Lecture 2: Numerical simulation and direct collocation

Moritz Diehl and Armin Nurkanović
Systems Control and Optimization Laboratory (syscop)
Summer School on Direct Methods for Optimal Control of Nonsmooth Systems
September 11-15, 2023

universitätfreiburg

Outline of the lecture

1 Basic definitions

2 Runge-Kutta methods

3 Collocation methods

4 Direct collocation for optimal control

Ordinary differential equations and controlled dynamical system

Let:

- $t \in \mathbb{R}$ be the time
- $x(t) \in \mathbb{R}^{n_{x}}$ the differential states
- $u(t) \in \mathbb{R}^{n_{u}}$ a given control function
- denote by $\dot{x}(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t}$

Ordinary differential equations

Ordinary differential equations and controlled dynamical system

Let:

- $t \in \mathbb{R}$ be the time
$-x(t) \in \mathbb{R}^{n_{x}}$ the differential states
- $u(t) \in \mathbb{R}^{n_{u}}$ a given control function
- denote by $\dot{x}(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t}$

Ordinary differential equations

Let $F: \mathbb{R} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{x}}$ be a function such that the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is invertible. The system of equations:

$$
F(t, \dot{x}(t), x(t), u(t))=0,
$$

is called an Ordinary Differential Equation (ODE).

Ordinary differential equations and controlled dynamical system

Let:

- $t \in \mathbb{R}$ be the time
- $x(t) \in \mathbb{R}^{n_{x}}$ the differential states
- $u(t) \in \mathbb{R}^{n_{u}}$ a given control function
- denote by $\dot{x}(t)=\frac{\mathrm{d} x(t)}{\mathrm{d} t}$

Ordinary differential equations

Let $F: \mathbb{R} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{x}}$ be a function such that the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is invertible. The system of equations:

$$
F(t, \dot{x}(t), x(t), u(t))=0,
$$

is called an Ordinary Differential Equation (ODE).

- Given a function $f: \mathbb{R} \times \mathbb{R}^{n_{x}} \times \mathbb{R}^{n_{u}} \rightarrow \mathbb{R}^{n_{x}}$ then a system of equations:

$$
\begin{equation*}
\dot{x}(t)=f(t, x(t), u(t)) \tag{1}
\end{equation*}
$$

is called an explicit ODE.

Sufficient conditions for existence and uniqueness

Theorem (Picard-Lindelöf / Cauchy-Lipschitz)

An initial value problem in ODE

$$
\begin{aligned}
& \dot{x}(t)=f(t, x(t), u(t)), \quad t \in[0, T], \\
& x(0)=x_{0}
\end{aligned}
$$

- with given initial state x_{0}, and controls $u(t)$,
- $f(t, x(t), u(t))=\hat{f}(t, x(t))$ is continuous in t and Lipschitz continuous in x

Sufficient conditions for existence and uniqueness

Theorem (Picard-Lindelöf / Cauchy-Lipschitz)

An initial value problem in ODE

$$
\begin{aligned}
& \dot{x}(t)=f(t, x(t), u(t)), \quad t \in[0, T], \\
& x(0)=x_{0}
\end{aligned}
$$

- with given initial state x_{0}, and controls $u(t)$,
- $f(t, x(t), u(t))=\hat{f}(t, x(t))$ is continuous in t and Lipschitz continuous in x has a unique solution $x(t), t \in[0, T]$.
- f is Lipschitz if $\|f(x)-f(y)\| \leq L\|x-y\|$
- smooth ODEs modeling physics usually Lipschitz

Sufficient conditions for existence and uniqueness

Theorem (Picard-Lindelöf / Cauchy-Lipschitz)

An initial value problem in ODE

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), u(t)), \quad t \in[0, T], \\
x(0) & =x_{0}
\end{aligned}
$$

- with given initial state x_{0}, and controls $u(t)$,
- $f(t, x(t), u(t))=\hat{f}(t, x(t))$ is continuous in t and Lipschitz continuous in x has a unique solution $x(t), t \in[0, T]$.
- f is Lipschitz if $\|f(x)-f(y)\| \leq L\|x-y\|$
- smooth ODEs modeling physics usually Lipschitz
- if f is only continuous, existence but not uniqueness can be guaranteed, e.g. $\dot{x}(t)=\sqrt{|x(t)|}, x(0)=0$, solutions: $x(t)=0$ and $x(t)=\frac{t^{2}}{4}$

Sufficient conditions for existence and uniqueness

Theorem (Picard-Lindelöf / Cauchy-Lipschitz)

An initial value problem in ODE

$$
\begin{aligned}
\dot{x}(t) & =f(t, x(t), u(t)), \quad t \in[0, T], \\
x(0) & =x_{0}
\end{aligned}
$$

- with given initial state x_{0}, and controls $u(t)$,
- $f(t, x(t), u(t))=\hat{f}(t, x(t))$ is continuous in t and Lipschitz continuous in x has a unique solution $x(t), t \in[0, T]$.
- f is Lipschitz if $\|f(x)-f(y)\| \leq L\|x-y\|$
- smooth ODEs modeling physics usually Lipschitz
- if f is only continuous, existence but not uniqueness can be guaranteed, e.g. $\dot{x}(t)=\sqrt{|x(t)|}, x(0)=0$, solutions: $x(t)=0$ and $x(t)=\frac{t^{2}}{4}$
- Conditions are only sufficient, ODEs with a non-Lipschiz r.h.s. can have unique solutions A collection of results in: Agarwal, Ratan Prakash, Ravi P. Agarwal, and V. Lakshmikantham. Uniqueness and nonuniqueness criteria for ordinary differential equations. Vol. 6. World Scientific, 1993.

ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c :

$$
\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t) \\
\dot{x}_{2}(t) & =-\frac{k}{m}\left(x_{2}(t)-u(t)\right) \quad-\frac{\beta}{m} x_{1}(t)
\end{aligned}
$$

ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c :

$$
\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t) \\
\dot{x}_{2}(t) & =-\frac{k}{m}\left(x_{2}(t)-u(t)\right) \quad-\frac{\beta}{m} x_{1}(t)
\end{aligned}
$$

- state $x(t) \in \mathbb{R}^{2}$
- position of mass

$$
\begin{aligned}
& x_{1}(t) \quad \longleftarrow \text { measured } \\
& x_{2}(t)
\end{aligned}
$$

- velocity of mass
- control action: spring position $u(t) \in \mathbb{R} \longleftarrow$ manipulated

ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c :

$$
\begin{aligned}
\dot{x}_{1}(t) & =x_{2}(t) \\
\dot{x}_{2}(t) & =-\frac{k}{m}\left(x_{2}(t)-u(t)\right) \quad-\frac{\beta}{m} x_{1}(t)
\end{aligned}
$$

- state $x(t) \in \mathbb{R}^{2}$
- position of mass
- velocity of mass

$$
x_{1}(t) \quad \longleftarrow \text { measured }
$$

- control action: spring position $u(t) \in \mathbb{R} \longleftarrow$ manipulated

