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Ordinary differential equations and controlled dynamical system

Let:
▶ t ∈ R be the time
▶ x(t) ∈ Rnx the differential states
▶ u(t) ∈ Rnu a given control function

▶ denote by ẋ(t) = dx(t)
dt

Ordinary differential equations

▶ Let F : R× Rnx × Rnx × Rnu → Rnx be a function such that the Jacobian ∂F
∂ẋ (·) is

invertible. The system of equations:

F (t, ẋ(t), x(t), u(t)) = 0,

is called an Ordinary Differential Equation (ODE).

▶ Given a function f : R× Rnx × Rnu → Rnx then a system of equations:

ẋ(t) = f(t, x(t), u(t)) (1)

is called an explicit ODE.
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Sufficient conditions for existence and uniqueness

Theorem (Picard-Lindelöf / Cauchy–Lipschitz )

An initial value problem in ODE

ẋ(t) = f(t, x(t), u(t)), t ∈ [0, T ],

x(0) = x0

▶ with given initial state x0, and controls u(t),
▶ f(t, x(t), u(t)) = f̂(t, x(t)) is continuous in t and Lipschitz continuous in x

has a unique solution x(t), t ∈ [0, T ].

▶ f is Lipschitz if ∥f(x)− f(y)∥ ≤ L∥x− y∥
▶ smooth ODEs modeling physics usually Lipschitz
▶ if f is only continuous, existence but not uniqueness can be guaranteed, e.g.

ẋ(t) =
√
|x(t)|, x(0) = 0, solutions: x(t) = 0 and x(t) = t2

4
▶ Conditions are only sufficient, ODEs with a non-Lipschiz r.h.s. can have unique solutions

A collection of results in: Agarwal, Ratan Prakash, Ravi P. Agarwal, and V. Lakshmikantham. Uniqueness and nonuniqueness criteria for ordinary differential equations.

Vol. 6. World Scientific, 1993.
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ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c:

ẋ1(t) = x2(t)

ẋ2(t) = − k

m
(x2(t)− u(t)) − β

m
x1(t)

• state x(t) ∈ R2

• position of mass x1(t) ←− measured
• velocity of mass x2(t)
• control action: spring position u(t) ∈ R ←− manipulated

Can summarize as ẋ = f(x, u) with

f(x, u) =

[
x2

− k
m (x2 − u)− c

mx1

]
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Basic definitions of numerical simulation

▶ IVPs have only in special cases a closed form solution

▶ Instead, compute numerically a solution approximation x̃(t) that approximately satisfies:

˙̃x(t) ≈ f(t, x̃(t), u(t)), t ∈ [0, T ]

x̃(0) = x(0) = x0

▶ Recursively generate solution approximation xn := x̃(tn) ≈ x(tn) at N discrete time
points 0 = t0 < t1 < . . . < tN = T

▶ Integration interval [0, T ] split into subintervals [tn, tn+1] where h = tn+1 − tn
▶ h - integration step size can be constant, different for every interval, or adaptive
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Single step numerical simulation as discrete time system

Single step abstract integration method

xn+1 = ϕf (xn, zn, un),

0 = ϕint(xn, zn, un), n = 0, . . . , N − 1.

▶ ϕf - state transition - compute next integration step

▶ ϕint - internal computations, e.g., stages of a Runge-Kutta method (next section)

▶ zn collects all interval variables of the integration method

Example (Explicit Euler):

xn+1 = xn + hzn,

0 = f(xn, un)− zn.

Is an overkill for simple examples but pays off for complicated methods later.
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Integration error

Local and global error

▶ Local integration error at tn+1:

e(tn+1) = ∥x(tn+1)− ϕf (x(tn), zn, u0)∥.

▶ Global integration error at t = T :

E(T ) = ∥x(T )− xN∥.

