Lecture 2: Numerical simulation and direct collocation

Moritz Diehl and Armin Nurkanović

Systems Control and Optimization Laboratory (syscop) Summer School on Direct Methods for Optimal Control of Nonsmooth Systems September 11-15, 2023

universität freiburg

- 1 Basic definitions
- 2 Runge-Kutta methods
- 3 Collocation methods
- 4 Direct collocation for optimal control

Ordinary differential equations and controlled dynamical system

Let:

- $\blacktriangleright \ t \in \mathbb{R} \text{ be the time}$
- ▶ $x(t) \in \mathbb{R}^{n_x}$ the differential states
- ▶ $u(t) \in \mathbb{R}^{n_u}$ a given control function
- ▶ denote by $\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$

Ordinary differential equations

Ordinary differential equations and controlled dynamical system

Let:

- $\blacktriangleright \ t \in \mathbb{R} \text{ be the time}$
- ▶ $x(t) \in \mathbb{R}^{n_x}$ the differential states
- ▶ $u(t) \in \mathbb{R}^{n_u}$ a given control function
- denote by $\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$

Ordinary differential equations

▶ Let $F : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ be a function such that the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is invertible. The system of equations:

 $F(t, \dot{x}(t), x(t), u(t)) = 0,$

is called an Ordinary Differential Equation (ODE).

Ordinary differential equations and controlled dynamical system

Let:

- $\blacktriangleright \ t \in \mathbb{R} \text{ be the time}$
- ▶ $x(t) \in \mathbb{R}^{n_x}$ the differential states
- ▶ $u(t) \in \mathbb{R}^{n_u}$ a given control function
- denote by $\dot{x}(t) = \frac{\mathrm{d}x(t)}{\mathrm{d}t}$

Ordinary differential equations

▶ Let $F : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ be a function such that the Jacobian $\frac{\partial F}{\partial \dot{x}}(\cdot)$ is invertible. The system of equations:

$$F(t, \dot{x}(t), x(t), u(t)) = 0,$$

is called an Ordinary Differential Equation (ODE).

• Given a function $f : \mathbb{R} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \to \mathbb{R}^{n_x}$ then a system of equations:

$$\dot{x}(t) = f(t, x(t), u(t))$$
 (1)

is called an explicit ODE.

An initial value problem in ODE

$$\dot{x}(t) = f(t, x(t), u(t)), \quad t \in [0, T],$$

 $x(0) = x_0$

• with given initial state
$$x_0$$
, and controls $u(t)$,

▶
$$f(t, x(t), u(t)) = \hat{f}(t, x(t))$$
 is continuous in t and Lipschitz continuous in x

An initial value problem in ODE

$$\dot{x}(t) = f(t, x(t), u(t)), \quad t \in [0, T],$$

 $x(0) = x_0$

• with given initial state x_0 , and controls u(t),

• $f(t, x(t), u(t)) = \hat{f}(t, x(t))$ is continuous in t and Lipschitz continuous in x has a unique solution $x(t), t \in [0, T]$.

•
$$f$$
 is Lipschitz if $||f(x) - f(y)|| \le L||x - y||$

smooth ODEs modeling physics usually Lipschitz

An initial value problem in ODE

$$\begin{split} \dot{x}(t) &= f(t,x(t),u(t)), \quad t \in [0,T], \\ x(0) &= x_0 \end{split}$$

• with given initial state x_0 , and controls u(t),

• $f(t, x(t), u(t)) = \hat{f}(t, x(t))$ is continuous in t and Lipschitz continuous in x has a unique solution $x(t), t \in [0, T]$.

- f is Lipschitz if $||f(x) f(y)|| \le L||x y||$
- smooth ODEs modeling physics usually Lipschitz
- if f is only continuous, existence but not uniqueness can be guaranteed, e.g. $\dot{x}(t) = \sqrt{|x(t)|}, x(0) = 0$, solutions: x(t) = 0 and $x(t) = \frac{t^2}{4}$

An initial value problem in ODE

$$\dot{x}(t) = f(t, x(t), u(t)), \quad t \in [0, T],$$

 $x(0) = x_0$

• with given initial state x_0 , and controls u(t),

• $f(t, x(t), u(t)) = \hat{f}(t, x(t))$ is continuous in t and Lipschitz continuous in x has a unique solution $x(t), t \in [0, T]$.

