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Outline of the lecture

1 Introduction to differential algebraic equations

2  The differential index

3 Index reduction

4 Runge-Kutta methods for differential algebraic equations
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Differential algebraic equations

Let:
> ¢ € R be the time
» 2(t) € R™ the differential states
» u(t) € R™ a given control function
L) — dz(t)
> denote by i(t) = <;

Ordinary differential and differential algebraic equations
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Differential algebraic equations

Let:
> ¢ € R be the time
» 2(t) € R™ the differential states
» u(t) € R™ a given control function

» denote by i(t) = dfi(tt)

Ordinary differential and differential algebraic equations

> Let F: R x R" x R" x R™ — R"= be a function such that the Jacobian %—g(-) is
invertible. The system of equations:

Bt 2(t), (1), u(t)) = 0,

is called an Ordinary Differential Equation (ODE).
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Differential algebraic equations

Let:
> ¢ € R be the time
» 2(t) € R™ the differential states
> wu(t) € R™ a given control function

» denote by i(t) = dfi(tt)

Ordinary differential and differential algebraic equations

> Let F: R x R" x R" x R™ — R"= be a function such that the Jacobian %—g(-) is
invertible. The system of equations:

Bt 2(t), (1), u(t)) = 0,

is called an Ordinary Differential Equation (ODE).
» .. if the Jacobian g—g(-)is NOT invertible, then the system of equations:

Bt 2(t), (1), u(t)) = 0,

is called an Differential Algebraic Equation (DAE).
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Some historical remarks

DAE theory is much more recent than ODE theory

In the old days pioneered by:

» Euler-Lagrange equations in 1788 :
J. L. Lagrange, Mechanique analytique.
Libraire chez la Veuve Desaint, Paris

image source: wikipedia
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Some historical remarks

DAE theory is much more recent than ODE theory

In the old days pioneered by:

» Euler-Lagrange equations in 1788 :
J. L. Lagrange, Mechanique analytique.
Libraire chez la Veuve Desaint, Paris

» Kirchhoff's laws in 1847:
G. Kirchhoff Ueber die Auflosung der
Gleichungen, auf welche man bei der
Untersuchung der linearen Vertheilung
galvanischer Stréme gefiihrt wird. Annalen
der Physik 148.12 (1847): 497-508.
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1847. ANNALEN Mo, 12
DER PHYSIK UND CHEMIE.
BAND LXXIL

-

Ueber die Auflisung der Gleichungen, auf wel-

che man bei der Untersuchung der lincaren Ver-

theilung galvanischer Stréme gefihrt wird;
con G. Kirchhoff.

Lt cin System von n Drahten: 1, 2...n gegeben, welche
auf einie belichige Weise unter einander verbunden sind,
und bat in einem jeden derselben eine beliebige elektro-
motorische Kraft ihren Sitz, so findet man zur Bestimmung
der Intensititen der Strome, von welchen die Drabte durch-
flossen werden, I, k...L, die nothige Anzahl linearcr
Gleichungen durch Benutzung der beiden folgenden Sitze '):

L Wenn die Drsbte ki, ks, ... eine geschiossene Fi-
gur bilden, und 1 bezeichuet den Widerstand des Drah-
tes k, Ei die elektromotorische Kraft, die in demselben
ihren Sitz hat, mach dersclben Richtung positiv gerechnet
als L, so ist, falls Ju, Ji, ... alle nach einer Richtung
als positiv gerechnet werden:

wnlu+vela+... =Eu+En+...

IL Weno die Drihte 41, 4, ... in einem Punkte zu-
sammenstofsen, und Lu, Dy, ... alle nach diesem Punkte
zu als positiv gerechnet werden,

Luhat.. .

Ich will jetat beweisen, dafs die Auflosungen der Glei-
chungen, welche man durch Anwendung dieser Shize fiir
L, ... I, erhalt, vorausgesetat, dals das gegebene System
von Drihten nicht in webrere vbllig von einander getrennte
zerfillt, sich folgendermafsen allgemein angeben lassen:

Es sey m die Anzabl der vorbandenen Kreuzungspunkte,
d. b. der Punkte, in denen .zwei oder mehrere Drhte zu-
sammenstofsen, und es sey p=n—m-1, dann ist

1) Bd. 64, 8. 813 dieser Aunlen.
Poggendorils Ausl. B LXXII, 32




Some historical remarks!

DAE theory is much more recent than ODE theory

In the modern day.

» Charles W. Gear first mathematician of
modern time who studied DAEs

> first occurrence of the term
" Differential-Algebraic Equation” in the
title of Gear's paper” Simultaneous
numerical solution of differential-algebraic
equations. |EEE transactions on circuit
theory 18.1 (1971): 89-95.
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Simultaneous Numerical Solution of
Differential-Algebraic Equations

CHARLES W. GEAR, MEMBER, [EEE

Abstract—A unified mathod for handiing the mixed differential
aic. aquations of the tvbe that commonly ocur in the.

e for sttt ordinary

rm v 1ly. 0). In the
s applisd to blom
nents of s systom. Tho metl
‘tochniaues when the problem is

L. INtRODUCTION
[TANY problems in transient network analysis and
continuous system simulation lead to systems of
ordinary differential equations which require the
solution of a simultancous set of algebraic equations each
time that the derivatives are to be evaluated. The textbook
form of a system of ordinary differential equations is
w' = fiw, 1) ()
where w is a vector of dependent variables, f s a vector of
functions of w and time ¢ of the same dimension as w, an
w'is the time derivative of w. Most methods discussed in the
literature required the equations to be expressed in this

Manuscrpt received May 19, 1970; revised July 28, 1970. This work
was supported i part by the U. $. Atomic Energy Commission.

car Acceler
Universty, Stanford, Calir 94305. He is on leave from the Universty of
Hlinois, Urbana, .

