wenn die Drabte k_{1}, k_{2}, \ldots eine geschlossene Figur bilden, und tok bezeichnet den Widerstand des Drahtes k, E_{k} die elektromotorische Kraft , die in demselben ihren Sitz hat, nach derselben Richtung positiv gerechnet als I_{k}, so ist als positiv gerechnet werden
${ }^{w_{n 1}} I_{n t}+w_{n 2} I_{n 2}+\ldots=E_{n 1}+E_{n 2}+\ldots$
II. Wenn die Drahte $\lambda_{1}, \lambda_{2}, \ldots$ in einem Punkte zusammenstofsen, und $I_{\lambda 1}, I_{\lambda a}, \ldots$ alle nach diesem Punkte zu als positiv gerechnet werden, so ist:

Ich will jetzt beweisen, dafs die Auflosungen der Glei. Ich will jelzt beweisen, dats die Aufllosungen der Gliei-
changen, welche man durch Anwenduag dieser Satze für $I_{1}, I_{2} \ldots I_{4}$ erhalt, vorauisgesetzt, dafis das gegebene System $I_{1}, I_{2} \ldots I_{1}$ erhat, vorausgesetz, daifs das gegebene System von Drabten nicht in mehrere vollig von einander getrennt
zerfallt, sich folgendermafsen allgemein angeben lassen: zeralt, sich folgendermaisen allgemein angeben lassonkt m die Anzahl der vorhandenen Kreuzungspunkte
Es d, h. der Punkte, in denen zwei oder mehrere Drabhte zusammenstofsen, und es sey $\mu=n-m+1$, dann ist

1) B. 64, S. 513 diecer Annalea.

Poggendorfl's Annal. Bd. LXXIII.
32.

Some historical remarks ${ }^{1}$

DAE theory is much more recent than ODE theory

In the modern days:

- Charles W. Gear first mathematician of modern time who studied DAEs
- first occurrence of the term "Differential-Algebraic Equation" in the title of Gear's paper" Simultaneous numerical solution of differential-algebraic equations. IEEE transactions on circuit theory 18.1 (1971): 89-95.

Simultaneous Numerical Solution of Differential-Algebraic Equations

```
CHARLES W. GEAR, MEMBER, IEEE
```

Abstract-A unifiod mothod for handling the mixod difforential form. The textbook extension to a simultaneous system of

 itself to
sparse.

I. Introduction

7 [$\begin{aligned} & \text { ANY problems in transient network analysis and } \\ & \text { continuous system simulation }\end{aligned}$ continuous system simulation lead to systems of
ordinary differential equations which requirc the solution of a simultaneous set of algebraic equations each ime that the derivatives are to be evaluated. The textbook form of a system of ordinary differential equations is

$$
w^{\prime}=\int(w, t)
$$

where w is a vector of dependent variables, f is a vector of unctions of w and time t of the same dimension as w, and w ' is the time derivative of w. Most methods discussed in the literature required the equations to be expressed in this
Manuscript reecived May 19, 1970; revised July 28, 1970 . This work was supported ir part by the U. S. Atomic Energy Commission. Thas supporited in part by the U.S. A.tomine Energy Commission. Univessiy, sianford, Califi. 94305 . He is on leave from the University of
differential and algebraic equations (DAEs) could be

$$
\boldsymbol{f}(\mathbf{w}, \boldsymbol{u}, t)
$$

$0=\boldsymbol{g}(\boldsymbol{w}, \boldsymbol{u}, t)$ necessarily the same as w). Asind has the form or initial value problems such as Euler's

$$
\begin{aligned}
& \qquad \boldsymbol{w}_{n}=\boldsymbol{w}_{n-1}+h f\left(\boldsymbol{w}_{n-1}, \boldsymbol{u}_{n-1}, t_{n-1}\right) \\
& \text { where } h=t_{n}-t_{n-1} \text { is the time increment. Since only } \boldsymbol{w}_{n-1} \text { is }
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } h=t_{n}-t_{n-1} \text { is the time increment. Since only } w_{n-1} \text { is } \\
& \text { known from the previous time step or the initial values, the }
\end{aligned}
$$ algebraic equations

must be solved for \boldsymbol{u}_{n-1} before cach time st The properties of the DAEs typically encountered are 1) differential equations
large
sparse
stiff
2) algebraic equations
large
sparse mildly nonlinear.

Aultrized licensed use Iniled ba: UNVERSITAET FREIBURG. Downloaded on August 22,2023 at 14.57 .22 UTC from |IEEE X plore. Restictions apply-

Some historical remarks ${ }^{1}$

DAE theory is much more recent than ODE theory

In the modern days:

- Charles W. Gear first mathematician of modern time who studied DAEs
- first occurrence of the term "Differential-Algebraic Equation" in the title of Gear's paper" Simultaneous numerical solution of differential-algebraic equations. IEEE transactions on circuit theory 18.1 (1971): 89-95.
- DASSL code in the 1980s by Linda Petzold - first DAE simulation code

Some historical remarks ${ }^{1}$

DAE theory is much more recent than ODE theory

In the modern days:

- Charles W. Gear first mathematician of modern time who studied DAEs
- first occurrence of the term "Differential-Algebraic Equation" in the title of Gear's paper" Simultaneous numerical solution of differential-algebraic equations. IEEE transactions on circuit theory 18.1 (1971): 89-95.
- DASSL code in the 1980s by Linda Petzold - first DAE simulation code
- electric circuits and mechanical systems still drive the development of DAEs

SANDIA REPORT SAND82-8637• Unlimited Release • UC-1 rinted September 1982

* A Description of DASSL:
- A Differential/Algebraic System Solver
(Presented at IMACS Worid Congress, Montree Canada, August 8-13, 1982)
L. R. Petzold
s

```
*)
    Now
```


[^0]
Some examples

Example 1 - algebraic and differential variables

Consider the system of equations

$$
F(x, \dot{x})=\left[\begin{array}{c}
x_{1}-\dot{x}_{1}+1 \\
\dot{x}_{1} x_{2}+2
\end{array}\right]=0 .
$$

Some examples

Example 1 - algebraic and differential variables

Consider the system of equations

$$
F(x, \dot{x})=\left[\begin{array}{c}
x_{1}-\dot{x}_{1}+1 \\
\dot{x}_{1} x_{2}+2
\end{array}\right]=0 .
$$

The Jacobian

$$
\frac{\partial F(\dot{x}, x)}{\partial \dot{x}}=\left[\begin{array}{cc}
-1 & 0 \\
x_{2} & 0
\end{array}\right],
$$

is not invertible.