Can summarize as $\dot{x}=f(x, u)$ with

$$
f(x, u)=\left[\begin{array}{c}
x_{2} \\
-\frac{k}{m}\left(x_{2}-u\right)-\frac{c}{m} x_{1}
\end{array}\right]
$$

Basic definitions of numerical simulation

- IVPs have only in special cases a closed form solution
- Instead, compute numerically a solution approximation $\tilde{x}(t)$ that approximately satisfies:

$$
\begin{aligned}
& \dot{\tilde{x}}(t) \approx f(t, \tilde{x}(t), u(t)), \quad t \in[0, T] \\
& \tilde{x}(0)=x(0)=x_{0}
\end{aligned}
$$

Basic definitions of numerical simulation

- IVPs have only in special cases a closed form solution
- Instead, compute numerically a solution approximation $\tilde{x}(t)$ that approximately satisfies:

$$
\begin{aligned}
& \dot{\tilde{x}}(t) \approx f(t, \tilde{x}(t), u(t)), \quad t \in[0, T] \\
& \tilde{x}(0)=x(0)=x_{0}
\end{aligned}
$$

- Recursively generate solution approximation $x_{n}:=\tilde{x}\left(t_{n}\right) \approx x\left(t_{n}\right)$ at N discrete time points $0=t_{0}<t_{1}<\ldots<t_{N}=T$
- Integration interval $[0, T]$ split into subintervals $\left[t_{n}, t_{n+1}\right]$ where $h=t_{n+1}-t_{n}$
- h - integration step size can be constant, different for every interval, or adaptive

Single step numerical simulation as discrete time system

Single step abstract integration method

$$
\begin{aligned}
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right), \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n}, u_{n}\right), n=0, \ldots, N-1 .
\end{aligned}
$$

- ϕ_{f} - state transition - compute next integration step
- $\phi_{\text {int }}$ - internal computations, e.g., stages of a Runge-Kutta method (next section)
- z_{n} collects all interval variables of the integration method

Single step numerical simulation as discrete time system

Single step abstract integration method

$$
\begin{aligned}
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right), \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n}, u_{n}\right), n=0, \ldots, N-1 .
\end{aligned}
$$

- ϕ_{f} - state transition - compute next integration step
- $\phi_{\text {int }}$ - internal computations, e.g., stages of a Runge-Kutta method (next section)
- z_{n} collects all interval variables of the integration method

Example (Explicit Euler):

$$
\begin{aligned}
x_{n+1} & =x_{n}+h z_{n} \\
0 & =f\left(x_{n}, u_{n}\right)-z_{n}
\end{aligned}
$$

Single step numerical simulation as discrete time system

Single step abstract integration method

$$
\begin{aligned}
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right), \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n}, u_{n}\right), n=0, \ldots, N-1 .
\end{aligned}
$$

- ϕ_{f} - state transition - compute next integration step
- $\phi_{\text {int }}$ - internal computations, e.g., stages of a Runge-Kutta method (next section)
- z_{n} collects all interval variables of the integration method

Example (Explicit Euler):

$$
\begin{aligned}
x_{n+1} & =x_{n}+h z_{n}, \\
0 & =f\left(x_{n}, u_{n}\right)-z_{n} .
\end{aligned}
$$

Is an overkill for simple examples but pays off for complicated methods later.

Integration error

Local and global error

- Local integration error at t_{n+1} :

$$
e\left(t_{n+1}\right)=\left\|x\left(t_{n+1}\right)-\phi_{f}\left(x\left(t_{n}\right), z_{n}, u_{0}\right)\right\| .
$$

Integration error

Local and global error

- Local integration error at t_{n+1} :

$$
e\left(t_{n+1}\right)=\left\|x\left(t_{n+1}\right)-\phi_{f}\left(x\left(t_{n}\right), z_{n}, u_{0}\right)\right\| .
$$

Integration error

Local and global error

- Local integration error at t_{n+1} :

$$
e\left(t_{n+1}\right)=\left\|x\left(t_{n+1}\right)-\phi_{f}\left(x\left(t_{n}\right), z_{n}, u_{0}\right)\right\| .
$$

Integration error

Local and global error

- Local integration error at t_{n+1} :

$$
e\left(t_{n+1}\right)=\left\|x\left(t_{n+1}\right)-\phi_{f}\left(x\left(t_{n}\right), z_{n}, u_{0}\right)\right\| .
$$

Integration error

Local and global error

- Local integration error at t_{n+1} :

$$
e\left(t_{n+1}\right)=\left\|x\left(t_{n+1}\right)-\phi_{f}\left(x\left(t_{n}\right), z_{n}, u_{0}\right)\right\| .
$$

- Global integration error at $t=T$:

$$
E(T)=\left\|x(T)-x_{N}\right\| .
$$

- Global error - accumulation of local errors

Convergence and integrator order

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Higher order p :
- less, but more expensive steps for same accuracy
- in total fewer r.h.s. evaluations for same accuracy

Convergence and integrator order

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Higher order p :
- less, but more expensive steps for same accuracy
- in total fewer r.h.s. evaluations for same accuracy

Convergence and integrator order

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Higher order p :
- less, but more expensive steps for same accuracy
- in total fewer r.h.s. evaluations for same accuracy

Convergence and integrator order

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Higher order p :
- less, but more expensive steps for same accuracy
- in total fewer r.h.s. evaluations for same accuracy

Convergence and integrator order

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Higher order p :
- less, but more expensive steps for same accuracy
- in total fewer r.h.s. evaluations for same accuracy

Convergence and integrator order

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Higher order p :
- less, but more expensive steps for same accuracy
- in total fewer r.h.s. evaluations for same accuracy

Alternatively one can plot the error over $N \propto \frac{1}{h}$ instead of h

Stability and convergence

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Stability: damping of errors, does it work for $h \gg 0$?

- If integrator is unstable, it does not converge and has $p=0$, unless h very small

$$
\begin{aligned}
& \dot{x}(t)=-300(x(t)-\cos (t)), t \in[0,2] \\
& x(0)=1
\end{aligned}
$$

Stability and convergence

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has $p=0$, unless h very small

$$
\begin{aligned}
& \dot{x}(t)=-300(x(t)-\cos (t)), t \in[0,2] \\
& x(0)=1
\end{aligned}
$$

Stability and convergence

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has $p=0$, unless h very small

$$
\begin{aligned}
& \dot{x}(t)=-300(x(t)-\cos (t)), t \in[0,2] \\
& x(0)=1
\end{aligned}
$$

Stability and convergence

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has $p=0$, unless h very small

$$
\begin{aligned}
& \dot{x}(t)=-300(x(t)-\cos (t)), t \in[0,2] \\
& x(0)=1
\end{aligned}
$$

Stability and convergence

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has $p=0$, unless h very small

$$
\begin{aligned}
& \dot{x}(t)=-300(x(t)-\cos (t)), t \in[0,2] \\
& x(0)=1
\end{aligned}
$$

Stability and convergence

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Stability: damping of errors, does it work for $h \gg 0$?