Authorized oonsed use med to: UNIVERSITAET FREIBURG.

form. The textbook extension to a simultaneous system of
differential and algebraic equations (DAEs) could be

W = flm, u, 1)

0= glw u1) @
where u is a vector of the same dimension as g (but not
necessarily the same as ).

init Euler's
method has the form

W = Wy BB oy, ) (€]
where h=t,~,_, is the time increment. Since only w, , is
known from the previous time step or the initial values, the
algebraic equations

0= g1y by s tas) “@

must be solved for w,_; before each time step.
‘The properties of the DAES typically encountered are

1) differential equations
sparse
2) algebraic equations.

sparse
‘mildly nonlinear.
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Some historical remarks!

DAE theory is much more recent than ODE theory

oot SAND--828637
E-
oF- “eRBAS: 008493

SA~ND|A REPORT SANDB2-8637 # Unlimited Release ® UC-13
In the modern days: P Sotanter 1562

. 5 o “*A.Description of DASSL:
» Charles W. Gear first mathematician of * A Differential/Algebraic =
System Solver

modern time who studied DAEs

{Presented at IMACS World Congress, Montreal,
Canada, August 8-13, 1982)

» first occurrence of the term
" Differential-Algebraic Equation” in the b P Potot
title of Gear's paper’ Simultaneous “
numerical solution of differential-algebraic N
equations. |EEE transactions on circuit
theory 18.1 (1971): 89-95.

» DASSL code in the 1980s by Linda
Petzold - first DAE simulation code
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Some historical remarks!

DAE theory is much more recent than ODE theory

oot SAND--828637
E-
oF- “weRBAS: 008493

SA~ND|A REPORT SANDB2-8637 ® Unlimited Release ® UC-13
In the modern days: P Sopanter 1562

. 5 o “*A.Description of DASSL:
» Charles W. Gear first mathematician of * A Differential/ Algebraic =

modern time who studied DAEs System Solver

{Presented at IMACS World Congress, Montreal,
Canada, August 8-13, 1982)

» first occurrence of the term

" Differential-Algebraic Equation” in the b P Potot
title of Gear's paper’ Simultaneous C B

numerical solution of differential-algebraic
equations. |EEE transactions on circuit
theory 18.1 (1971): 89-95.

» DASSL code in the 1980s by Linda
Petzold - first DAE simulation code

» electric circuits and mechanical systems o
still drive the development of DAEs

1 Reference for historical overview: Simeon, Bernd. On the history of differential-algebraic equations: a retrospective with personal side trips. Springer International Publishing,
2017.
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Some examples

Example 1 - algebraic and differential variables

Consider the system of equations

N T, — &1+ 1
F(z,z) = [ iy 42 ] =
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Some examples

Example 1 - algebraic and differential variables

Consider the system of equations
F(x,i) = [xl —ant 1] —0.
The Jacobian

OF(i,7)  [-1 0
ox  |z2 0]

is not invertible.

M. Diehl and A. Nurkanovi¢
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Some examples

Example 1 - algebraic and differential variables

Consider the system of equations

.231—.7.1‘1+1:|

Pz, 2) = [ @179 + 2

The Jacobian

is not invertible.
Solve &1 = x1 + 1 and obtain
Fla,g)=| D FLl=@ |
’ (1‘1 + 1)1‘2 + 2 ’

» There is no &2 in the equations,
> The variable x> is an algebraic variable.

M. Diehl and A. Nurkanovi¢
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Some examples

Example 2 - ODE or DAE?

Consider the system of equations
F(z,z) =pi+x=0.

The Jacobian is

OF(z,x)
0

> If p £ 0, we have a pure ODE: & = —%.

» If p =0, we have an algebraic equation x = 0.
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Some examples

Example 3 - ODE or DAE?

Consider the system of equations

Ty + a1 _
1 — X2)ka + X1 — T

ot = |

The Jacobian
OF (&, ) [1 0 }

i |0z —axo

is for £y = x2 not invertible. Depending on the state we can have a DAE or ODE:

» If ;1 = x5 we have a DAE: [ml + ml] =0.
r1 — T2

.’tl = -

» If 1 # x2 we have an ODE: {
To = -1

Modeling with differential algebraic equations . Diehl and A. Nurkanovié



Differential algebraic equations are usually nicer

» General DAEs include problems may not be mathematically well-defined or very difficult to
discretize directly.

» However, in practice DAEs are much nicer:

F(Wﬁ() z(t),2(t),u(t)) =0, t€[0,T],

Clear distinction between:

> x € R"* - differential states (need an initial condition)
> z € R™ - algebraic states (initial condition implicit)
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Differential algebraic equations are usually nicer

» General DAEs include problems may not be mathematically well-defined or very difficult to
discretize directly.

» However, in practice DAEs are much nicer:

F(Wﬁ() z(t),2(t),u(t)) =0, t€[0,T],

Clear distinction between:

> x € R"* - differential states (need an initial condition)
> z € R™ - algebraic states (initial condition implicit)

> Difference even more obvious in semi-explicit form (most common in practice):

.T(t) = f(t’x(t)7 Z(t)7 u(t))
0=g(t,x(t), z(t), u(t)).
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Differential algebraic equations are usually nicer

» General DAEs include problems may not be mathematically well-defined or very difficult to
discretize directly.