Some examples

Example 1 - algebraic and differential variables

Consider the system of equations

$$
F(x, \dot{x})=\left[\begin{array}{c}
x_{1}-\dot{x}_{1}+1 \\
\dot{x}_{1} x_{2}+2
\end{array}\right]=0 .
$$

The Jacobian

$$
\frac{\partial F(\dot{x}, x)}{\partial \dot{x}}=\left[\begin{array}{cc}
-1 & 0 \\
x_{2} & 0
\end{array}\right],
$$

is not invertible.
Solve $\dot{x}_{1}=x_{1}+1$ and obtain

$$
\hat{F}(x, \dot{x})=\left[\begin{array}{c}
x_{1}+1-\dot{x}_{1} \\
\left(x_{1}+1\right) x_{2}+2
\end{array}\right]=0 .
$$

- There is no \dot{x}_{2} in the equations,
- The variable x_{2} is an algebraic variable.

Some examples

Consider the system of equations

$$
F(x, \dot{x})=p \dot{x}+x=0 .
$$

The Jacobian is

$$
\frac{\partial F(\dot{x}, x)}{\partial \dot{x}}=p .
$$

- If $p \neq 0$, we have a pure ODE: $\dot{x}=-\frac{x}{p}$.
- If $p=0$, we have an algebraic equation $x=0$.

Some examples

Example 3 - ODE or DAE?

Consider the system of equations

$$
F(x, \dot{x})=\left[\begin{array}{c}
\dot{x}_{1}+x_{1} \\
\left(x_{1}-x_{2}\right) \dot{x}_{2}+x_{1}-x_{2}
\end{array}\right]=0 .
$$

The Jacobian

$$
\frac{\partial F(\dot{x}, x)}{\partial \dot{x}}=\left[\begin{array}{cc}
1 & 0 \\
0 & x_{1}-x_{2}
\end{array}\right],
$$

is for $x_{1}=x_{2}$ not invertible. Depending on the state we can have a DAE or ODE:

- If $x_{1}=x_{2}$ we have a DAE: $\left[\begin{array}{l}\dot{x}_{1}+x_{1} \\ x_{1}-x_{2}\end{array}\right]=0$.
- If $x_{1} \neq x_{2}$ we have an ODE: $\left\{\begin{array}{l}\dot{x}_{1}=-x_{1} \\ \dot{x}_{2}=-1\end{array}\right.$

Differential algebraic equations are usually nicer

- General DAEs include problems may not be mathematically well-defined or very difficult to discretize directly.
- However, in practice DAEs are much nicer:

$$
\begin{aligned}
& F(t, \dot{x}(t), x(t), z(t), u(t))=0, \quad t \in[0, T], \\
& x(0)=x_{0} .
\end{aligned}
$$

Clear distinction between:

- $x \in R^{n_{x}}$ - differential states (need an initial condition)
- $z \in R^{n_{z}}$ - algebraic states (initial condition implicit)

Differential algebraic equations are usually nicer

- General DAEs include problems may not be mathematically well-defined or very difficult to discretize directly.
- However, in practice DAEs are much nicer:

$$
\begin{aligned}
& F(t, \dot{x}(t), x(t), z(t), u(t))=0, \quad t \in[0, T], \\
& x(0)=x_{0} .
\end{aligned}
$$

Clear distinction between:

- $x \in R^{n_{x}}$ - differential states (need an initial condition)
- $z \in R^{n_{z}}$ - algebraic states (initial condition implicit)
- Difference even more obvious in semi-explicit form (most common in practice):

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), z(t), u(t)) \\
0 & =g(t, x(t), z(t), u(t)) .
\end{aligned}
$$

Differential algebraic equations are usually nicer

- General DAEs include problems may not be mathematically well-defined or very difficult to discretize directly.
- However, in practice DAEs are much nicer:

$$
\begin{aligned}
& F(t, \dot{x}(t), x(t), z(t), u(t))=0, \quad t \in[0, T], \\
& x(0)=x_{0} .
\end{aligned}
$$

Clear distinction between:

- $x \in R^{n_{x}}$ - differential states (need an initial condition)
- $z \in R^{n_{z}}$ - algebraic states (initial condition implicit)
- Difference even more obvious in semi-explicit form (most common in practice):

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), z(t), u(t)) \\
0 & =g(t, x(t), z(t), u(t)) .
\end{aligned}
$$

- Very common in electric circuits (linear fully implicit), with M not having full rank:

$$
M \dot{x}=A x+B u .
$$

A semi-explicit DAE example

Three-dimensional pendulum

$$
\begin{aligned}
\dot{q} & =v \\
m \dot{v} & =F_{\mathrm{g}}-q z+u \\
0 & =q^{\top} q-L^{2}
\end{aligned}
$$

F_{g} - gravitational force

A semi-explicit DAE example

Three-dimensional pendulum

$$
\begin{aligned}
\dot{q} & =v \\
m \dot{v} & =F_{\mathrm{g}}-q z+u \\
0 & =q^{\top} q-L^{2}
\end{aligned}
$$

F_{g} - gravitational force
z - is the reaction force along q

A semi-explicit DAE example

Three-dimensional pendulum

$$
\begin{aligned}
\dot{q} & =v \\
m \dot{v} & =F_{\mathrm{g}}-q z+u \\
0 & =q^{\top} q-L^{2}
\end{aligned}
$$

F_{g} - gravitational force
z - is the reaction force along q
The semi-explicit form reads as

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right]=: f(x, z, u) \\
& 0=q^{\top} q-L^{2}=: g(x)
\end{aligned}
$$

with $x=(q, v)$

A semi-explicit DAE example

Three-dimensional pendulum

$$
\begin{aligned}
\dot{q} & =v \\
m \dot{v} & =F_{\mathrm{g}}-q z+u \\
0 & =q^{\top} q-L^{2}
\end{aligned}
$$

F_{g} - gravitational force
z - is the reaction force along q
The semi-explicit form reads as