- If integrator is unstable, it does not converge and has $p=0$, unless h very small

$$
\begin{aligned}
& \dot{x}(t)=-300(x(t)-\cos (t)), t \in[0,2] \\
& x(0)=1
\end{aligned}
$$

Stability and convergence

Integrator convergence and accuracy

- Convergence

$$
\lim _{h \rightarrow 0} E(T)=0
$$

- Integrator has order p if

$$
\lim _{h \rightarrow 0} e\left(t_{i}\right) \leq C h^{p+1}=O\left(h^{p+1}\right), C>0
$$

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has $p=0$, unless h very small

$$
\begin{aligned}
& \dot{x}(t)=-300(x(t)-\cos (t)), t \in[0,2] \\
& x(0)=1
\end{aligned}
$$

Outline of the lecture

1 Basic definitions

2 Runge-Kutta methods

3 Collocation methods

4 Direct collocation for optimal control

Classes of numerical simulation methods

Runge-Kutta method definition

Definition (Runge-Kutta method in differential form)

Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{\mathrm{s}}}$. Let $t_{n, i}=t_{n}+c_{i} h$. The system of equations:

$$
\begin{aligned}
k_{n, i} & =f\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, u_{n}\right), i=1, \ldots, n_{\mathrm{s}} \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} k_{n, i}
\end{aligned}
$$

is called a n_{s}-stage Runge-Kutta (RK) method in the differential form.

Runge-Kutta method definition

Definition (Runge-Kutta method in differential form)

Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{\mathrm{s}}}$. Let $t_{n, i}=t_{n}+c_{i} h$. The system of equations:

$$
\begin{aligned}
k_{n, i} & =f\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, u_{n}\right), i=1, \ldots, n_{\mathrm{s}} \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} k_{n, i}
\end{aligned}
$$

is called a n_{s}-stage Runge-Kutta (RK) method in the differential form.

Runge-Kutta method definition

Unknowns are derivatives at stage points

Definition (Runge-Kutta method in differential form)
Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{\mathrm{s}}}$. Let $t_{n, i}=t_{n}+c_{i} h$. The system of equations:

$$
\begin{aligned}
k_{n, i} & =f\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, u_{n}\right), i=1, \ldots, n_{\mathrm{s}} \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} k_{n, i}
\end{aligned}
$$

is called a n_{s}-stage Runge-Kutta (RK) method in the differential form.

Runge-Kutta method definition

Unknowns are derivatives at stage points

Definition (Runge-Kutta method in differential form)

Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{\mathrm{s}}}$. Let $t_{n, i}=t_{n}+c_{i} h$. The system of equations:

$$
\begin{aligned}
k_{n, i} & =f\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, u_{n}\right), i=1, \ldots, n_{\mathrm{s}} \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} k_{n, i}
\end{aligned}
$$

is called a n_{s}-stage Runge-Kutta (RK) method in the differential form.

Runge-Kutta method definition

Definition (Runge-Kutta method in differential form)
Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{\mathrm{s}}}$. Let $t_{n, i}=t_{n}+c_{i} h$. The system of equations:

$$
\begin{aligned}
k_{n, i} & =f\left(t_{n, i}, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} k_{n, j}, u_{n}\right), i=1, \ldots, n_{\mathrm{s}} \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} k_{n, i}
\end{aligned}
$$

is called a n_{s}-stage Runge-Kutta (RK) method in the differential form.

$$
\begin{array}{llll}
\text { Time grid } & \text { Butcher tableau } & \text { Data } & \text { Variables } \\
h, t_{n}, t_{n, i} & a_{i, j}, b_{i}, c_{i} & x_{n}, u_{n}, f(\cdot) & x_{n+1}, k_{n, i} \\
i=1, \ldots, n_{\mathrm{s}} & i, j=1, \ldots, n_{\mathrm{s}} & & i=1, \ldots, n_{\mathrm{s}}
\end{array}
$$

Runge-Kutta method definition

Unknowns are states at stage points, cannot treat case of $c_{1}=0$

Definition (Runge-Kutta method in integral form)

Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{\mathrm{s}}}$. Let $t_{n, i}=t_{n}+c_{i} h$. The system of equations:

$$
\begin{aligned}
x_{n, i} & =x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} f\left(t_{n, i}, x_{n, j}, u_{n}\right), i=1, \ldots, n_{\mathrm{s}} \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} f\left(t_{n, i}, x_{n, i}, u_{n}\right),
\end{aligned}
$$

is called a n_{s}-stage Runge-Kutta (RK) method in integral form.

$$
\begin{array}{llll}
\text { Time grid } & \text { Butcher tableau } & \text { Data } & \text { Variables } \\
h, t_{n}, t_{n, i} & a_{i, j}, b_{i}, c_{i} & x_{n}, u_{n}, f(\cdot) & x_{n+1}, x_{n, i} \\
i=1, \ldots, n_{\mathrm{s}} & i, j=1, \ldots, n_{\mathrm{s}} & & i=1, \ldots, n_{\mathrm{s}}
\end{array}
$$

Runge-Kutta method definition

Unknowns are states at stage points, cannot treat case of $c_{1}=0$

Definition (Runge-Kutta method in integral form)

Let n_{s} be the number of stages. Given the matrix $A \in \mathbb{R}^{n_{\mathrm{s}} \times n_{\mathrm{s}}}$ with the entries $a_{i, j}$ for $i, j=1, \ldots, n_{\mathrm{s}}$, and the vectors $b, c \in \mathbb{R}^{n_{\mathrm{s}}}$. Let $t_{n, i}=t_{n}+c_{i} h$. The system of equations:

$$
\begin{aligned}
x_{n, i} & =x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} a_{i, j} f\left(t_{n, i}, x_{n, j}, u_{n}\right), i=1, \ldots, n_{\mathrm{s}} \\
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} b_{i} f\left(t_{n, i}, x_{n, i}, u_{n}\right),
\end{aligned}
$$

is called a n_{s}-stage Runge-Kutta (RK) method in integral form.

Runge-Kutta method examples

Explicit Runge-Kutta 4

$$
\begin{aligned}
k_{n, 1} & =f\left(t_{n}, x_{n}\right) \\
k_{n, 2} & =f\left(t_{n}+\frac{h}{2}, x_{n}+h \frac{k_{n, 1}}{2}\right) \\
k_{n, 3} & =f\left(t_{n}+\frac{h}{2}, x_{n}+h \frac{k_{n, 2}}{2}\right) \\
k_{n, 5} & =f\left(t_{n}+h, x_{n}+h k_{n, 3}\right) \\
x_{n+1} & =x_{n}+h\left(\frac{1}{6} k_{n, 1}+\frac{2}{6} k_{n, 2}+\frac{2}{6} k_{n, 3}+\frac{1}{6} k_{n, 4}\right)
\end{aligned}
$$

- All $k_{n, i}$ can be found by explicit function evaluations.