» However, in practice DAEs are much nicer:

F(Wﬁ() z(t),2(t),u(t)) =0, t€[0,T],

Clear distinction between:
> x € R"* - differential states (need an initial condition)
> z € R™ - algebraic states (initial condition implicit)

> Difference even more obvious in semi-explicit form (most common in practice):
i(t) = F(ta(t), =(1), u(t))
0=g(t,z(t), z(t), u(t)).
» Very common in electric circuits (linear fully implicit), with M not having full rank:

Mz = Az + Bu.
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A semi-explicit DAE example

Three-dimensional pendulum

q=v
;
mo =F, —qz+u
0=¢q'q—L? 05
F, - gravitational force < o
-05
5L 1
0.5 0 . 0 -05
05 1 1
y L&
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A semi-explicit DAE example

Three-dimensional pendulum

q=v
;
mo =F, —qz+u
0= qTq - L2 05 -
F,, - gravitational force @ o
z - is the reaction force along ¢
-05

M. Diehl and A. Nurkanovi¢
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A semi-explicit DAE example

Three-dimensional pendulum

g=v
;
mo =F, —qz+u
0= qTq - L2 05 -
F,, - gravitational force @ o
z - is the reaction force along ¢
The semi-explicit form reads as o
|: v j> B
T=|Fg 1 u:| = f(.’E,Z,U) 05 T — 05
=gzt o8 Ty 08

0=q'q—L* = g(x)

with z = (g, v)
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A semi-explicit DAE example

Three-dimensional pendulum

g=v
;
mo =F, —qz+u
0= qTq - L2 05 -
F,, - gravitational force @ o
z - is the reaction force along ¢
The semi-explicit form reads as o
|: v j> B
T=|Fg 1 u:| = f(.’E,Z,U) 05 T — 05
=gzt o8 Ty 08

0=q'q—L* = g(x)

with z = (g, v)
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A semi-explicit DAE example

Three-dimensional pendulum

g=v
;
mo =F, —qz+u
0= qTq - L2 05 -
F,, - gravitational force @ o
z - is the reaction force along ¢
The semi-explicit form reads as o
|: v j> B
T=|Fg 1 u:| = f(.’E,Z,U) 05 T — 05
=gzt o8 Ty 08

0=q'q—L* = g(x)

with z = (g, v)
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How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.

Fully implicit DAE
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How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.

Fully implicit DAE

F(z,z,x,u) =0
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How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.

Fully implicit DAE

F(z,z,x,u) =0

If for a given (2, u) the matrix [2£ 2F

9L SE1is invertible ("index one"),
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How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.

Fully implicit DAE

F(z,z,x,u) =0
If for a given (z,u) the matrix [2E  2E] is invertible ("index one”), then from the implicit

function theorem it follows that there exists a function ¢ (z, u)

[i] = (x,u) such that F(¢(z,u),z,u) = 0.
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How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.

Fully implicit DAE

F(z,z,x,u) =0

If for a given (z,u) the matrix [2E  2E] is invertible ("index one”), then from the implicit

function theorem it follows that there exists a function ¢ (z, u)

z

Semi-explicit DAE

Pz = [0 <0

m = 1(x,u) such that F(¢(z,u),z,u) = 0.
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How to solve DAEs numerically?

Idea: Transform the DAE into an equivalent ODE and use your favorite method.
Fully implicit DAE

F(z,z,x,u) =0

If for a given (z,u) the matrix [2E  2E] is invertible ("index one”), then from the implicit
function theorem it follows that there exists a function ¢ (z, u)

[ﬁ] = ¢(x, u) such that F(¢(z,u),z,u) = 0.

Semi-explicit DAE

Pz = [0 <0

; invertible if 22 invertible
ox o0z

OF
Matrix [2E  9C) — [I } e ("semi-explicit DAE of index one”).

Modeling with differential algebraic equations
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Example - easy DAE

Consider the DAE

. r—x+1
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Example - easy DAE

Consider the DAE

The matrix

is invertible for & = 0
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Example - easy DAE

Consider the DAE

The matrix

is invertible for & = 0

. and we solve the DAE as:

rT=z+1

2 2
z2=——==—

T r+1

Modeling with differential algebraic equations
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Example - 3D pendulum

The pendulum dynamics
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Example - 3D pendulum

The pendulum dynamics

o [d] _ v
JF{J_[%—#W+%
0=q q-L*

In implicit form:

@ — f(x,z,u) -
F(i’z’fc’u):{ g(x zu) }: 0— (- Lgz+ %) =0
el qTq_L2

M. Diehl and A. Nurkanovi¢

Modeling with differential algebraic equations



Example - 3D pendulum

The pendulum dynamics

. q v
| R LR

0=¢q'q—L"
In implicit form:
. i g—v
g\z, z, i qTq—L2
The matrix
I 0 0]
(98 91 =10 I Z| isnot invertible!
0 0 0]

M. Diehl and A. Nurkanovi¢
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Example - 3D pendulum

The pendulum dynamics

. lal v
SR
0=q'q—L*
In implicit form:
. i g—v
g\z, z, i qTq—L2
The matrix
I 0 0]
(98 91 =10 I Z| isnot invertible!
0 0 0]

How do we deal with such DAEs?

M. Diehl and A. Nurkanovi¢
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Outline of this lecture

2  The differential index

Modeling with differential algebraic equations M. Diehl and A. Nurkanovi¢



The DAE differential index

Definition (Differential index of fully implicit DAEs)

The DAE differential index is the minimum integer k such that the k-th total time derivative
@F(jc,m, z,u) =0

is a pure ordinary differential equation (in states z, &,...,z") and z, 2,..., 2(k=1).