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right]=: f(x, z, u) \\
& 0=q^{\top} q-L^{2}=: g(x)
\end{aligned}
$$

with $x=(q, v)$

A semi-explicit DAE example

Three-dimensional pendulum

$$
\begin{aligned}
\dot{q} & =v \\
m \dot{v} & =F_{\mathrm{g}}-q z+u \\
0 & =q^{\top} q-L^{2}
\end{aligned}
$$

F_{g} - gravitational force
z - is the reaction force along q
The semi-explicit form reads as

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right]=: f(x, z, u) \\
& 0=q^{\top} q-L^{2}=: g(x)
\end{aligned}
$$

with $x=(q, v)$

How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.
Fully implicit DAE

How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.
Fully implicit DAE

$$
F(\dot{x}, z, x, u)=0
$$

How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.
Fully implicit DAE

$$
F(\dot{x}, z, x, u)=0
$$

If for a given (x, u) the matrix $\left[\begin{array}{cc}\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}\end{array}\right]$ is invertible ("index one"),

How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.
Fully implicit DAE

$$
F(\dot{x}, z, x, u)=0
$$

If for a given (x, u) the matrix $\left[\begin{array}{cc}\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}\end{array}\right]$ is invertible ("index one"), then from the implicit function theorem it follows that there exists a function $\psi(x, u)$

$$
\left[\begin{array}{c}
\dot{x} \\
z
\end{array}\right]=\psi(x, u) \text { such that } F(\psi(x, u), x, u)=0 .
$$

How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.
Fully implicit DAE

$$
F(\dot{x}, z, x, u)=0
$$

If for a given (x, u) the matrix $\left[\begin{array}{cc}\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}\end{array}\right]$ is invertible ("index one"), then from the implicit function theorem it follows that there exists a function $\psi(x, u)$

$$
\left[\begin{array}{c}
\dot{x} \\
z
\end{array}\right]=\psi(x, u) \text { such that } F(\psi(x, u), x, u)=0 .
$$

Semi-explicit DAE

$$
F(\dot{x}, z, x, u)=\left[\begin{array}{c}
\dot{x}-f(x, z, u) \\
g(x, z, u)
\end{array}\right]=0 .
$$

How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.

Fully implicit DAE

$$
F(\dot{x}, z, x, u)=0
$$

If for a given (x, u) the matrix $\left[\begin{array}{cc}\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}\end{array}\right]$ is invertible ("index one"), then from the implicit function theorem it follows that there exists a function $\psi(x, u)$

$$
\left[\begin{array}{c}
\dot{x} \\
z
\end{array}\right]=\psi(x, u) \text { such that } F(\psi(x, u), x, u)=0 .
$$

Semi-explicit DAE

$$
F(\dot{x}, z, x, u)=\left[\begin{array}{c}
\dot{x}-f(x, z, u) \\
g(x, z, u)
\end{array}\right]=0 .
$$

Matrix $\left[\begin{array}{cc}\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}\end{array}\right]=\left[\begin{array}{cc}I & \frac{\partial F}{\partial z} \\ 0 & \frac{\partial g}{\partial z}\end{array}\right]$ invertible if $\frac{\partial g}{\partial z}$ invertible ("semi-explicit DAE of index one").

Example - easy DAE

Consider the DAE

$$
F(\dot{x}, x, z)=\left[\begin{array}{c}
x-\dot{x}+1 \\
\dot{x} z+2
\end{array}\right]
$$

Example - easy DAE

Consider the DAE

$$
F(\dot{x}, x, z)=\left[\begin{array}{c}
x-\dot{x}+1 \\
\dot{x} z+2
\end{array}\right]
$$

The matrix

$$
\left[\begin{array}{ll}
\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
z & \dot{x}
\end{array}\right]
$$

is invertible for $\dot{x} \neq 0$

Example - easy DAE

Consider the DAE

$$
F(\dot{x}, x, z)=\left[\begin{array}{c}
x-\dot{x}+1 \\
\dot{x} z+2
\end{array}\right]
$$

The matrix

$$
\left[\begin{array}{ll}
\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
z & \dot{x}
\end{array}\right]
$$

is invertible for $\dot{x} \neq 0$
... and we solve the DAE as:

$$
\begin{aligned}
& \dot{x}=x+1 \\
& z=-\frac{2}{\dot{x}}=-\frac{2}{x+1}
\end{aligned}
$$

Example - 3D pendulum

The pendulum dynamics

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \\
& 0=q^{\top} q-L^{2}
\end{aligned}
$$

Example - 3D pendulum

The pendulum dynamics

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{l}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \\
& 0=q^{\top} q-L^{2}
\end{aligned}
$$

In implicit form:

$$
F(\dot{x}, z, x, u)=\left[\begin{array}{c}
\dot{x}-f(x, z, u) \\
g(x, z, u)
\end{array}\right]=\left[\begin{array}{c}
\dot{q}-v \\
\dot{v}-\left(\frac{F_{\mathrm{g}}}{m_{\mathrm{T}}}-\frac{1}{m} q z+\frac{u}{m}\right) \\
q^{\top} q-L^{2}
\end{array}\right]=0
$$

Example - 3D pendulum

The pendulum dynamics

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{l}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \\
& 0=q^{\top} q-L^{2}
\end{aligned}
$$

In implicit form:

$$
F(\dot{x}, z, x, u)=\left[\begin{array}{c}
\dot{x}-f(x, z, u) \\
g(x, z, u)
\end{array}\right]=\left[\begin{array}{c}
\dot{q}-v \\
\dot{v}-\left(\frac{F_{\mathrm{g}}}{m_{\mathrm{M}}}-\frac{1}{m} q z+\frac{u}{m}\right) \\
q^{\top} q-L^{2}
\end{array}\right]=0
$$

The matrix

$$
\left[\begin{array}{cc}
\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}
\end{array}\right]=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & \frac{q}{m} \\
0 & 0 & 0
\end{array}\right] \text { is not invertible! }
$$

Example - 3D pendulum

The pendulum dynamics

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{l}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \\
0 & =q^{\top} q-L^{2}
\end{aligned}
$$