Runge-Kutta method examples

Explicit Runge-Kutta 4

$$
\begin{aligned}
k_{n, 1} & =f\left(t_{n}, x_{n}\right) \\
k_{n, 2} & =f\left(t_{n}+\frac{h}{2}, x_{n}+h \frac{k_{n, 1}}{2}\right) \\
k_{n, 3} & =f\left(t_{n}+\frac{h}{2}, x_{n}+h \frac{k_{n, 2}}{2}\right) \\
k_{n, 5} & =f\left(t_{n}+h, x_{n}+h k_{n, 3}\right) \\
x_{n+1} & =x_{n}+h\left(\frac{1}{6} k_{n, 1}+\frac{2}{6} k_{n, 2}+\frac{2}{6} k_{n, 3}+\frac{1}{6} k_{n, 4}\right)
\end{aligned}
$$

Implicit Euler Method

$$
\begin{aligned}
k_{n, 1} & =f\left(t_{n}, x_{n}+h k_{n, 1}\right) \\
x_{n+1} & =x_{n}+h k_{n, 1}
\end{aligned}
$$

- All $k_{n, 1}$ is found implicitly by solving
$k_{n, 1}-f\left(t_{n}, x_{n}+h k_{n, 1}\right)=0$.
- All $k_{n, i}$ can be found by explicit function evaluations.

Explicit vs implicit Runge-Kutta methods

The Butcher tableau

Explicit Runge-Kutta method

$$
\begin{array}{c|ccccc}
0 & & & & & \\
c_{2} & a_{2,1} & & & & \\
\vdots & \vdots & \vdots & \ddots & & \\
c_{n_{\mathrm{s}}} & a_{n_{\mathrm{s}}, 1} & a_{n_{\mathrm{s}}, 2} & \ldots & a_{n_{\mathrm{s}}, n_{\mathrm{s}}-1} & \\
\hline & b_{1} & b_{2} & \ldots & b_{n_{\mathrm{s}}-1} & b_{n_{\mathrm{s}}}
\end{array}
$$

Explicit vs implicit Runge-Kutta methods

Explicit Runge-Kutta method

$$
\begin{array}{c|ccccc}
0 & & & & & \\
c_{2} & a_{2,1} & & & & \\
\vdots & \vdots & \vdots & \ddots & & \\
c_{n_{\mathrm{s}}} & a_{n_{\mathrm{s}}, 1} & a_{n_{\mathrm{s}}, 2} & \ldots & a_{n_{\mathrm{s}}, n_{\mathrm{s}}-1} & \\
\hline & b_{1} & b_{2} & \ldots & b_{n_{\mathrm{s}}-1} & b_{n_{\mathrm{s}}}
\end{array}
$$

- $a_{i, j} \neq 0$ only for $j<i$
- Explicit function evaluations to compute stage values and next step
- Computationally cheap
- Order: $p=n_{\mathrm{s}}$ if $n_{\mathrm{s}} \leq 4$ and $p<n_{\mathrm{s}}$ otherwise

Explicit vs implicit Runge-Kutta methods

Explicit Runge-Kutta method

Implicit Runge-Kutta method

$$
\begin{array}{c|ccccc}
c_{1} & a_{1,1} & a_{1,2} & \ldots & a_{1, n_{\mathrm{s}}-1} & a_{1, n_{\mathrm{s}}} \\
c_{2} & a_{2,1} & a_{2,2} & \ldots & a_{2, n_{\mathrm{s}}-1} & a_{2, n_{\mathrm{s}}} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
c_{n_{\mathrm{s}}} & a_{n_{\mathrm{s}}, 1} & a_{n_{\mathrm{s}}, 2} & \ldots & a_{n_{\mathrm{s}}, n_{\mathrm{s}}-1} & a_{n_{\mathrm{s}}, n_{\mathrm{s}}} \\
\hline & b_{1} & b_{2} & \ldots & b_{n_{\mathrm{s}}-1} & b_{n_{\mathrm{s}}}
\end{array}
$$

- $a_{i, j} \neq 0$ only for $j<i$
- Explicit function evaluations to compute stage values and next step
- Computationally cheap
- Order: $p=n_{\mathrm{s}}$ if $n_{\mathrm{s}} \leq 4$ and $p<n_{\mathrm{s}}$ otherwise

Explicit vs implicit Runge-Kutta methods

Implicit Runge-Kutta method

Explicit Runge-Kutta method

- $a_{i, j} \neq 0$ only for $j<i$
- Explicit function evaluations to compute stage values and next step
- Computationally cheap
- Order: $p=n_{\mathrm{s}}$ if $n_{\mathrm{s}} \leq 4$ and $p<n_{\mathrm{s}}$ otherwise

c_{1}	$a_{1,1}$	$a_{1,2}$	\ldots	$a_{1, n_{\mathrm{s}}-1}$	$a_{1, n_{\mathrm{s}}}$
c_{2}	$a_{2,1}$	$a_{2,2}$	\ldots	$a_{2, n_{\mathrm{s}}-1}$	$a_{2, n_{\mathrm{s}}}$
\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
$c_{n_{\mathrm{s}}}$	$a_{n_{\mathrm{s}}, 1}$	$a_{n_{\mathrm{s}}, 2}$	\ldots	$a_{n_{\mathrm{s}}, n_{\mathrm{s}}-1}$	$a_{n_{\mathrm{s}}, n_{\mathrm{s}}}$
	b_{1}	b_{2}	\ldots	$b_{n_{\mathrm{s}}-1}$	$b_{n_{\mathrm{s}}}$

- Requires solving nonlinear rootfinding problem with Newton's method
- Expensive but good for stiff systems
- Order: $p=2 n_{\mathrm{s}}, p=2 n_{\mathrm{s}}-1, \ldots$
- Famous representative: collocation methods - treated next!