An index 1 DAE (the "easy” DAEs)

4 J_OF . JOF. OF.  OF.
ETR A PR ML P
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The DAE differential index

Definition (Differential index of fully implicit DAEs)

The DAE differential index is the minimum integer k such that the k-th total time derivative
@F(jc,m, z,u) =0

is a pure ordinary differential equation (in states z, &,...,z") and z, 2,..., 2(k=1).

An index 1 DAE (the "easy” DAEs)

4 J_OF . JOF. OF.  OF.
ETR A PR ML P

If [2E  2E] is invertible, then we can define the explicit ODE in states (z,v, z) with v ==&
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The DAE differential index

Definition (Differential index of fully implicit DAEs)

The DAE differential index is the minimum integer k such that the k-th total time derivative
@F(jc,m, z,u) =0

is a pure ordinary differential equation (in states z, &,...,z") and z, 2,..., 2(k=1).

An index 1 DAE (the "easy” DAEs)

4 J_OF . JOF. OF.  OF.
ETR A PR ML P

If [95  2L] is invertible, then we can define the explicit ODE in states (x,v,z) with v := &
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The DAE differential index - semi-explicit DAEs

Definition (Differential index of semi-explicit DAEs)

The DAE differential index is the minimum integer k such that the

&= f(z,2,u)
dk:
0= mg(a@,z,u)

is a pure ordinary differential equation.

An index 1 DAE (the "easy” DAEs)

dg. Og.
f(x,z,u)-l-&z-l-%u—o

4 (xzu)—@
a? = gy
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The DAE differential index - semi-explicit DAEs

Definition (Differential index of semi-explicit DAEs)

The DAE differential index is the minimum integer k such that the

&= f(z,z,u)
dk:
0= @g(a@, Z,u)
is a pure ordinary differential equation.
An index 1 DAE (the "easy” DAEs)
d _ g dg. Og.
&g(x,z,u) - %f(x,z,u) + &Z-l- %U =0

If % is invertible, then we can define the explicit ODE (with v := %)
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The DAE differential index - semi-explicit DAEs

Definition (Differential index of semi-explicit DAEs)

The DAE differential index is the minimum integer k such that the

&= f(z,z,u)
dk:
0= mg(a@, Z,u)
is a pure ordinary differential equation.
An index 1 DAE (the "easy” DAEs)
d _ g dg. Og.
&g(x,z,u) - %f(x,z,u) + &z-l- %U =0
If % is invertible, then we can define the explicit ODE (with v == )
= f(z,z,u)
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The differential index - examples

Regard the DAE
j?l = T2
J','Q =z

1
0= i(x% + 2% — 22)
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The differential index - examples

Regard the DAE
j?l = T2
J','Q =z

1
0= i(x% + 2% — 22)

Differentiate g(z, z) w.r.t. ¢:

0= &g(az, 2) = x1&1 + xody — 2

0=x120+ 202z — 2
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The differential index - examples

Regard the DAE .
0.5 T(T)
.fl = T2
3'52 =z -
-0.5
1 (0)
0= 5(39? + .CB% —22) 1

Differentiate g(x, z) w.r.t. ¢

0 (z,2) = 2181 + 2@ — 2 2

T ar
0=x120 + 222 — 2

The DAE is of index 1
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The differential index - examples

Regard the DAE

. 0.5 z(T)
Tr1 = Ty /

2 0
. N (0)

To = Z

Ty

1
0= 5(39? + .CB% — 22) 1

T

Differentiate g(x, z) w.r.t. ¢

z=0.5(z} +23)

0= Eg(x, z) = x1&1 + xody — 2

0=x120 + 222 — 2

The DAE is of index 1 2(0) can take any value
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The differential index - examples

Regard the DAE .
T1 = To . (4)
. S0 %(0)
To = Z
-0.5
1 (0)
0= i(xf + 23 — 22) 4
1 0. 0 0. 1
Differentiate g(x, z) w.r.t. ¢ L= 05 £ 22)
0= Eg(x, z) = x1&1 + xody — 2 2

0=x120 + 222 — 2

&

The DAE is of index 1 2(0) can take any value

M. Diehl and A. Nurkanovi¢
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The differential index - examples

Regard the DAE
9'61 = T2
x'g =z

1
0= i(x% +x2—1)
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The differential index - examples

Regard the DAE
T1 = T2
x'g =z

1
0= i(x% +x2—1)

Differentiate g(x, z) w.r.t. ¢

0= &g(x,z) = 1141 + Todo

0=z129 + T2z
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The differential index - examples

Regard the DAE

.1.31:372

i‘QZZ

1
0= 5(50% a2 —1)

Differentiate g(x, z) w.r.t. ¢

0= &g(z‘,z) = 1141 + Todo

0=z129 + T22 N
d2
0= @g(x,z) = I1T9 + T1L9 + Toz + X22

Ozgc%—i—xlz—i—zz—i—xgz'
x(0) must satisfy g(z) =0
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The differential index - examples

Regard the DAE

.1.31:372

i‘QZZ

1
0= 5(50% a2 —1)

Differentiate g(x, z) w.r.t. ¢

0= &g(z‘,z) = 1141 + Todo

0=z129 + T22 N
d2
0= @g(x,z) = I1T9 + T1L9 + Toz + X22

Ozgc%—i—xlz—i—zz—i—xgz'

2(0) must satisfy g(z) =0
The DAE is of index 2 (0) y 9(@)
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The differential index of the 3D pendulum

[l 0

m

0=¢q q— L* (1b)
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The differential index of the 3D pendulum

[l 0

m

0=¢q q— L* (1b)