▶ Global error - accumulation of local
errors
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Convergence and integrator order

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T ) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Higher order p:
▶ less, but more expensive steps for

same accuracy
▶ in total fewer r.h.s. evaluations for

same accuracy
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O(h2)
O(h4)
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Stability and convergence

Integrator convergence and accuracy

▶ Convergence

lim
h→0

E(T ) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small
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ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1
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ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

02. Numerical simulation and direct collocation M. Diehl and A. Nurkanović 9/29
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▶ Convergence

lim
h→0

E(T ) = 0

▶ Integrator has order p if

lim
h→0

e(ti) ≤ Chp+1 = O(hp+1), C > 0

▶ Stability: damping of errors, does it
work for h≫ 0?

▶ If integrator is unstable, it does not
converge and has p = 0, unless h very
small
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ẋ(t) = −300(x(t)− cos(t)), t ∈ [0, 2]

x(0) = 1

02. Numerical simulation and direct collocation M. Diehl and A. Nurkanović 9/29
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Classes of numerical simulation methods

General Linear Methods

Multi Step

Linear Multi-Step
Methods

Explicit Implicit

Single Step

Runge-Kutta
Methods

Explicit Implicit
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Runge-Kutta method definition
Unknowns are derivatives at stage points

Definition (Runge-Kutta method in differential form)

Let ns be the number of stages. Given the matrix A ∈ Rns×ns with the entries ai,j for
i, j = 1, . . . , ns, and the vectors b, c ∈ Rns . Let tn,i = tn + cih. The system of equations:

kn,i = f(tn,i, xn + h

ns∑
j=1

ai,jkn,j , un), i = 1, . . . , ns

xn+1 = xn + h

ns∑
i=1

bikn,i

is called a ns-stage Runge-Kutta (RK) method in the differential form.
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Runge-Kutta method definition
Unknowns are states at stage points, cannot treat case of c1 = 0

Definition (Runge-Kutta method in integral form)

Let ns be the number of stages. Given the matrix A ∈ Rns×ns with the entries ai,j for
i, j = 1, . . . , ns, and the vectors b, c ∈ Rns . Let tn,i = tn + cih. The system of equations:

xn,i = xn + h

ns∑
j=1

ai,jf(tn,i, xn,j , un), i = 1, . . . , ns

xn+1 = xn + h

ns∑
i=1

bif(tn,i, xn,i, un),

is called a ns-stage Runge-Kutta (RK) method in integral form.
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Runge-Kutta method examples

Explicit Runge-Kutta 4

kn,1 = f(tn, xn)

kn,2 = f(tn +
h

2
, xn + h

kn,1
2

)

kn,3 = f(tn +
h

2
, xn + h

kn,2
2

)

kn,5 = f(tn + h, xn + hkn,3)

xn+1 = xn + h(
1

6
kn,1 +

2

6
kn,2 +

2

6
kn,3 +

1

6
kn,4)

▶ All kn,i can be found by explicit function
evaluations.

Implicit Euler Method

kn,1 = f(tn, xn + hkn,1)

xn+1 = xn + hkn,1

▶ All kn,1 is found implicitly by
solving
kn,1 − f(tn, xn + hkn,1) = 0.
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Explicit vs implicit Runge-Kutta methods
The Butcher tableau

Explicit Runge-Kutta method

0
c2 a2,1
...

...
...

. . .

cns
ans,1 ans,2 . . . ans,ns−1

b1 b2 . . . bns−1 bns

▶ ai,j ̸= 0 only for j < i

▶ Explicit function evaluations to
compute stage values and next step

▶ Computationally cheap

▶ Order: p = ns if ns ≤ 4 and p < ns

otherwise

Implicit Runge-Kutta method

c1 a1,1 a1,2 . . . a1,ns−1 a1,ns

c2 a2,1 a2,2 . . . a2,ns−1 a2,ns

...
...

...
. . .