Butcher tableau, six examples

Euler
Heun

0		
1	1	
	$1 / 2$	$1 / 2$

RK4

Gauss-Legendre
of order 4 (GL4)

Outline of the lecture

1 Basic definitions

2 Runge-Kutta methods

3 Collocation methods

4 Direct collocation for optimal control

Collocation

Main ideas:

- Approximate $x(t)$ on $t \in\left[t_{n}, t_{n+1}\right]$ with a polynomial $q_{n}(t)$ of degree n_{s}

Collocation

Main ideas:

- Approximate $x(t)$ on $t \in\left[t_{n}, t_{n+1}\right]$ with a polynomial $q_{n}(t)$ of degree n_{s}
- Pick n_{s} distinct numbers: $0 \leq c_{1}<c_{2}<\ldots<c_{n_{\mathrm{s}}} \leq 1$

Collocation

Main ideas:

- Approximate $x(t)$ on $t \in\left[t_{n}, t_{n+1}\right]$ with a polynomial $q_{n}(t)$ of degree n_{s}
- Pick n_{s} distinct numbers: $0 \leq c_{1}<c_{2}<\ldots<c_{n_{\mathrm{s}}} \leq 1$
- Define collocation points $t_{n, i}=t_{n}+c_{i} h, i=1, \ldots, n_{\mathrm{s}}$

Collocation

Main ideas:

- Approximate $x(t)$ on $t \in\left[t_{n}, t_{n+1}\right]$ with a polynomial $q_{n}(t)$ of degree n_{s}
- Pick n_{s} distinct numbers: $0 \leq c_{1}<c_{2}<\ldots<c_{n_{\mathrm{s}}} \leq 1$
- Define collocation points $t_{n, i}=t_{n}+c_{i} h, i=1, \ldots, n_{\mathrm{s}}$
- The polynomial $q_{n}(t) \approx x(t)$ satisfies the ODE on the collocation points:

Collocation equations

$$
\begin{aligned}
q_{n}\left(t_{n}\right) & =x_{n} \\
\dot{q}_{n}\left(t_{n}+c_{i} h\right) & =f\left(t_{n}+c_{i} h, q_{n}\left(t_{n}+c_{i} h\right), u_{n}\right), \quad i=1, \ldots, n_{\mathrm{s}}
\end{aligned}
$$

Collocation

Main ideas:

- Approximate $x(t)$ on $t \in\left[t_{n}, t_{n+1}\right]$ with a polynomial $q_{n}(t)$ of degree n_{s}
- Pick n_{s} distinct numbers: $0 \leq c_{1}<c_{2}<\ldots<c_{n_{\mathrm{s}}} \leq 1$
- Define collocation points $t_{n, i}=t_{n}+c_{i} h, i=1, \ldots, n_{\mathrm{s}}$
- The polynomial $q_{n}(t) \approx x(t)$ satisfies the ODE on the collocation points:

Collocation equations

$$
\begin{aligned}
q_{n}\left(t_{n}\right) & =x_{n} \\
\dot{q}_{n}\left(t_{n}+c_{i} h\right) & =f\left(t_{n}+c_{i} h, q_{n}\left(t_{n}+c_{i} h\right), u_{n}\right), \quad i=1, \ldots, n_{\mathrm{s}}
\end{aligned}
$$

- Polynomial of degree n_{s} : $n_{\mathrm{s}}+1$ coefficient and $n_{\mathrm{s}}+1$ equations

Collocation

Main ideas:

- Approximate $x(t)$ on $t \in\left[t_{n}, t_{n+1}\right]$ with a polynomial $q_{n}(t)$ of degree n_{s}
- Pick n_{s} distinct numbers: $0 \leq c_{1}<c_{2}<\ldots<c_{n_{\mathrm{s}}} \leq 1$
- Define collocation points $t_{n, i}=t_{n}+c_{i} h, i=1, \ldots, n_{\mathrm{s}}$
- The polynomial $q_{n}(t) \approx x(t)$ satisfies the ODE on the collocation points:

Collocation equations

$$
\begin{aligned}
q_{n}\left(t_{n}\right) & =x_{n} \\
\dot{q}_{n}\left(t_{n}+c_{i} h\right) & =f\left(t_{n}+c_{i} h, q_{n}\left(t_{n}+c_{i} h\right), u_{n}\right), \quad i=1, \ldots, n_{\mathrm{s}}
\end{aligned}
$$

- Polynomial of degree n_{s} : $n_{\mathrm{s}}+1$ coefficient and $n_{\mathrm{s}}+1$ equations
- Next value - simple evaluation: $x_{n+1}=q_{n}\left(t_{n+1}\right)$

Collocation - how to implement it?

How to parameterize $q_{n}(t)$?
Two common (equivalent) choices

Collocation - how to implement it?

How to parameterize $q_{n}(t)$?
Two common (equivalent) choices

1. Find interpolating polynomial $q_{n}(t)$ through $x_{n}\left(\right.$ at $\left.t_{n}\right)$ and state values $x_{n, 1}, \ldots, x_{n, n_{\mathrm{s}}}$ at collocation points $t_{n, i}, i=1, \ldots, n_{\mathrm{s}}$ (in Exercise 1).

Collocation - how to implement it?

How to parameterize $q_{n}(t)$?
Two common (equivalent) choices

1. Find interpolating polynomial $q_{n}(t)$ through $x_{n}\left(\right.$ at $\left.t_{n}\right)$ and state values $x_{n, 1}, \ldots, x_{n, n_{\mathrm{s}}}$ at collocation points $t_{n, i}, i=1, \ldots, n_{\mathrm{s}}$ (in Exercise 1).
2. Find $\dot{q}_{n}(t)$ interpolating polynomial through state derivatives $k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}$ at collocation points $t_{n, i}, i=1, \ldots, n_{\mathrm{s}}$ (this lecture).

Collocation - how to implement it?

How to parameterize $q_{n}(t)$?
Two common (equivalent) choices

1. Find interpolating polynomial $q_{n}(t)$ through $x_{n}\left(\right.$ at $\left.t_{n}\right)$ and state values $x_{n, 1}, \ldots, x_{n, n_{\mathrm{s}}}$ at collocation points $t_{n, i}, i=1, \ldots, n_{\mathrm{s}}$ (in Exercise 1).
2. Find $\dot{q}_{n}(t)$ interpolating polynomial through state derivatives $k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}$ at collocation points $t_{n, i}, i=1, \ldots, n_{\mathrm{s}}$ (this lecture).

- $q_{n}(t)$ is recovered via:

$$
q_{n}(t)=x_{n}+\int_{t_{n}}^{t} \dot{q}_{n}\left(\tau ; k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \mathrm{d} \tau .
$$

Collocation - how to implement it?

How to parameterize $q_{n}(t)$?
Two common (equivalent) choices

1. Find interpolating polynomial $q_{n}(t)$ through x_{n} (at t_{n}) and state values $x_{n, 1}, \ldots, x_{n, n_{\mathrm{s}}}$ at collocation points $t_{n, i}, i=1, \ldots, n_{\mathrm{s}}$ (in Exercise 1).
2. Find $\dot{q}_{n}(t)$ interpolating polynomial through state derivatives $k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}$ at collocation points $t_{n, i}, i=1, \ldots, n_{\mathrm{s}}$ (this lecture).