In implicit form:

$$
F(\dot{x}, z, x, u)=\left[\begin{array}{c}
\dot{x}-f(x, z, u) \\
g(x, z, u)
\end{array}\right]=\left[\begin{array}{c}
\dot{q}-v \\
\dot{v}-\left(\frac{F_{\mathrm{g}}}{m_{\mathrm{T}}}-\frac{1}{m} q z+\frac{u}{m}\right) \\
q^{\top} q-L^{2}
\end{array}\right]=0
$$

The matrix

$$
\left[\begin{array}{ll}
\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}
\end{array}\right]=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & \frac{q}{m} \\
0 & 0 & 0
\end{array}\right] \text { is not invertible! }
$$

Outline of this lecture

1 Introduction to differential algebraic equations

2 The differential index

3 Index reduction

4 Runge-Kutta methods for differential algebraic equations

The DAE differential index

Definition (Differential index of fully implicit DAEs)
The DAE differential index is the minimum integer k such that the k-th total time derivative

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}} F(\dot{x}, x, z, u)=0
$$

is a pure ordinary differential equation (in states $x, \dot{x}, \ldots, x^{(k)}$ and $z, \dot{z}, \ldots, z^{(k-1)}$).
An index 1 DAE (the "easy" DAEs)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(\dot{x}, x, z, u)=\frac{\partial F}{\partial \dot{x}} \ddot{x}+\frac{\partial F}{\partial x} \dot{x}+\frac{\partial F}{\partial z} \dot{z}+\frac{\partial F}{\partial u} \dot{u}=0
$$

The DAE differential index

Definition (Differential index of fully implicit DAEs)

The DAE differential index is the minimum integer k such that the k-th total time derivative

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}} F(\dot{x}, x, z, u)=0
$$

is a pure ordinary differential equation (in states $x, \dot{x}, \ldots, x^{(k)}$ and $z, \dot{z}, \ldots, z^{(k-1)}$).
An index 1 DAE (the "easy" DAEs)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(\dot{x}, x, z, u)=\frac{\partial F}{\partial \dot{x}} \ddot{x}+\frac{\partial F}{\partial x} \dot{x}+\frac{\partial F}{\partial z} \dot{z}+\frac{\partial F}{\partial u} \dot{u}=0
$$

If $\left[\begin{array}{ll}\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}\end{array}\right]$ is invertible, then we can define the explicit ODE in states (x, v, z) with $v:=\dot{x}$

The DAE differential index

Definition (Differential index of fully implicit DAEs)

The DAE differential index is the minimum integer k such that the k-th total time derivative

$$
\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}} F(\dot{x}, x, z, u)=0
$$

is a pure ordinary differential equation (in states $x, \dot{x}, \ldots, x^{(k)}$ and $z, \dot{z}, \ldots, z^{(k-1)}$).
An index 1 DAE (the "easy" DAEs)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} F(\dot{x}, x, z, u)=\frac{\partial F}{\partial \dot{x}} \ddot{x}+\frac{\partial F}{\partial x} \dot{x}+\frac{\partial F}{\partial z} \dot{z}+\frac{\partial F}{\partial u} \dot{u}=0
$$

If $\left[\begin{array}{ll}\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}\end{array}\right]$ is invertible, then we can define the explicit ODE in states (x, v, z) with $v:=\dot{x}$

$$
\begin{aligned}
\dot{x} & =v \\
{\left[\begin{array}{c}
\dot{v} \\
\dot{z}
\end{array}\right] } & =-\left[\begin{array}{ll}
\frac{\partial F}{\partial \dot{x}} & \frac{\partial F}{\partial z}
\end{array}\right]^{-1}\left(\frac{\partial F}{\partial x} v+\frac{\partial F}{\partial u} \dot{u}\right)
\end{aligned}
$$

The DAE differential index - semi-explicit DAEs

Definition (Differential index of semi-explicit DAEs)
The DAE differential index is the minimum integer k such that the

$$
\begin{aligned}
& \dot{x}=f(x, z, u) \\
& 0=\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}} g(x, z, u)
\end{aligned}
$$

is a pure ordinary differential equation.

An index 1 DAE (the "easy" DAEs)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z, u)=\frac{\partial g}{\partial x} f(x, z, u)+\frac{\partial g}{\partial z} \dot{z}+\frac{\partial g}{\partial u} \dot{u}=0
$$

The DAE differential index - semi-explicit DAEs

Definition (Differential index of semi-explicit DAEs)
The DAE differential index is the minimum integer k such that the

$$
\begin{aligned}
& \dot{x}=f(x, z, u) \\
& 0=\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}} g(x, z, u)
\end{aligned}
$$

is a pure ordinary differential equation.

An index 1 DAE (the "easy" DAEs)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z, u)=\frac{\partial g}{\partial x} f(x, z, u)+\frac{\partial g}{\partial z} \dot{z}+\frac{\partial g}{\partial u} \dot{u}=0
$$

If $\frac{\partial g}{\partial z}$ is invertible, then we can define the explicit ODE (with $v:=\dot{x}$)

The DAE differential index - semi-explicit DAEs

Definition (Differential index of semi-explicit DAEs)

The DAE differential index is the minimum integer k such that the

$$
\begin{aligned}
\dot{x} & =f(x, z, u) \\
0 & =\frac{\mathrm{d}^{k}}{\mathrm{~d} t^{k}} g(x, z, u)
\end{aligned}
$$

is a pure ordinary differential equation.

An index 1 DAE (the "easy" DAEs)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z, u)=\frac{\partial g}{\partial x} f(x, z, u)+\frac{\partial g}{\partial z} \dot{z}+\frac{\partial g}{\partial u} \dot{u}=0
$$

If $\frac{\partial g}{\partial z}$ is invertible, then we can define the explicit ODE (with $v:=\dot{x}$)

$$
\begin{aligned}
\dot{x} & =f(x, z, u) \\
\dot{z} & =-\frac{\partial g}{\partial z}^{-1}\left(\frac{\partial g}{\partial x} f(x, z, u)+\frac{\partial g}{\partial u} \dot{u}\right)
\end{aligned}
$$

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-2 z\right)
\end{aligned}
$$

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-2 z\right)
\end{aligned}
$$

Differentiate $g(x, z)$ w.r.t. t :

$$
\begin{aligned}
0=\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z) & =x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}-\dot{z} \\
0 & =x_{1} x_{2}+x_{2} z-\dot{z}
\end{aligned}
$$

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-2 z\right)
\end{aligned}
$$