...
...

cns
ans,1 ans,2 . . . ans,ns−1 ans,ns

b1 b2 . . . bns−1 bns

▶ Requires solving nonlinear rootfinding
problem with Newton’s method

▶ Expensive but good for stiff systems

▶ Order: p = 2ns, p = 2ns − 1, ...

▶ Famous representative: collocation
methods - treated next!
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Butcher tableau, six examples

8.2 Numerical Simulation 505

101 102 103 104 105 106

function evaluations

10�12

10�9

10�6

10�3

100

E(2⇡)

explicit Euler
Heun
RK4

(a) Accuracy vs. function evaluations.

�1

0

1

2

x1

exact explicit Euler Heun RK4

0 ⇡/2 ⇡ 3⇡/2 2⇡
t

�1

0

1
x2

(b) Simulation results for M = 32.

Figure 8.2: Performance of different integration methods.

It is important to note that on the right-hand side of each row, only
those ki values are used that are already computed. This property
holds for every explicit integration method, and makes it possible to
explicitly evaluate the first s equations one after the other to obtain
all values k1, . . . , ks for the summation in the last line. One usually
summarizes the coefficients of a Runge-Kutta method in what is known
as a Butcher tableau (after John C. Butcher, born 1933) given by

c1

c2 a21

c3 a31 a32
...

. . .
. . .

cs as1 · · · as,s�1

b1 b2 · · · bs

The Butcher tableau of three popular RK methods is stated below

Euler

0
1

Heun

0
1 1

1/2 1/2

RK4

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 2/6 2/6 1/6

Note that the bi coefficients on the bottom always add to one. An
interesting fact is that an s-stage explicit Runge-Kutta method can never
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510 Numerical Optimal Control

0.5

1.0

x1

k1

k2
x1(⌧)

ex1(⌧)

t t + c1h t + c2h t + h
⌧

�1.0

�0.5

0.0

ẋ1
k1

k2
ẋ1(⌧)

ėx1(⌧)

Figure 8.3: Polynomial approximation xe1(t) and true trajectory
x1(t) of the first state and its derivative, computed at
the first integration step of the GL4 collocation method
applied to the stiff ODE from Example 8.4. Note that the
accuracy of the polynomial at the end of the interval is
significantly higher than in the interior. The result of this
first GL4 step can also be seen on the right side of Fig-
ure 8.4.

time derivatives is visualized, for a collocation method with s = 2 col-
location points (GL4) applied to the ODE from Example 8.4. Note that
in this example, ẋe(⌧ ;k1, k2, . . . , ks) is a polynomial of order one, i.e., an
affine function, and its integral, xe(⌧ ;x,k1, k2, . . . , ks), is a polynomial
of order two.

The Butcher tableau of three popular collocation methods is

Implicit
Euler

1 1
1

Midpoint
rule (GL2)

1/2 1/2
1

Gauss-Legendre
of order 4 (GL4)

1/2�
p

3/6 1/4 1/4�
p

3/6
1/2+

p
3/6 1/4+

p
3/6 1/4

1/2 1/2

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · ·
b1 b2 · · · bs

)

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs
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Outline of the lecture

1 Basic definitions

2 Runge-Kutta methods

3 Collocation methods

4 Direct collocation for optimal control
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Collocation

Main ideas:

▶ Approximate x(t) on t ∈ [tn, tn+1] with a polynomial qn(t) of degree ns

▶ Pick ns distinct numbers: 0 ≤ c1 < c2 < . . . < cns
≤ 1

▶ Define collocation points tn,i = tn + cih , i = 1, . . . , ns

▶ The polynomial qn(t) ≈ x(t) satisfies the ODE on the collocation points:

Collocation equations

qn(tn) = xn

q̇n(tn + cih) = f(tn + cih, qn(tn + cih), un), i = 1, . . . , ns

▶ Polynomial of degree ns: ns + 1 coefficient and ns + 1 equations

▶ Next value - simple evaluation: xn+1 = qn(tn+1)
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Collocation