- $q_{n}(t)$ is recovered via:

$$
q_{n}(t)=x_{n}+\int_{t_{n}}^{t} \dot{q}_{n}\left(\tau ; k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \mathrm{d} \tau .
$$

- with:

$$
\begin{aligned}
\dot{q}_{n}(t) & =\ell_{1}\left(\frac{t-t_{n}}{h}\right) k_{n, 1}+\ell_{2}\left(\frac{t-t_{n}}{h}\right) k_{n, 2}+\cdots+\ell_{n_{\mathrm{s}}}\left(\frac{t-t_{n}}{h}\right) k_{n, n_{\mathrm{s}}} \\
& =\sum_{i=1}^{n_{\mathrm{s}}} \ell_{i}\left(\frac{t-t_{n}}{h}\right) \underbrace{f\left(t_{n}+c_{i}, q_{n}\left(t_{n}+c_{i} h\right), u_{0}\right)}_{=k_{n, i}}
\end{aligned}
$$

The Lagrange polynomials $\ell_{i}(\tau)$

Lagrange polynomial basis

$$
\ell_{i}(\tau)=\prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau-c_{j}}{c_{i}-c_{j}} .
$$

The Lagrange polynomials $\ell_{i}(\tau)$

Lagrange polynomial basis

$$
\ell_{i}(\tau)=\prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau-c_{j}}{c_{i}-c_{j}} .
$$

Properties:

$$
\ell_{i}\left(c_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array}\right.
$$

The Lagrange polynomials $\ell_{i}(\tau)$

Lagrange polynomial basis

$$
\ell_{i}(\tau)=\prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau-c_{j}}{c_{i}-c_{j}} .
$$

Properties:

$$
\ell_{i}\left(c_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array}\right.
$$

The Lagrange polynomials $\ell_{i}(\tau)$

Lagrange polynomial basis

$$
\ell_{i}(\tau)=\prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau-c_{j}}{c_{i}-c_{j}} .
$$

Properties:

$$
\ell_{i}\left(c_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array}\right.
$$

The Lagrange polynomials $\ell_{i}(\tau)$

Lagrange polynomial basis

$$
\ell_{i}(\tau)=\prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau-c_{j}}{c_{i}-c_{j}}
$$

Properties:

$$
\ell_{i}\left(c_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array}\right.
$$

The Lagrange polynomials $\ell_{i}(\tau)$

Lagrange polynomial basis

$$
\ell_{i}(\tau)=\prod_{j=1, i \neq j}^{n_{s}} \frac{\tau-c_{j}}{c_{i}-c_{j}}
$$

Properties:

$$
\ell_{i}\left(c_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array}\right.
$$

The Lagrange polynomials $\ell_{i}(\tau)$

Lagrange polynomial basis

$$
\ell_{i}(\tau)=\prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau-c_{j}}{c_{i}-c_{j}}
$$

Properties:

$$
\begin{gathered}
\ell_{i}\left(c_{j}\right)=\left\{\begin{array}{lll}
1 & \text { if } & j=i \\
0 & \text { if } & j \neq i
\end{array}\right. \\
\sum_{i=1}^{n_{\mathrm{s}}} \ell_{i}(t)=1
\end{gathered}
$$

Collocation - how to implement it - continued

- Evaluate $q_{n}(t)$ at collocation points

$$
q_{n}\left(t_{n}+c_{i} h\right)=x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \dot{q}_{n}\left(\tau ; k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \mathrm{d} \tau
$$

Collocation - how to implement it - continued

- Evaluate $q_{n}(t)$ at collocation points

$$
\begin{aligned}
q_{n}\left(t_{n}+c_{i} h\right) & =x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \dot{q}_{n}\left(\tau ; k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \mathrm{d} \tau \\
& =x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \sum_{j=1}^{n_{\mathrm{s}}} \ell_{j}\left(\frac{\tau-t_{n}}{h}\right) k_{n, j} \mathrm{~d} \tau
\end{aligned}
$$

Collocation - how to implement it - continued

- Evaluate $q_{n}(t)$ at collocation points

$$
\begin{aligned}
q_{n}\left(t_{n}+c_{i} h\right) & =x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \dot{q}_{n}\left(\tau ; k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \mathrm{d} \tau \\
& =x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \sum_{j=1}^{n_{\mathrm{s}}} \ell_{j}\left(\frac{\tau-t_{n}}{h}\right) k_{n, j} \mathrm{~d} \tau \\
& =x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{j} \underbrace{\int_{0}^{c_{i}} \ell_{j}(\sigma) \mathrm{d} \sigma}_{:=a_{i, j}}
\end{aligned}
$$

Collocation - how to implement it - continued

- Evaluate $q_{n}(t)$ at collocation points

$$
\begin{aligned}
q_{n}\left(t_{n}+c_{i} h\right) & =x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \dot{q}_{n}\left(\tau ; k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \mathrm{d} \tau \\
& =x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \sum_{j=1}^{n_{\mathrm{s}}} \ell_{j}\left(\frac{\tau-t_{n}}{h}\right) k_{n, j} \mathrm{~d} \tau \\
& =x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{j} \underbrace{\int_{0}^{c_{i}} \ell_{j}(\sigma) \mathrm{d} \sigma}_{:=a_{i, j}} \\
& =x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{j} a_{i, j}
\end{aligned}
$$

Collocation - how to implement it - continued

Evaluate $q_{n}(t)$ at collocation points

$$
\begin{aligned}
q_{n}\left(t_{n}+c_{i} h\right) & =x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \dot{q}_{n}\left(\tau ; k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \mathrm{d} \tau \\
& =x_{n}+\int_{t_{n}}^{t_{n}+c_{i} h} \sum_{j=1}^{n_{\mathrm{s}}} \ell_{j}\left(\frac{\tau-t_{n}}{h}\right) k_{n, j} \mathrm{~d} \tau \\
& =x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{j} \underbrace{\int_{0}^{c_{i}} \ell_{j}(\sigma) \mathrm{d} \sigma}_{:=a_{i, j}} \\
& =x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{j} a_{i, j}
\end{aligned}
$$

Similarly $q_{n}(t)$ evaluated at $t_{n+1}=t_{n}+h$:

$$
q_{n}\left(t_{n}+h\right)=x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} k_{i} \underbrace{\int_{0}^{1} \ell_{i}(\sigma) \mathrm{d} \sigma}_{:=b_{i}}=x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} k_{i} b_{i}
$$

All collocation methods are implicit Runge-Kuta method

Collocation equations

$$
\begin{array}{lr}
q_{n}\left(t_{n}\right)=x_{n} & \text { (initial value) } \\
\dot{q}_{n}\left(t_{n}+c_{i} h\right)=f\left(t_{n}+c_{i}, q_{n}\left(t_{n}+c_{i} h\right), u_{n}\right), \quad i=1, \ldots, n_{\mathrm{s}} & \text { (stage eqs.) } \\
x_{n+1}=q_{n}\left(t_{n+1}\right) & \text { (next value) }
\end{array}
$$

All collocation methods are implicit Runge-Kuta method

Collocation equations

$$
\begin{array}{lr}
q_{n}\left(t_{n}\right)=x_{n} & \text { (initial value) } \\
k_{n, i}=f\left(t_{n}+c_{i} h, q_{n}\left(t_{n}+c_{i} h\right), u_{n}\right), \quad i=1, \ldots, n_{\mathrm{s}} & \text { (stage eqs.) } \\
x_{n+1}=q_{n}\left(t_{n+1}\right) & \text { (next value) }
\end{array}
$$