Differentiate $g(x, z)$ w.r.t. t :

$$
z=0.5\left(x_{1}^{2}+x_{2}^{2}\right)
$$

$$
\begin{aligned}
0=\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z) & =x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}-\dot{z} \\
0 & =x_{1} x_{2}+x_{2} z-\dot{z}
\end{aligned}
$$

The DAE is of index 1

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-2 z\right)
\end{aligned}
$$

Differentiate $g(x, z)$ w.r.t. t :

$$
z=0.5\left(x_{1}^{2}+x_{2}^{2}\right)
$$

$$
\begin{aligned}
0=\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z) & =x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}-\dot{z} \\
0 & =x_{1} x_{2}+x_{2} z-\dot{z}
\end{aligned}
$$

The DAE is of index $\mathbf{1}$

$x(0)$ can take any value

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-2 z\right)
\end{aligned}
$$

Differentiate $g(x, z)$ w.r.t. t :

$$
z=0.5\left(x_{1}^{2}+x_{2}^{2}\right)
$$

$x(0)$ can take any value

$$
\begin{aligned}
0=\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z) & =x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2}-\dot{z} \\
0 & =x_{1} x_{2}+x_{2} z-\dot{z}
\end{aligned}
$$

The DAE is of index $\mathbf{1}$

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)
\end{aligned}
$$

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)
\end{aligned}
$$

Differentiate $g(x, z)$ w.r.t. t :

$$
\begin{aligned}
0=\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z) & =x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2} \\
0 & =x_{1} x_{2}+x_{2} z
\end{aligned}
$$

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)
\end{aligned}
$$

Differentiate $g(x, z)$ w.r.t. t :

$$
\begin{aligned}
0=\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z) & =x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2} \\
0 & =x_{1} x_{2}+x_{2} z \\
0=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} g(x, z) & =\dot{x}_{1} x_{2}+x_{1} \dot{x}_{2}+\dot{x}_{2} z+x_{2} \dot{z} \\
0 & =x_{2}^{2}+x_{1} z+z^{2}+x_{2} \dot{z}
\end{aligned}
$$

$x(0)$ must satisfy $g(x)=0$

The differential index - examples

Regard the DAE

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =z \\
0 & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-1\right)
\end{aligned}
$$

Differentiate $g(x, z)$ w.r.t. t :

$$
x
$$

$$
\begin{aligned}
0=\frac{\mathrm{d}}{\mathrm{~d} t} g(x, z) & =x_{1} \dot{x}_{1}+x_{2} \dot{x}_{2} \\
0 & =x_{1} x_{2}+x_{2} z \\
0=\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} g(x, z) & =\dot{x}_{1} x_{2}+x_{1} \dot{x}_{2}+\dot{x}_{2} z+x_{2} \dot{z} \\
0 & =x_{2}^{2}+x_{1} z+z^{2}+x_{2} \dot{z}
\end{aligned}
$$

The DAE is of index 2

The differential index of the 3D pendulum

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \tag{1a}\\
& 0=q^{\top} q-L^{2} \tag{1b}
\end{align*}
$$

The differential index of the 3D pendulum

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{l}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \tag{1a}\\
& 0=q^{\top} q-L^{2} \tag{1b}
\end{align*}
$$

$$
\frac{\mathrm{d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \quad \text { (first differentiation) }
$$

The differential index of the 3D pendulum

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{l}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \tag{1a}\\
& 0=q^{\top} q-L^{2} \tag{1b}
\end{align*}
$$

$$
\begin{gather*}
\frac{\mathrm{d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \quad \text { (first differentiation) } \\
\frac{\mathrm{d}^{2} g(x)}{\mathrm{d} t^{2}}=q^{\top} \dot{v}+v^{\top} v=0 \quad \text { (second differentiation) } \tag{2}
\end{gather*}
$$

The differential index of the 3D pendulum

$$
\begin{align*}
& \dot{x}=\left[\begin{array}{l}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \tag{1a}\\
& 0=q^{\top} q-L^{2} \tag{1b}
\end{align*}
$$

$$
\begin{gather*}
\frac{\mathrm{d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \quad \text { (first differentiation) } \\
\frac{\mathrm{d}^{2} g(x)}{\mathrm{d} t^{2}}=q^{\top} \dot{v}+v^{\top} v=0 \quad \text { (second differentiation) } \tag{2}
\end{gather*}
$$

Third differentiation would yield \dot{z} - index 3 DAE.

The differential index of the 3D pendulum

$$
\begin{gather*}
\dot{x}=\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{g}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \tag{1a}\\
0=q^{\top} q-L^{2} \tag{1b}\\
\frac{\mathrm{~d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \quad \text { (first differentiation) } \\
\frac{\mathrm{d}^{2} g(x)}{\mathrm{d} t^{2}}=q^{\top} \dot{v}+v^{\top} v=0 \quad \text { (second differentiation) } \tag{2}
\end{gather*}
$$

Third differentiation would yield \dot{z} - index 3 DAE.

The differential index of the 3D pendulum

$$
\begin{align*}
\dot{x} & =\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{g}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \tag{1a}\\
0 & =q^{\top} q-L^{2} \tag{1b}
\end{align*}
$$

$$
\begin{gather*}
\frac{\mathrm{d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \quad \text { (first differentiation) } \\
\frac{\mathrm{d}^{2} g(x)}{\mathrm{d} t^{2}}=q^{\top} \dot{v}+v^{\top} v=0 \quad \text { (second differentiation) } \tag{2}
\end{gather*}
$$

Third differentiation would yield \dot{z} - index 3 DAE. Note: we could also analytically obtain z :

$$
\begin{aligned}
& 0=q^{\top}\left(\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}\right)+v^{\top} v \\
& z=\frac{1}{q^{\top} q}\left(q^{\top} F_{\mathrm{g}}+q^{\top} u+m v^{\top} v\right)
\end{aligned}
$$

- Combining (1) and (2) we have an "easy" index 1 DAE, compactly written as

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

The differential index of the 3D pendulum

$$
\begin{gather*}
\dot{x}=\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{g}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \tag{1a}\\
0=q^{\top} q-L^{2} \tag{1b}\\
\frac{\mathrm{~d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \quad \text { (first differentiation) } \\
\frac{\mathrm{d}^{2} g(x)}{\mathrm{d} t^{2}}=q^{\top} \dot{v}+v^{\top} v=0 \quad \text { (second differentiation) } \tag{2}
\end{gather*}
$$