=q"¢g=q " v=0 (first differentiation)
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The differential index of the 3D pendulum

ol faens]

m

d
%(tif) =q¢'g=qv= (first differentiation)
d2
(i(;) =q'0+v'v=0 (second differentiation)
(2)
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The differential index of the 3D pendulum

ol faens]

m

d
%(tif) =q¢'g=qv= (first differentiation)
d2
(i(;) =q'0+v'v=0 (second differentiation)
(2)

Third differentiation would yield % - index 3 DAE.
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The differential index of the 3D pendulum

=l la-ders] 00

m

0=q'q—1L? (1b) » Combining (1) and (2) we have
an “easy" index 1 DAE,
d tl itt
“(Zi(tx) =q'g=q v=0 (first differentiation) compactly written as

m-1 q| | Fy,+u

d?g(x) qm 0| |z T | —vTw
(ft2 =q"o+v'v=0 (second differentiation)
(2)

Third differentiation would yield % - index 3 DAE.
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The differential index of the 3D pendulum

=l la-ders] 00

0=q'q—1L? (1b) » Combining (1) and (2) we have
an “easy" index 1 DAE,
d tl itt
“(Zi(tx) =q¢'g=q'v=0 (first differentiation) compactly written as
= R
d? T ool|z]  |—vTw
Ci(;) =q"o+v'v=0 (second differentiation) 1

(2)
Third differentiation would yield % - index 3 DAE.
Note: we could also analytically obtain z:

F, 1
OZqT(—g——qz—l—ﬁ)—}-vTv
m m m

1
2= (qTFg + un + mvTv>
q
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The differential index of the 3D pendulum

. lal v
s o
0=gq'q-L? (1b) » Combining (1) and (2) we have
an “easy" index 1 DAE,
d tl itt
“(Zi(tx) =q¢'g=q¢"v=0 (first differentiation) compactly written as
[m-[ q] |:U:| _ {Fg—i—u
q2 Too| |zl | —vTw
Cij(;) =q"o+v'v=0 (second differentiation) 1
» Lagrange mechanics models are
@) typically index 3 DAE
Third differentiation would yield # - index 3 DAE. ypically index °

Note: we could also analytically obtain z:
F, 1
0=qT(—g — —qz—l—ﬁ) +vTw
m m m

1
2= (qTFg + un + mvTv>
q
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Modeling with differential algebraic equations

The differential index of the 3D pendulum

[l 0

m

d
i(tir) =q¢' ¢g=q v=0 (first differentiation)
d2
(i(;) =q'0+v'v=0 (second differentiation)

(2)
Third differentiation would yield % - index 3 DAE.

Note: we could also analytically obtain z:
F 1
0:qT(—g — —qz—l—ﬁ) +vTw
m m m
1
z = Tq (qTFg + un + mvTv>

M. Diehl and A. Nurkanovi¢

» Combining (1) and (2) we have

an “easy" index 1 DAE,
compactly written as

m-1 q| (0|  |Fg+u
g 0| |z| | -vTw
Lagrange mechanics models are
typically index 3 DAEs

In practice, they are often
treated with standard methods
after an index reduction to a
DAE of index 1




Outline of this lecture

3 Index reduction
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Index reduction

In theory, we can always transform a higher index into a lower index DAE. Questions:
1. When can we and when should we do this?
2. Can anything go wrong? (Yes, a lot.)
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Index reduction

In theory, we can always transform a higher index into a lower index DAE. Questions:
1. When can we and when should we do this?
2. Can anything go wrong? (Yes, a lot.)

Pros of index reduction

v obtain ODE or DAE index 1 - use standard
methods

v/ no new integration code needed

v rely on nice theory for ODEs and ‘“easy"
DAEs

v theory of higher index DAEs less mature

v/ not always clear how to simulate higher
index DAEs

v no order reduction (treated later)
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Index reduction

In theory, we can always transform a higher index into a lower index DAE. Questions:
1. When can we and when should we do this?
2. Can anything go wrong? (Yes, a lot.)

Pros of index reduction Cons of index reduction

/ obtain ODE or DAE index 1 - use standard X index reduction may be very difficult to

methods perform
X not all variables have physical

v/ no new integration code needed : )
Interpretation

v rely on nice theory for ODEs and “easy " . i ) o
DAEs X cannot easily exploit structure in specific

solver
X initialization of index reduced DAE
difficult (treated next)

X numerical drift in index reduced DAE
(treated next)

v’ theory of higher index DAEs less mature

v/ not always clear how to simulate higher
index DAEs

v no order reduction (treated later)
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Issues with index reduction - consistent initialization

When are index reduced models equivalent?
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Issues with index reduction - consistent initialization

When are index reduced models equivalent?

Index 1

r=\|.|=\|F 1
o e m
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Issues with index reduction - consistent initialization

When are index reduced models equivalent?

Index 1

r=\|.|=\|F 1
o e m

What went wrong?
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Issues with index reduction - consistent initialization

Index 1 - only imposes §(z) =0

Al (R
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Issues with index reduction - consistent initialization

Index 1 - only imposes §(z) =0

Al (R

» We must also regard the constraints

g(z)=q"q—L*=0 (3a)

dg(w)
dt

=q'¢g=q'v=0 (3b)
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Issues with index reduction - consistent initialization

Index 1 - only imposes §(z) =0
0.4
,.\03
m-I q||0|  |[Fg+u S0
q" 0| lz| | —vTw .
» We must also regard the constraints oz 01 o6 s 1 12
t
g(x)=q¢"q¢-L*=0  (3a) 1
dg(z) T T 0s
= v = = 0 3b
> If initial conditions violate (3) - wrong o
solution 02
0