- f is Lipschitz if $||f(x) f(y)|| \le L||x y||$
- smooth ODEs modeling physics usually Lipschitz
- if f is only continuous, existence but not uniqueness can be guaranteed, e.g. $\dot{x}(t) = \sqrt{|x(t)|}, x(0) = 0$, solutions: x(t) = 0 and $x(t) = \frac{t^2}{4}$
- ▶ Conditions are only sufficient, ODEs with a non-Lipschiz r.h.s. can have unique solutions

A collection of results in: Agarwal, Ratan Prakash, Ravi P. Agarwal, and V. Lakshmikantham. Uniqueness and nonuniqueness criteria for ordinary differential equations.

Vol. 6. World Scientific, 1993

ODE Example: harmonic oscillator

Mass m with spring constant k and friction coefficient c:

$$\dot{x}_1(t) = x_2(t) \dot{x}_2(t) = -\frac{k}{m}(x_2(t) - u(t)) - \frac{\beta}{m}x_1(t)$$

Mass m with spring constant k and friction coefficient c:

$$\dot{x}_1(t) = x_2(t) \dot{x}_2(t) = -\frac{k}{m}(x_2(t) - u(t)) - \frac{\beta}{m}x_1(t)$$

- state $x(t) \in \mathbb{R}^2$
- position of mass $x_1(t) \quad \leftarrow \text{measured}$ $x_2(t)$
- velocity of mass
- control action: spring position $u(t) \in \mathbb{R} \quad \longleftarrow$ manipulated

Mass m with spring constant k and friction coefficient c:

$$\dot{x}_1(t) = x_2(t) \dot{x}_2(t) = -\frac{k}{m}(x_2(t) - u(t)) - \frac{\beta}{m}x_1(t)$$

- state $x(t) \in \mathbb{R}^2$
- position of mass $x_1(t) \quad \leftarrow \text{measured}$
- $x_2(t)$ • velocity of mass
- control action: spring position $u(t) \in \mathbb{R} \quad \longleftarrow$ manipulated

Can summarize as $\dot{x} = f(x, u)$ with

$$f(x,u) = \begin{bmatrix} x_2 \\ -\frac{k}{m}(x_2 - u) - \frac{c}{m}x_1 \end{bmatrix}$$

- IVPs have only in special cases a closed form solution
- ▶ Instead, compute numerically a solution approximation $\tilde{x}(t)$ that approximately satisfies:

$$\dot{\tilde{x}}(t) \approx f(t, \tilde{x}(t), u(t)), \quad t \in [0, T]$$
$$\tilde{x}(0) = x(0) = x_0$$

- IVPs have only in special cases a closed form solution
- lnstead, compute numerically a solution approximation $\tilde{x}(t)$ that approximately satisfies:

$$\dot{\tilde{x}}(t) \approx f(t, \tilde{x}(t), u(t)), \quad t \in [0, T]$$

$$\tilde{x}(0) = x(0) = x_0$$

- ► Recursively generate solution approximation x_n := x̃(t_n) ≈ x(t_n) at N discrete time points 0 = t₀ < t₁ < ... < t_N = T
- ▶ Integration interval [0,T] split into subintervals $[t_n, t_{n+1}]$ where $h = t_{n+1} t_n$
- ▶ *h* integration step size can be constant, different for every interval, or adaptive

Single step abstract integration method

$$x_{n+1} = \phi_f(x_n, z_n, u_n),$$

$$0 = \phi_{\text{int}}(x_n, z_n, u_n), \ n = 0, \dots, N-1.$$

- $\blacktriangleright~\phi_f$ state transition compute next integration step
- \blacktriangleright ϕ_{int} internal computations, e.g., stages of a Runge-Kutta method (next section)
- \blacktriangleright z_n collects all interval variables of the integration method