All collocation methods are implicit Runge-Kuta method

Collocation equations

$$
\begin{aligned}
& q_{n}\left(t_{n}\right)=x_{n} \\
& k_{n, i}=f\left(t_{n}+c_{i} h, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{j} a_{i, j}, u_{n}\right), \quad i=1, \ldots, n_{\mathrm{s}} \\
& x_{n+1}=q_{n}\left(t_{n+1}\right)
\end{aligned}
$$

All collocation methods are implicit Runge-Kuta method

Collocation equations

$$
\begin{aligned}
& q_{n}\left(t_{n}\right)=x_{n} \\
& k_{n, i}=f\left(t_{n}+c_{i} h, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{j} a_{i, j}, u_{n}\right), \quad i=1, \ldots, n_{\mathrm{s}} \\
& x_{n+1}=x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} k_{i} b_{i}
\end{aligned} \quad \text { (stage eqs.) }
$$

- We arrived at the implicit RK equations in differential form
- Unknowns: $x_{n+1} \in \mathbb{R}^{n_{x}}$ and $z_{n}=\left(k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \in \mathbb{R}^{n_{\mathrm{s}} n_{x}}$
- $\left(n_{\mathrm{s}}+1\right) n_{x}$ equations and $\left(n_{\mathrm{s}}+1\right) n_{x}$ variables - solve via Newton's methods

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$
Visualization inspired by Leo Simpson's talk at the European control conference 2023

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$
Visualization inspired by Leo Simpson's talk at the European control conference 2023

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$
Visualization inspired by Leo Simpson's talk at the European control conference 2023

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$
Visualization inspired by Leo Simpson's talk at the European control conference 2023

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$
Visualization inspired by Leo Simpson's talk at the European control conference 2023

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$$
\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1
$$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$$
\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1
$$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$$
\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1
$$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Collocation - visualization

- Choice of points $c_{1}, \ldots, c_{n_{\mathrm{s}}}$ determines properties of method.
- Gauss-Legendre $p=2 n_{\mathrm{s}}$, Radau-IIA $p=2 n_{\mathrm{s}}-1$ good for stiff systems, Lobatto family $p=2 n_{\mathrm{s}}-2$.

$\dot{x}(t)=-0.5 x(t)^{2}-x(t)+\sin (10 t), x(0)=1$

Outline of the lecture

1 Basic definitions
 2 Runge-Kutta methods
 3 Collocation methods
 4 Direct collocation for optimal control

Direct collocation in optimal control

Variables $x_{n+1} \in \mathbb{R}^{n_{x}}$ and $z_{n}=\left(k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \in \mathbb{R}^{n_{\mathrm{s}} n_{x}}$

Collocation equations

$$
\begin{aligned}
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} k_{i} b_{i} \\
k_{n, 1} & =f\left(t_{n}+c_{1} h, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{n, j} a_{1, j}, u_{n}\right) \\
\vdots & \quad \text { (next value) } \\
k_{n, n_{\mathrm{s}}} & =f\left(t_{n}+c_{n_{\mathrm{s}}} h, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{n, j} a_{n_{\mathrm{s}}, j}, u_{n}\right),
\end{aligned}
$$

Direct collocation in optimal control

Variables $x_{n+1} \in \mathbb{R}^{n_{x}}$ and $z_{n}=\left(k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \in \mathbb{R}^{n_{\mathrm{s}} n_{x}}$

Collocation equations

$$
\begin{array}{rlr}
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} k_{i} b_{i} & \quad \text { (next value) } \\
0 & =k_{n, 1}-f\left(t_{n}+c_{1} h, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{n, j} a_{1, j}, u_{n}\right) & \text { (stage Eq. 1) } \\
& \vdots \\
0 & =k_{n, n_{\mathrm{s}}}-f\left(t_{n}+c_{n_{\mathrm{s}}} h, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{n, j} a_{n_{\mathrm{s}}, j}, u_{n}\right), & \text { (stage Eq. } n_{\mathrm{s}} \text {) }
\end{array}
$$

Direct collocation in optimal control

Variables $x_{n+1} \in \mathbb{R}^{n_{x}}$ and $z_{n}=\left(k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \in \mathbb{R}^{n_{\mathrm{s}} n_{x}}$

Collocation equations

$$
\begin{aligned}
x_{n+1} & =x_{n}+h \sum_{i=1}^{n_{\mathrm{s}}} k_{i} b_{i}=: \phi_{f}\left(x_{n}, z_{n}, u_{n}\right) \\
0 & =\left[\begin{array}{c}
k_{n, 1}-f\left(t_{n}+c_{1} h, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{n, j} a_{1, j}, u_{n}\right) \\
\vdots \\
k_{n, n_{\mathrm{s}}}-f\left(t_{n}+c_{n_{\mathrm{s}}} h, x_{n}+h \sum_{j=1}^{n_{\mathrm{s}}} k_{n, j} a_{n_{\mathrm{s}}, j}, u_{n}\right)
\end{array}\right]=: \phi_{\mathrm{int}}\left(x_{n}, z_{n}, u_{n}\right) \quad \text { (stage Eqs.) }
\end{aligned}
$$

Direct collocation in optimal control

Variables $x_{n+1} \in \mathbb{R}^{n_{x}}$ and $z_{n}=\left(k_{n, 1}, \ldots, k_{n, n_{\mathrm{s}}}\right) \in \mathbb{R}^{n_{\mathrm{s}} n_{x}}$
Collocation equations

$$
\begin{aligned}
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right) \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n}, u_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (next value) } \\
& \text { (stage Eqs.) }
\end{aligned}
$$

- Use to discretize optimal control problem

Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

$$
\begin{aligned}
\min _{x(\cdot), u(\cdot)} \int_{0}^{T} & L_{\mathrm{c}}(x(t), u(t)) \mathrm{d} t+E(x(T)) \\
\text { s.t. } \quad x(0) & =\bar{x}_{0} \\
\dot{x}(t) & =f(x(t), u(t)) \\
0 & \geq h(x(t), u(t)), t \in[0, T] \\
0 & \geq r(x(T))
\end{aligned}
$$

- Direct methods: first discretize, then optimize

Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

$$
\begin{aligned}
& \min _{x(\cdot), u(\cdot)} \int_{0}^{T} L_{\mathrm{c}}(x(t), u(t)) \mathrm{d} t+E(x(T)) \\
& \text { s.t. } \quad x(0)=\bar{x}_{0} \\
& \dot{x}(t)=f(x(t), u(t)) \\
& 0 \geq h(x(t), u(t)), t \in[0, T] \\
& 0 \geq r(x(T))
\end{aligned}
$$