Modeling with differential algebraic equations M. Diehl and A. Nurkanovi¢




Issues with index reduction - consistent initialization

Index 1 - only imposes §(z) =0

m-1 q| (v _ |Fg+u %02
q" 0l |z| | —vTw

» We must also regard the constraints

0 0. 1 1 2
t
g(x)=4q"¢—L*=0  (3a) 1
dg(z) T, T os
> If initial conditions violate (3) - wrong o
solution 02
» Index reduced DAE must satisfy % o : 5 >
consistency conditions (3) att =0 !
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Issues with index reduction - constraint drift

Index 1 - only imposes g(z) =0

m-I qf||v|  |[Fzg+u
g 0| |z| | -vTw
» Suppose that the index reduced DAE

satisfies consistency conditions (3) at
t=20
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Issues with index reduction - constraint drift

0.6
0.5
0.4
Index 1 - only imposes §(z) =0 o
>
0.2
m-1 q| |0  |Fg+u !
qT 0 z| —UT’U 00 20 10 60 80 100
t
» Suppose that the index reduced DAE et
satisfies consistency conditions (3) at
t=0 3
» Integration errors might still accumulate =,
over time =
1
0
0 20 40 60 80 100
t
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Issues with index reduction - constraint drift

Index 1 - only imposes §(z) =0

m-1 q| |0  |Fg+u
g 0| |z| | -vTw
» Suppose that the index reduced DAE

satisfies consistency conditions (3) at
t=0

» Integration errors might still accumulate
over time

» Constraint drift is a consequence of index
reduction

Modeling with differential algebraic equations
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Baumgarte stabilization of the constraint drift for index 3 DAE

After reduction from Index 3 to 1, the resulting :6
DAE only imposes g(z) =0
0.4
?;/03
m-1 q| (0|  |Fg+u 02
q" 0| |z| | —vTw 01
0
> Suppose that the index reduced DAE oo
satisfies consistency conditions (3) at ‘
=0 4 X107
3
oF
=
1
0
0 20 40 60 80 100
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Baumgarte stabilization of the constraint drift for index 3 DAE

After reduction from Index 3 to 1, the resulting
DAE only imposes §(z) =0

m-1 q| (0|  |Fg+u
g" 0| |z|  |—vTw
» Suppose that the index reduced DAE

satisfies consistency conditions (3) at
t=20

» In index 1 DAE, instead of g§(z) = 0,
impose:

g(x) + k1g(x) + kog(z) =0
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Baumgarte stabilization of the constraint drift for index 3 DAE

After reduction from Index 3 to 1, the resulting
DAE only imposes §(z) =0

m-1 q| (0|  |Fg+u
g" 0| |z|  |—vTw
» Suppose that the index reduced DAE

satisfies consistency conditions (3) at
t=0

» In index 1 DAE, instead of g§(z) = 0,
impose:

g(x) + k1g(x) + kog(z) =0

» Pick kg and k1 to have stable dynamics
(might be tricky)
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Baumgarte stabilization of the constraint drift for index 3 DAE

After reduction from Index 3 to 1, the resulting
DAE only imposes §(z) =0

m-1 q| (0|  |Fg+u
g" 0| |z|  |—vTw
» Suppose that the index reduced DAE

satisfies consistency conditions (3) at
t=20

» In index 1 DAE, instead of g§(z) = 0,
impose:

g(x) + k1g(x) + kog(z) =0

» Pick kg and k1 to have stable dynamics
(might be tricky)

» Stabilize the constraint drift

Modeling with differential algebraic equations
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Summary on differential index

» Notion of differential index helps to classify DAEs, to determine difficulty, and to pick
right method and software
» Two major difficulties in solving DAE:

1. index reduction
2. consistent initialization
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Summary on differential index

» Notion of differential index helps to classify DAEs, to determine difficulty, and to pick
right method and software

» Two major difficulties in solving DAE:

1. index reduction
2. consistent initialization

» Higher index DAEs have hidden constraints: Index &k = k — 1 hidden constraints
» Constraint drift is consequence of differentiation, might need Baumgarte's stabilization

Modeling with differential algebraic equations M. Diehl and A. Nurkanovi¢



Summary on differential index

» Notion of differential index helps to classify DAEs, to determine difficulty, and to pick
right method and software

» Two major difficulties in solving DAE:

1. index reduction
2. consistent initialization

» Higher index DAEs have hidden constraints: Index &k = k — 1 hidden constraints
Constraint drift is consequence of differentiation, might need Baumgarte's stabilization

v

» The index is a local quantity, might depend on initial state - less common in practical
smooth problems

» Nonsmooth ODEs are locally DAEs of different index - very common

> Keeping the index in mind, the integration method has to be chosen carefully (both for
smooth and nonsmooth systems)

Modeling with differential algebraic equations M. Diehl and A. Nurkanovié



4 Runge-Kutta methods for differential algebraic equations
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Introduction to Runge-Kutta methods for DAEs

Two ways to numerically solve DAEs:

1. Direct discretization of the DAE
2. Reformulation (index reduction) and discretization

Some remarks
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Introduction to Runge-Kutta methods for DAEs

Two ways to numerically solve DAEs:

1. Direct discretization of the DAE
2. Reformulation (index reduction) and discretization

Some remarks

» direct discretization is desirable since the index reduction might be costly and require
expert knowledge

» ... in principle only feasible for index 1 and 2, and for index 3 with some care
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Introduction to Runge-Kutta methods for DAEs

Two ways to numerically solve DAEs:

1. Direct discretization of the DAE

2. Reformulation (index reduction) and discretization

Some remarks

» direct discretization is desirable since the index reduction might be costly and require
expert knowledge