Main ideas:

▶ Approximate x(t) on t ∈ [tn, tn+1] with a polynomial qn(t) of degree ns

▶ Pick ns distinct numbers: 0 ≤ c1 < c2 < . . . < cns
≤ 1

▶ Define collocation points tn,i = tn + cih , i = 1, . . . , ns

▶ The polynomial qn(t) ≈ x(t) satisfies the ODE on the collocation points:

Collocation equations

qn(tn) = xn

q̇n(tn + cih) = f(tn + cih, qn(tn + cih), un), i = 1, . . . , ns

▶ Polynomial of degree ns: ns + 1 coefficient and ns + 1 equations

▶ Next value - simple evaluation: xn+1 = qn(tn+1)

02. Numerical simulation and direct collocation M. Diehl and A. Nurkanović 18/29
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Collocation - how to implement it?

How to parameterize qn(t)?

Two common (equivalent) choices

1. Find interpolating polynomial qn(t) through xn (at tn) and state values xn,1, . . . , xn,ns

at collocation points tn,i, i = 1, . . . , ns (in Exercise 1).

2. Find q̇n(t) interpolating polynomial through state derivatives kn,1, . . . , kn,ns at
collocation points tn,i, i = 1, . . . , ns (this lecture).

▶ qn(t) is recovered via:

qn(t) = xn +

∫ t

tn

q̇n(τ ; kn,1, . . . , kn,ns
)dτ.

▶ with:

q̇n(t) = ℓ1

( t− tn
h

)
kn,1 + ℓ2

( t− tn
h

)
kn,2 + · · ·+ ℓns

( t− tn
h

)
kn,ns

=

ns∑
i=1

ℓi

( t− tn
h

)
f(tn + ci, qn(tn + cih), u0)︸ ︷︷ ︸

=kn,i
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The Lagrange polynomials ℓi(τ)

Lagrange polynomial basis

ℓi(τ) =

ns∏
j=1,i̸=j

τ − cj
ci − cj

.

Properties:

ℓi(cj) =

{
1 if j = i

0 if j ̸= i

ns∑
i=1

ℓi(t) = 1
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Collocation - how to implement it - continued

▶ Evaluate qn(t) at collocation points

qn(tn + cih) = xn +

∫ tn+cih

tn

q̇n(τ ; kn,1, . . . , kn,ns
)dτ

= xn +

∫ tn+cih

tn

ns∑
j=1

ℓj

(τ − tn
h

)
kn,jdτ

= xn + h

ns∑
j=1

kj

∫ ci

0

ℓj(σ)dσ︸ ︷︷ ︸
:=ai,j

= xn + h

ns∑
j=1

kjai,j

Similarly qn(t) evaluated at tn+1 = tn + h:

qn(tn + h) = xn + h

ns∑
i=1

ki

∫ 1

0

ℓi(σ)dσ︸ ︷︷ ︸
:=bi

= xn + h

ns∑
i=1

kibi
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All collocation methods are implicit Runge-Kuta method

Collocation equations

qn(tn) = xn (initial value)

q̇n(tn + cih) = f(tn + ci, qn(tn + cih), un), i = 1, . . . , ns (stage eqs.)

xn+1 = qn(tn+1) (next value)

▶ We arrived at the implicit RK equations in differential form

▶ Unknowns: xn+1 ∈ Rnx and zn = (kn,1, . . . , kn,ns
) ∈ Rnsnx

▶ (ns + 1)nx equations and (ns + 1)nx variables - solve via Newton’s methods
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Collocation - visualization

▶ Choice of points c1, . . . , cns
determines properties of method.

▶ Gauss-Legendre p = 2ns, Radau-IIA p = 2ns − 1 good for stiff systems, Lobatto family
p = 2ns − 2.
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Visualization inspired by Leo Simpson’s talk at the European control conference 2023
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Collocation - visualization

▶ Choice of points c1, . . . , cns
determines properties of method.