1. Parametrize controls, e.g. $u(t)=u_{n}, t \in\left[t_{n}, t_{n+1}\right]$.

- Direct methods: first discretize, then optimize

Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

$$
\begin{aligned}
& \min _{x(\cdot), u(\cdot)} \int_{0}^{T} L_{\mathrm{c}}(x(t), u(t)) \mathrm{d} t+E(x(T)) \\
& \text { s.t. } \quad x(0)=\bar{x}_{0} \\
& \dot{x}(t)=f(x(t), u(t)) \\
& 0 \geq h(x(t), u(t)), t \in[0, T] \\
& 0 \geq r(x(T))
\end{aligned}
$$

- Direct methods: first discretize, then optimize

1. Parametrize controls, e.g.

$$
u(t)=u_{n}, t \in\left[t_{n}, t_{n+1}\right] .
$$

2. Discretize cost and dynamics via collocation

$$
L_{\mathrm{d}}\left(x_{n}, u_{n}\right)=\int_{t_{n}}^{t_{n+1}} L_{\mathrm{c}}(x(t), u(t)) \mathrm{d} t .
$$

Replace $\dot{x}=f(x, u)$ by

$$
\begin{aligned}
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right), \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n}, u_{n}\right) .
\end{aligned}
$$

Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

$$
\begin{aligned}
\min _{x(\cdot), u(\cdot)} \int_{0}^{T} & L_{\mathrm{c}}(x(t), u(t)) \mathrm{d} t+E(x(T)) \\
\text { s.t. } \quad x(0) & =\bar{x}_{0} \\
\dot{x}(t) & =f(x(t), u(t)) \\
0 & \geq h(x(t), u(t)), t \in[0, T] \\
0 & \geq r(x(T))
\end{aligned}
$$

- Direct methods: first discretize, then optimize

1. Parametrize controls, e.g. $u(t)=u_{n}, t \in\left[t_{n}, t_{n+1}\right]$.
2. Discretize cost and dynamics via collocation

$$
L_{\mathrm{d}}\left(x_{n}, u_{n}\right)=\int_{t_{n}}^{t_{n+1}} L_{\mathrm{c}}(x(t), u(t)) \mathrm{d} t
$$

Replace $\dot{x}=f(x, u)$ by

$$
\begin{aligned}
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right) \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n}, u_{n}\right) .
\end{aligned}
$$

3. Relax path constraints, e.g., evaluate only at $t=t_{n}$

$$
0 \geq h\left(x_{n}, u_{n}\right), n=0, \ldots N-1
$$

Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

$$
\begin{aligned}
\min _{x(\cdot), u(\cdot)} \int_{0}^{T} & L_{\mathrm{c}}(x(t), u(t)) \mathrm{d} t+E(x(T)) \\
\text { s.t. } \quad x(0) & =\bar{x}_{0} \\
\dot{x}(t) & =f(x(t), u(t)) \\
0 & \geq h(x(t), u(t)), t \in[0, T] \\
0 & \geq r(x(T))
\end{aligned}
$$

- Direct methods: first discretize, then optimize

Discrete time OCP (an NLP)

$$
\begin{aligned}
\min _{\mathbf{x}, \mathbf{z}, \mathbf{u}} \sum_{k=0}^{N-1} & L_{\mathrm{d}}\left(x_{k}, u_{k}\right)+E\left(x_{N}\right) \\
\text { s.t. } \quad x_{0} & =\bar{x}_{0} \\
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right) \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n} u_{n}\right) \\
0 & \geq h\left(x_{n}, u_{n}\right), n=0, \ldots, N-1 \\
0 & \geq r\left(x_{N}\right)
\end{aligned}
$$

Variables $\mathbf{x}=\left(x_{0}, \ldots, x_{N}\right), \mathbf{z}=\left(z_{0}, \ldots, z_{N}\right)$ and $\mathbf{u}=\left(u_{0}, \ldots, u_{N-1}\right)$.

Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP (an NLP)

$$
\begin{aligned}
\min _{\mathbf{x}, \mathbf{z}, \mathbf{u}} \sum_{k=0}^{N-1} & L_{\mathrm{d}}\left(x_{k}, u_{k}\right)+E\left(x_{N}\right) \\
\text { s.t. } \quad x_{0} & =\bar{x}_{0} \\
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right) \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n} u_{n}\right) \\
0 & \geq h\left(x_{n}, u_{n}\right), n=0, \ldots, N-1 \\
0 & \geq r\left(x_{N}\right)
\end{aligned}
$$

Variables $w=(\mathbf{x}, \mathbf{z}, \mathbf{u})$

Direct optimal control methods solve Nonlinear Programs (NLP)

Discrete time OCP (an NLP)

$$
\begin{aligned}
\min _{\mathbf{x}, \mathbf{z}, \mathbf{u}} \sum_{k=0}^{N-1} & L_{\mathrm{d}}\left(x_{k}, u_{k}\right)+E\left(x_{N}\right) \\
\text { s.t. } \quad x_{0} & =\bar{x}_{0} \\
x_{n+1} & =\phi_{f}\left(x_{n}, z_{n}, u_{n}\right) \\
0 & =\phi_{\text {int }}\left(x_{n}, z_{n} u_{n}\right) \\
0 & \geq h\left(x_{n}, u_{n}\right), n=0, \ldots, N-1 \\
0 & \geq r\left(x_{N}\right)
\end{aligned}
$$

Nonlinear Program (NLP)

$$
\begin{array}{rl}
\min _{w \in \mathbb{R}^{n_{x}}} & F(w) \\
\text { s.t. } G(w) & =0 \\
H(w) & \geq 0
\end{array}
$$

Obtain large and sparse NLP

Variables $w=(\mathbf{x}, \mathbf{z}, \mathbf{u})$

Direct optimal control methods solve Nonlinear Programs (NLP)

Variables $w=(\mathbf{x}, \mathbf{z}, \mathbf{u})$

Nonlinear Program (NLP)

$$
\begin{array}{rl}
\min _{w \in \mathbb{R}^{n_{x}}} & F(w) \\
\text { s.t. } G(w) & =0 \\
H(w) & \geq 0
\end{array}
$$

Obtain large and sparse NLP

Summary

- Numerical simulation methods used to solve ODEs approximately.
- Integration accuracy order and stability play key roles.
- Collocation methods are implicit Runge-Kutta methods with favorable properties.
- All collocation methods are IRK methods, the converse is not true.
- Collocation methods can be used to discretize an OCP into an NLP.
- Choice of discretization method has huge influence on efficacy and reliability of NLP solution.
- Best choice is problem dependent and often requires lot of care.
- Used for practical problems and straightforward to apply.
- Many good software packages exist.

References

- Moritz Diehl, Sébastien Gros. "Numerical optimal control (Draft)," Lecture notes, 2019.
- James B. Rawlings, David Q. Mayne, and Moritz Diehl. Model predictive control: theory, computation, and design. Vol. 2. Madison, WI: Nob Hill Publishing, 2017.
- Gerhard Wanner, Ernst Hairer. "Solving ordinary differential equations II." Vol. 375. New York: Springer Berlin Heidelberg, 1996.