» ... in principle only feasible for index 1 and 2, and for index 3 with some care
» RK methods in direct discretization: simply impose the algebraic equations at the stage
points

» 2(t) found through integration, and may be smoother than z(t) - influences accuracy
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DAEs in Hessenberg form

DAE of index 1 DAE of index 2 DAE of index 3

1‘(t) = f(t,:li(t), Z(t)vu(t)) ‘T(t) = f(t,x(t),z(t),u(t))

0 = g(t, z(t), 2(t), u(t)) 0= g(t, z(t), u(t)) &(t) = fo(t,2(t),y(t))
j(t) = fy(t x(t), y(t), 2(t), u(t))
with % nonsingular for all ¢ with %g—{: nonsingular for all ¢ 0= gzzt,x(t),u(t)
with %%%’i nonsingular for
all ¢

» RK methods most often stated for DAEs in a canonical form
> Often we can get an idea of the differential index by looking at the arguments of g(-)
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Runge-Kutta methods for index 1 DAEs

Definition (RK method for index 1 DAEs)

Consider an IVP with DAE of index 1 in Hessenberg form. Let ng be the number of stages.
Given the matrix A € R™*"s with the entries a; ; for 4,5 = 1,...,ng, and the vectors
b,c € R". Let b3 = Up F cih.

Ny
kni= f(tni, @n +h g @5, 555 0 Zinty Wiy t=1,...,m
Jj=1
Ns
Ozg(tn,iaxn+h § ai,jkmjvzn,ivun)v 1=1,...,n
j=1
Ng
Tp+1 = T = h § bikn,i,
=1

0= g(tn+17 Tn41,2n+1, un)

is called a ns-stage Runge-Kutta (RK) method for DAEs of index 1. Here 2, ;, i =1,..., ng
are the stage values for the algebraic variables and z,,11 is the approximation of z(t,,11).

M. Diehl and A. Nurkanovi¢
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Runge-Kutta methods for index 2 DAEs

Definition (RK method for index 2 DAEs)

Consider an IVP with DAE of index 2 in Hessenberg form. It is assumed that the initial values
x,, and z,, are consistent:

9(tn, Tn,un) =0, gg(tmxmun)—rf(tnvxmznvun) =0.
T

Let ng be the number of stages. Given the matrix A € R™*"s with the entries a; ; for
i,7=1,...,ng, and the vectors b,c € R™, a ng-stage Runge-Kutta (RK) method for DAEs of
index 2 is defined by the system of equations:

Mg

ki = f(tnirTn + B D Gijkn g, Zn,ir Un), i=1,...,n
j=1
ng

Ozg(tn’i,xn—i—h E ai,jkmj,un), 1=1,...,n4
=1

Ns
Tpn+1 = T aF h Z bikn,i
=1
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Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Radau IIA methods

DAE of index 1 integrated with IRK Radau II-A

ODE integrated with IRK Radau II-A

10° 10°

—~ 1075 —~ 10
gw gw
& &
1010 10-0¢
—e—Radau ITA 1 —e—Radau ITA 1
—e—Radau ITA 3 —e—Radau ITA 3
Radau IIA 5 Radau IIA 5
101 10°° 102 101
h
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Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Radau IIA methods
DAE of index 1 integrated with IRK Radau II-A

ODE integrated with IRK Radau II-A

10°

1010
—e—Radau ITA 1
—e—Radau ITA 3
Radau ITA 5

—e—Radau ITA 1
—o—Radau ITA 3
Radau ITA 5

101

102

10°° 102 101

h
DAE of index 2 integrated with IRK Radau II-A

10°

10 10
—o—Radau ITA 1
—o—Radau ITA 3
Radau IIA 5

10"
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Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Radau IIA methods
DAE of index 1 integrated with IRK Radau II-A

ODE integrated with IRK Radau II-A
10°
o 107
&
1 —10°
—e—Radau ITA 1 0 —e—Radau ITA 1
—e—Radau ITA 3 —e—Radau ITA 3
Radau ITA 5 Radau ITA 5
1079 10°? 107! 104 10°? 107!
h h
DAE of index 2 integrated with IRK Radau II-A DAE of index 3 integrated with IRK Radau II-A
10° 10°
E 107 E 107
& 5
1071 : 10-10 "
—o—Radau ITA 1 —o—Radau ITA 1
—e—Radau ITA 3 —e—Radau ITIA 3
Radau IIA 5 Radau IIA 5
10" 1073 102 10"

102

Direc'éz discretization of higher index DAEs = loss of ordehr!
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Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Gauss-Legendre methods

DAE of index 1 integrated with IRK Gauss-Legendre

ODE integrated with IRK Gauss-Legendre

10°

1o

GL6

102 101

1073 1072 107!
h
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Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Gauss-Legendre methods

ODE integrated with IRK Gauss-Legendre

1073 1072 10!

h
DAE of index 2 integrated with IRK Gauss-Legendre

10°

GL6
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Order plots for RK methods of DAE of different index

Integrate the pendulum model of different indexes with Gauss-Legendre methods

ODE integrated with IRK Gauss-Legendre DAE of index 1 integrated with IRK Gauss-Legendre
100
E 107
5
IU’“’ -
GL6
1073 1072 107! 103 102 10!
h h
DAE of index 2 integrated with IRK Gauss-Legendre DAE of index 3 integrated with IRK Gauss-Legendre
10° 10°

—o—GL2 —e—GL2
—o—GL4 —e—GL4
GL6 GL6
102 102 10" 1073 102 10"

h h
Direct discretization with GL of higher index DAEs = loss of order even more sever!
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Order plots for the different variables of a DAE