Third differentiation would yield \dot{z} - index 3 DAE. Note: we could also analytically obtain z :

$$
\begin{aligned}
& 0=q^{\top}\left(\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}\right)+v^{\top} v \\
& z=\frac{1}{q^{\top} q}\left(q^{\top} F_{\mathrm{g}}+q^{\top} u+m v^{\top} v\right)
\end{aligned}
$$

- Combining (1) and (2) we have an "easy" index 1 DAE, compactly written as

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Lagrange mechanics models are typically index 3 DAEs

The differential index of the 3D pendulum

$$
\begin{gather*}
\dot{x}=\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \tag{1a}\\
0=q^{\top} q-L^{2} \tag{1b}\\
\frac{\mathrm{~d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \quad \text { (first differentiation) } \\
\frac{\mathrm{d}^{2} g(x)}{\mathrm{d} t^{2}}=q^{\top} \dot{v}+v^{\top} v=0 \quad \text { (second differentiation) } \tag{2}
\end{gather*}
$$

Third differentiation would yield \dot{z} - index 3 DAE. Note: we could also analytically obtain z :

$$
\begin{aligned}
& 0=q^{\top}\left(\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}\right)+v^{\top} v \\
& z=\frac{1}{q^{\top} q}\left(q^{\top} F_{\mathrm{g}}+q^{\top} u+m v^{\top} v\right)
\end{aligned}
$$

- Combining (1) and (2) we have an "easy" index 1 DAE, compactly written as

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Lagrange mechanics models are typically index 3 DAEs
- In practice, they are often treated with standard methods after an index reduction to a DAE of index 1

Outline of this lecture

1 Introduction to differential algebraic equations

2 The differential index

3 Index reduction

4 Runge-Kutta methods for differential algebraic equations

Index reduction

In theory, we can always transform a higher index into a lower index DAE. Questions:

1. When can we and when should we do this?
2. Can anything go wrong? (Yes, a lot.)

Index reduction

In theory, we can always transform a higher index into a lower index DAE. Questions:

1. When can we and when should we do this?
2. Can anything go wrong? (Yes, a lot.)

Pros of index reduction
\checkmark obtain ODE or DAE index 1 - use standard methods
\checkmark no new integration code needed
\checkmark rely on nice theory for ODEs and "easy" DAEs
\checkmark theory of higher index DAEs less mature
\checkmark not always clear how to simulate higher index DAEs
\checkmark no order reduction (treated later)

Index reduction

In theory, we can always transform a higher index into a lower index DAE. Questions:

1. When can we and when should we do this?
2. Can anything go wrong? (Yes, a lot.)

Pros of index reduction

\checkmark obtain ODE or DAE index 1 - use standard methods
\checkmark no new integration code needed
\checkmark rely on nice theory for ODEs and "easy" DAEs
\checkmark theory of higher index DAEs less mature
\checkmark not always clear how to simulate higher index DAEs
\checkmark no order reduction (treated later)

Cons of index reduction

X index reduction may be very difficult to perform
X not all variables have physical interpretation
X cannot easily exploit structure in specific solver
x initialization of index reduced DAE difficult (treated next)
X numerical drift in index reduced DAE (treated next)

Issues with index reduction - consistent initialization

When are index reduced models equivalent?

Index 3

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \\
& 0=q^{\top} q-L^{2}
\end{aligned}
$$

Issues with index reduction - consistent initialization

When are index reduced models equivalent?

Index 3

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \\
0 & =q^{\top} q-L^{2}
\end{aligned}
$$

Index 1

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

Issues with index reduction - consistent initialization

When are index reduced models equivalent?

Index 3

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{c}
\dot{q} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{c}
v \\
\frac{F_{\mathrm{g}}}{m}-\frac{1}{m} q z+\frac{u}{m}
\end{array}\right] \\
& 0=q^{\top} q-L^{2}
\end{aligned}
$$

Index 1

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathrm{g}+u}+u \\
-v^{\top} v
\end{array}\right]
$$

What went wrong?

Issues with index reduction - consistent initialization

Index 1- only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathbf{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

Issues with index reduction - consistent initialization

Index 1 - only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- We must also regard the constraints

$$
\begin{align*}
g(x) & =q^{\top} q-L^{2}=0 \tag{3a}\\
\frac{\mathrm{~d} g(x)}{\mathrm{d} t} & =q^{\top} \dot{q}=q^{\top} v=0 \tag{3b}
\end{align*}
$$

Issues with index reduction - consistent initialization

Index 1 - only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{l}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- We must also regard the constraints

$$
\begin{gather*}
g(x)=q^{\top} q-L^{2}=0 \tag{3a}\\
\frac{\mathrm{~d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \tag{3b}
\end{gather*}
$$

- If initial conditions violate (3) - wrong solution

Issues with index reduction - consistent initialization

Index 1 - only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{l}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- We must also regard the constraints

$$
\begin{gather*}
g(x)=q^{\top} q-L^{2}=0 \tag{3a}\\
\frac{\mathrm{~d} g(x)}{\mathrm{d} t}=q^{\top} \dot{q}=q^{\top} v=0 \tag{3b}
\end{gather*}
$$

- If initial conditions violate (3) - wrong solution
- Index reduced DAE must satisfy consistency conditions (3) at $t=0$

Issues with index reduction - constraint drift

Index 1-only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Suppose that the index reduced DAE satisfies consistency conditions (3) at $t=0$

Issues with index reduction - constraint drift

Index 1 - only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{l}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Suppose that the index reduced DAE satisfies consistency conditions (3) at $t=0$
- Integration errors might still accumulate over time

Issues with index reduction - constraint drift

Index 1 - only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{l}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Suppose that the index reduced DAE satisfies consistency conditions (3) at $t=0$
- Integration errors might still accumulate over time
- Constraint drift is a consequence of index reduction

Baumgarte stabilization of the constraint drift for index 3 DAE

After reduction from Index 3 to 1, the resulting DAE only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{c}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Suppose that the index reduced DAE satisfies consistency conditions (3) at $t=0$