▶ Gauss-Legendre p = 2ns, Radau-IIA p = 2ns − 1 good for stiff systems, Lobatto family
p = 2ns − 2.

0h 1h 2h 3h

t

0

0.2

0.4

0.6

0.8

1

x
(t

)

Gauss Legendre, ns = 2, N = 3

10!2 10!1

h

10!10

10!5

100

E
(T

)

GL4
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ẋ(t) = −0.5x(t)2 − x(t) + sin(10t), x(0) = 1

Visualization inspired by Leo Simpson’s talk at the European control conference 2023

02. Numerical simulation and direct collocation M. Diehl and A. Nurkanović 23/29
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ẋ(t) = −0.5x(t)2 − x(t) + sin(10t), x(0) = 1

Visualization inspired by Leo Simpson’s talk at the European control conference 2023

02. Numerical simulation and direct collocation M. Diehl and A. Nurkanović 23/29
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Outline of the lecture

1 Basic definitions

2 Runge-Kutta methods

3 Collocation methods

4 Direct collocation for optimal control
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Direct collocation in optimal control

Variables xn+1 ∈ Rnx and zn = (kn,1, . . . , kn,ns
) ∈ Rnsnx

Collocation equations

xn+1 = xn + h

ns∑
i=1

kibi (next value)

kn,1 = f(tn + c1h, xn + h

ns∑
j=1

kn,ja1,j , un) (stage Eq. 1)

...

kn,ns = f(tn + cnsh, xn + h

ns∑
j=1

kn,jans,j , un), (stage Eq. ns)

▶ Use to discretize optimal control problem
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Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

min
x(·),u(·)

∫ T

0
Lc(x(t), u(t)) dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

▶ Direct methods: first discretize,
then optimize

1. Parametrize controls, e.g.
u(t) = un, t ∈ [tn, tn+1].

2. Discretize cost and dynamics via collocation

Ld(xn, un) =

∫ tn+1

tn

Lc(x(t), u(t)) dt.

Replace ẋ = f(x, u) by

xn+1 = ϕf (xn, zn, un),

0 = ϕint(xn, zn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.
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0 = ϕint(xn, zn, un).

3. Relax path constraints, e.g., evaluate only
at t = tn

0 ≥ h(xn, un), n = 0, . . . N − 1.

Discrete time OCP (an NLP)

min
x,z,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕf (xn, zn, un)

0 = ϕint(xn, znun)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN )

Variables x = (x0, . . . , xN ), z = (z0, . . . , zN )
and u = (u0, . . . , uN−1).
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Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP (an NLP)

min
x,z,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕf (xn, zn, un)

0 = ϕint(xn, znun)

0 ≥ h(xn, un), n = 0, . . . , N−1
0 ≥ r(xN )

Variables w = (x, z,u)
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Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP (an NLP)

min
x,z,u

∑N−1
k=0 Ld(xk, uk) + E(xN )

s.t. x0 = x̄0

xn+1 = ϕf (xn, zn, un)

0 = ϕint(xn, znun)
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Variables w = (x, z,u)

Nonlinear Program (NLP)

min
w∈Rnx

F (w)

s.t. G(w) = 0

H(w) ≥ 0

Obtain large and sparse
NLP
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Direct optimal control methods solve Nonlinear Programs (NLP)
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Summary

▶ Numerical simulation methods used to solve ODEs approximately.

▶ Integration accuracy order and stability play key roles.

▶ Collocation methods are implicit Runge-Kutta methods with favorable properties.

▶ All collocation methods are IRK methods, the converse is not true.

▶ Collocation methods can be used to discretize an OCP into an NLP.

▶ Choice of discretization method has huge influence on efficacy and reliability of NLP
solution.

▶ Best choice is problem dependent and often requires lot of care.

▶ Used for practical problems and straightforward to apply.

▶ Many good software packages exist.
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