Integrate the pendulum model of with Radau IIA and 2
DAE of index 1 integrated with IRK Radau II-A

ODE integrated with IRK Radau II-A

10" 100

& &
S S
101 v 10-10
—e— Position ¢ —e— Position ¢
—e— Velocity v —e— Velocity v
Force z Force z
102 101 10°° 102 101
h
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Order plots for the different variables of a DAE

Integrate the pendulum model of with Radau IlA and ns = 2

DAE of index 1 integrated with IRK Radau II-A

ODE integrated with IRK Radau II-A

10" 100

) )
S S

101 v 10-10
—e— Position ¢ —e— Position ¢
—e— Velocity v —e— Velocity v
Force z Force z
102 101 10°° 102 101
h

1079
h
DAE of index 2 integrated with IRK Radau II-A

100

—e—Position ¢
—e—Velocity v
Force z

102 10"
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Order plots for the different variables of a DAE

Integrate the pendulum model of with Radau IIA and 2

ODE integrated with IRK Radau IT-A DAE of index 1 integrated with IRK Radau II-A

10°

100

—e— Position ¢
—e— Velocity v

108

—e— Position ¢
—e— Velocity v

Force z Force z
1079 10°? 107! 104 10°? 107!
h h
DAE of index 2 integrated with IRK Radau II-A DAE of index 3 integrated with IRK Radau II-A
10° 100+
< = 107°
& 5
10 10 10 10
—e— Position ¢ —e— Position ¢
—e—Velocity v —e— Velocity v
Force z Force z
102 102 10" 1073 102 10"

h h
Depending on index, different components have different accuracy.
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Order plots for the different variables of a DAE

Integrate the pendulum model of with Gauss-Legendre and ng = 2

ODE integrated with IRK Gauss-Legendre

1073 1072

—e— Position ¢
—e— Velocity v
Force z

10°° 102 107!

DAE of index 1 integrated with IRK Gauss-Legendre

—e— Position ¢
—e— Velocity v
Force z

10°° 102 101

h
DAE of index 3 integrated with IRK Gauss-Legendre

—e— Position ¢
—e— Velocity v
Force z

1073 102 107!

h h
Depending on index, different components have different accuracy.
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Order reduction in higher index DAEs

RK methods experience order reduction for higher index DAEs

>

» Different components of the solution may have different accuracy
» Index reduction requires consistent initialization and drift handling
>

Condition number of Newton matrix O(h~*) where k is the index
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Order reduction in higher index DAEs

» RK methods experience order reduction for higher index DAEs
» Different components of the solution may have different accuracy
» Index reduction requires consistent initialization and drift handling
» Condition number of Newton matrix O(h~") where k is the index
Method - ODE DAE index 1 DAE index 2
x x z x z
Gauss-Legendre odd 2ns 2ns Tts ns 1 me—l
& even 2ng 2ng ns+ 1 N ng—2
Radau IA odd/even| 2ns —1 | 2ng — 1 g g ne—1
Radau IIA odd/even| 2ns—1 | 2ng—1 2ng—1 | 2ngs—1 Ng
odd 2ng —2 | 2ng—2 2ng—2 | 2ng—2 ng—1
Lobatto 11IA even 2ng —2 | 2ng—2 2ng—2 | 2ng — 2 Ng
Lobatto I11C odd/even| 2ns—2 | 2ng—2 2ng—2 | 2ng—2 ng—1

Table: Overview of accuracy orders for some IRK methods for ODEs, DAEs of index 1 and 2
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Order reduction in higher index DAEs

RK methods experience order reduction for higher index DAEs

Different components of the solution may have different accuracy
Index reduction requires consistent initialization and drift handling
Condition number of Newton matrix O(h~*) where k is the index

Method Ng T Y z

Radau 1A ng > 2 Ng ng—1 | ng—2
Radau 1A ng > 1 2ng — 1 Ng ng — 1
Lobatto I1IC ng > 2 2ng — 3 Ng ng—1

Table: Overview of accuracy orders for some IRK methods for DAEs of index 3
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Summary of Runge-Kutta methods for DAEs

» Practical difference between ODEs and DAEs is that DAEs must be solved consistently
with respect to all constraints (even the hidden ones)

» RK methods for higher index DAES may suffer from order reduction - but not index
reduction needed, Radau IlA a good choice

» In particular, Gauss-Legendre suffer from severe order reduction if index k > 1

v

Methods for higher index methods may be ill conditioned

» Nonsmooth ODEs switch between index 0, 1 and 2. Sometimes they have hidden index
reduced DAEs (e.g. time-freezing)

Modeling with differential algebraic equations M. Diehl and A. Nurkanovié¢



References

> Moritz Diehl, Sébastien Gros. "Numerical optimal control (Draft),” Lecture notes, 2019.

» Gerhard Wanner, Ernst Hairer. " Solving ordinary differential equations 1.” Vol. 375. New
York: Springer Berlin Heidelberg, 1996.

» Ernst Hairer, Christian Lubich, and Michel Roche. " The numerical solution of
differential-algebraic systems by Runge-Kutta methods.” Vol. 1409. Springer, 2006.

» Uri M. Ascher, Linda R. Petzold. " Computer methods for ordinary differential equations
and differential-algebraic equations.” Vol. 61. SIAM, 1998.

> Lorenz T. Biegler. "Nonlinear programming: concepts, algorithms, and applications to
chemical processes.” SIAM, 2010.

Modeling with differential algebraic equations M. Diehl and A. Nurkanovié¢



	Introduction to differential algebraic equations
	The differential index
	Index reduction
	Runge-Kutta methods for differential algebraic equations