Baumgarte stabilization of the constraint drift for index 3 DAE

After reduction from Index 3 to 1, the resulting DAE only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{l}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Suppose that the index reduced DAE satisfies consistency conditions (3) at $t=0$
- In index 1 DAE, instead of $\ddot{g}(x)=0$, impose:

$$
\ddot{g}(x)+\kappa_{1} \dot{g}(x)+\kappa_{0} g(x)=0
$$

Baumgarte stabilization of the constraint drift for index 3 DAE

After reduction from Index 3 to 1, the resulting DAE only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{l}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Suppose that the index reduced DAE satisfies consistency conditions (3) at $t=0$
- In index 1 DAE, instead of $\ddot{g}(x)=0$, impose:

$$
\ddot{g}(x)+\kappa_{1} \dot{g}(x)+\kappa_{0} g(x)=0
$$

- Pick κ_{0} and κ_{1} to have stable dynamics (might be tricky)

Baumgarte stabilization of the constraint drift for index 3 DAE

After reduction from Index 3 to 1, the resulting DAE only imposes $\ddot{g}(x)=0$

$$
\left[\begin{array}{cc}
m \cdot I & q \\
q^{\top} & 0
\end{array}\right]\left[\begin{array}{l}
\dot{v} \\
z
\end{array}\right]=\left[\begin{array}{l}
F_{\mathrm{g}}+u \\
-v^{\top} v
\end{array}\right]
$$

- Suppose that the index reduced DAE satisfies consistency conditions (3) at $t=0$
- In index 1 DAE, instead of $\ddot{g}(x)=0$, impose:

$$
\ddot{g}(x)+\kappa_{1} \dot{g}(x)+\kappa_{0} g(x)=0
$$

- Pick κ_{0} and κ_{1} to have stable dynamics (might be tricky)

- Stabilize the constraint drift

Summary on differential index

- Notion of differential index helps to classify DAEs, to determine difficulty, and to pick right method and software
- Two major difficulties in solving DAE:

1. index reduction
2. consistent initialization

Summary on differential index

- Notion of differential index helps to classify DAEs, to determine difficulty, and to pick right method and software
- Two major difficulties in solving DAE:

1. index reduction
2. consistent initialization

- Higher index DAEs have hidden constraints: Index $k \Longrightarrow k-1$ hidden constraints
- Constraint drift is consequence of differentiation, might need Baumgarte's stabilization

Summary on differential index

- Notion of differential index helps to classify DAEs, to determine difficulty, and to pick right method and software
- Two major difficulties in solving DAE:

1. index reduction
2. consistent initialization

- Higher index DAEs have hidden constraints: Index $k \Longrightarrow k-1$ hidden constraints
- Constraint drift is consequence of differentiation, might need Baumgarte's stabilization
- The index is a local quantity, might depend on initial state - less common in practical smooth problems
- Nonsmooth ODEs are locally DAEs of different index - very common
- Keeping the index in mind, the integration method has to be chosen carefully (both for smooth and nonsmooth systems)

1 Introduction to differential algebraic equations

2 The differential index

3 Index reduction

4 Runge-Kutta methods for differential algebraic equations

Introduction to Runge-Kutta methods for DAEs

Two ways to numerically solve DAEs:

1. Direct discretization of the DAE
2. Reformulation (index reduction) and discretization

Some remarks

Introduction to Runge-Kutta methods for DAEs

Two ways to numerically solve DAEs:

1. Direct discretization of the DAE
2. Reformulation (index reduction) and discretization

Some remarks

- direct discretization is desirable since the index reduction might be costly and require expert knowledge
- ... in principle only feasible for index 1 and 2 , and for index 3 with some care

Introduction to Runge-Kutta methods for DAEs

Two ways to numerically solve DAEs:

1. Direct discretization of the DAE
2. Reformulation (index reduction) and discretization

Some remarks

- direct discretization is desirable since the index reduction might be costly and require expert knowledge
- ... in principle only feasible for index 1 and 2 , and for index 3 with some care
- RK methods in direct discretization: simply impose the algebraic equations at the stage points
- $x(t)$ found through integration, and may be smoother than $z(t)$ - influences accuracy

DAEs in Hessenberg form

DAE of index 1

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), z(t), u(t)) \\
0 & =g(t, x(t), z(t), u(t))
\end{aligned}
$$

with $\frac{\partial g}{\partial z}$ nonsingular for all t

DAE of index 2

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), z(t), u(t)) \\
0 & =g(t, x(t), u(t))
\end{aligned}
$$

with $\frac{\partial g}{\partial x} \frac{\partial f}{\partial z}$ nonsingular for all t

DAE of index 3

$$
\begin{aligned}
\dot{x}(t) & =f_{x}(t, x(t), y(t)) \\
\dot{y}(t) & =f_{y}(t, x(t), y(t), z(t), u(t)) \\
0 & =g(t, x(t), u(t))
\end{aligned}
$$

with $\frac{\partial g}{\partial x} \frac{\partial f_{x}}{\partial y} \frac{\partial f_{y}}{\partial z}$ nonsingular for all t

- RK methods most often stated for DAEs in a canonical form
- Often we can get an idea of the differential index by looking at the arguments of $g(\cdot)$

Runge-Kutta methods for index 1 DAEs

Definition (RK method for index 1 DAEs)

Consider an IVP with DAE of index 1 in Hessenberg form. Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{s}}$. Let $t_{n, i}=t_{n}+c_{i} h$.

$$
\begin{aligned}
k_{n, i} & =f\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, z_{n, i}, u_{n}\right), & i=1, \ldots, n_{\mathrm{s}} \\
0 & =g\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, z_{n, i}, u_{n}\right), & i=1, \ldots, n_{\mathrm{s}} \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} k_{n, i} & \\
0 & =g\left(t_{n+1}, x_{n+1}, z_{n+1}, u_{n}\right) . &
\end{aligned}
$$

is called a n_{s}-stage Runge-Kutta (RK) method for DAEs of index 1 . Here $z_{n, i}, i=1, \ldots, n_{\mathrm{s}}$ are the stage values for the algebraic variables and z_{n+1} is the approximation of $z\left(t_{n+1}\right)$.

Runge-Kutta methods for index 2 DAEs

Definition (RK method for index 2 DAEs)

Consider an IVP with DAE of index 2 in Hessenberg form. It is assumed that the initial values x_{n} and z_{n} are consistent:

$$
g\left(t_{n}, x_{n}, u_{n}\right)=0, \frac{\partial}{\partial x} g\left(t_{n}, x_{n}, u_{n}\right)^{\top} f\left(t_{n}, x_{n}, z_{n}, u_{n}\right)=0 .
$$

Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{\mathrm{s}}}$, a n_{s}-stage Runge-Kutta (RK) method for DAEs of index 2 is defined by the system of equations:

$$
\begin{array}{rlrl}
k_{n, i} & =f\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, z_{n, i}, u_{n}\right), & & i=1, \ldots, n_{\mathrm{s}} \\
0 & =g\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, u_{n}\right), & & \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} k_{n, i} &
\end{array}
$$

Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Radau IIA methods

ODE integrated with IRK Radau II-A

DAE of index 1 integrated with IRK Radau II-A

Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Radau IIA methods

ODE integrated with IRK Radau II-A

DAE of index 1 integrated with IRK Radau II-A

Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Radau IIA methods

Direct discretization of higher index DAEs $=$ loss of order!

Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Gauss-Legendre methods

ODE integrated with IRK Gauss-Legendre

DAE of index 1 integrated with IRK Gauss-Legendre

Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Gauss-Legendre methods

ODE integrated with IRK Gauss-Legendre

DAE of index 1 integrated with IRK Gauss-Legendre

Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Gauss-Legendre methods

Direct discretization with GL of higher index DAEs = loss of order even more sever!

Order plots for the different variables of a DAE

Integrate the pendulum model of with Radau IIA and $n_{s}=2$

ODE integrated with IRK Radau II-A

DAE of index 1 integrated with IRK Radau II-A

Order plots for the different variables of a DAE

Integrate the pendulum model of with Radau IIA and $n_{s}=2$

ODE integrated with IRK Radau II-A

DAE of index 1 integrated with IRK Radau II-A

Order plots for the different variables of a DAE

Integrate the pendulum model of with Radau IIA and $n_{s}=2$

Depending on index, different components have different accuracy.

Order plots for the different variables of a DAE

Integrate the pendulum model of with Gauss-Legendre and $n_{s}=2$

Depending on index, different components have different accuracy.

Order reduction in higher index DAEs

- RK methods experience order reduction for higher index DAEs
- Different components of the solution may have different accuracy
- Index reduction requires consistent initialization and drift handling
- Condition number of Newton matrix $O\left(h^{-k}\right)$ where k is the index

Order reduction in higher index DAEs

- RK methods experience order reduction for higher index DAEs
- Different components of the solution may have different accuracy
- Index reduction requires consistent initialization and drift handling
- Condition number of Newton matrix $O\left(h^{-k}\right)$ where k is the index

Method	n_{s}	ODE	DAE index 1		DAE index 2	
		x	x	z	x	z
Gauss-Legendre	odd	$2 n_{\mathrm{s}}$	$2 n_{\mathrm{s}}$	n_{s}	$n_{\mathrm{s}}+1$	$n_{\mathrm{s}}-1$
	even	$2 n_{\mathrm{s}}$	$2 n_{\mathrm{s}}$	$n_{\mathrm{s}}+1$	n_{s}	$n_{\mathrm{s}}-2$
Radau IA	odd/even	$2 n_{\mathrm{s}}-1$	$2 n_{\mathrm{s}}-1$	n_{s}	n_{s}	$n_{\mathrm{s}}-1$
Radau IIA	odd/even	$2 n_{\mathrm{s}}-1$	$2 n_{\mathrm{s}}-1$	$2 n_{\mathrm{s}}-1$	$2 n_{\mathrm{s}}-1$	n_{s}
Lobatto IIIA	odd	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	$n_{\mathrm{s}}-1$
	even	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	n_{s}
odd/even	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	$2 n_{\mathrm{s}}-2$	$n_{\mathrm{s}}-1$	

Table: Overview of accuracy orders for some IRK methods for ODEs, DAEs of index 1 and 2

Order reduction in higher index DAEs

- RK methods experience order reduction for higher index DAEs
- Different components of the solution may have different accuracy
- Index reduction requires consistent initialization and drift handling
- Condition number of Newton matrix $O\left(h^{-k}\right)$ where k is the index

Method	n_{s}	x	y	z
Radau IA	$n_{\mathrm{s}}>2$	n_{s}	$n_{\mathrm{s}}-1$	$n_{\mathrm{s}}-2$
Radau IIA	$n_{\mathrm{s}}>1$	$2 n_{\mathrm{s}}-1$	n_{s}	$n_{\mathrm{s}}-1$
Lobatto IIIC	$n_{\mathrm{s}}>2$	$2 n_{\mathrm{s}}-3$	n_{s}	$n_{\mathrm{s}}-1$

Table: Overview of accuracy orders for some IRK methods for DAEs of index 3

Summary of Runge-Kutta methods for DAEs

- Practical difference between ODEs and DAEs is that DAEs must be solved consistently with respect to all constraints (even the hidden ones)
- RK methods for higher index DAES may suffer from order reduction - but not index reduction needed, Radau IIA a good choice
- In particular, Gauss-Legendre suffer from severe order reduction if index $k>1$
- Methods for higher index methods may be ill conditioned
- Nonsmooth ODEs switch between index 0,1 and 2. Sometimes they have hidden index reduced DAEs (e.g. time-freezing)

References

- Moritz Diehl, Sébastien Gros. "Numerical optimal control (Draft)," Lecture notes, 2019.
- Gerhard Wanner, Ernst Hairer. "Solving ordinary differential equations II." Vol. 375. New York: Springer Berlin Heidelberg, 1996.
- Ernst Hairer, Christian Lubich, and Michel Roche. "The numerical solution of differential-algebraic systems by Runge-Kutta methods." Vol. 1409. Springer, 2006.
- Uri M. Ascher, Linda R. Petzold. "Computer methods for ordinary differential equations and differential-algebraic equations." Vol. 61. SIAM, 1998.
- Lorenz T. Biegler. "Nonlinear programming: concepts, algorithms, and applications to chemical processes." SIAM, 2010.

[^0]: ${ }^{1}$ Reference for historical overview: Simeon, Bernd. On the history of differential-algebraic equations: a retrospective with personal side trips. Springer International Publishing, 2017.