Single step abstract integration method

$$x_{n+1} = \phi_f(x_n, z_n, u_n),$$

$$0 = \phi_{\text{int}}(x_n, z_n, u_n), \ n = 0, \dots, N-1.$$

- ϕ_f state transition compute next integration step
- \blacktriangleright ϕ_{int} internal computations, e.g., stages of a Runge-Kutta method (next section)
- \blacktriangleright z_n collects all interval variables of the integration method

Example (Explicit Euler):

$$x_{n+1} = x_n + hz_n,$$

$$0 = f(x_n, u_n) - z_n$$

Single step abstract integration method

$$x_{n+1} = \phi_f(x_n, z_n, u_n),$$

$$0 = \phi_{\text{int}}(x_n, z_n, u_n), \ n = 0, \dots, N-1.$$

- ϕ_f state transition compute next integration step
- \blacktriangleright ϕ_{int} internal computations, e.g., stages of a Runge-Kutta method (next section)
- \blacktriangleright z_n collects all interval variables of the integration method

Example (Explicit Euler):

$$x_{n+1} = x_n + hz_n,$$

$$0 = f(x_n, u_n) - z_n.$$

Is an overkill for simple examples but pays off for complicated methods later.

• Local integration error at
$$t_{n+1}$$
:

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi_f(x(t_n), z_n, u_0)\|.$$

• Local integration error at
$$t_{n+1}$$
:

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi_f(x(t_n), z_n, u_0)\|.$$

• Local integration error at
$$t_{n+1}$$
:

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi_f(x(t_n), z_n, u_0)\|.$$

• Local integration error at
$$t_{n+1}$$
:

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi_f(x(t_n), z_n, u_0)\|.$$

Local and global error

▶ Local integration error at t_{n+1} :

$$e(t_{n+1}) = \|x(t_{n+1}) - \phi_f(x(t_n), z_n, u_0)\|.$$

• Global integration error at t = T:

$$E(T) = \|x(T) - x_N\|.$$

 Global error - accumulation of local errors

Integrator convergence and accuracy

Convergence

 $\lim_{h \to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

 $\lim_{h \to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

 $\lim_{h \to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

 $\lim_{h \to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

 $\lim_{h \to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Integrator convergence and accuracy

Convergence

 $\lim_{h \to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

 $\lim_{h \to 0} e(t_i) \le C h^{p+1} = O(h^{p+1}), C > 0$

- ► Higher order *p*:
 - less, but more expensive steps for same accuracy
 - in total fewer r.h.s. evaluations for same accuracy

Alternatively one can plot the error over $N\propto \frac{1}{h}$ instead of h

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

 $\lim_{h\to 0} E(T) = 0$

 \blacktriangleright Integrator has order p if

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and accuracy

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

Integrator convergence and <u>accuracy</u>

Convergence

$$\lim_{h \to 0} E(T) = 0$$

 \blacktriangleright Integrator has order p if

- Stability: damping of errors, does it work for $h \gg 0$?
- If integrator is unstable, it does not converge and has p = 0, unless h very small

$$\dot{x}(t) = -300(x(t) - \cos(t)), \ t \in [0, 2]$$

 $x(0) = 1$

1 Basic definitions

2 Runge-Kutta methods

3 Collocation methods

4 Direct collocation for optimal control
Classes of numerical simulation methods

Definition (Runge-Kutta method in differential form)

Let n_s be the number of stages. Given the matrix $A \in \mathbb{R}^{n_s \times n_s}$ with the entries $a_{i,j}$ for $i, j = 1, \ldots, n_s$, and the vectors $b, c \in \mathbb{R}^{n_s}$. Let $t_{n,i} = t_n + c_i h$. The system of equations:

$$k_{n,i} = f(t_{n,i}, x_n + h \sum_{j=1}^{n_s} a_{i,j} k_{n,j}, u_n), \ i = 1, \dots, n_s$$
$$x_{n+1} = x_n + h \sum_{i=1}^{n_s} b_i k_{n,i}$$

Definition (Runge-Kutta method in differential form)

Let n_s be the number of stages. Given the matrix $A \in \mathbb{R}^{n_s \times n_s}$ with the entries $a_{i,j}$ for $i, j = 1, \ldots, n_s$, and the vectors $b, c \in \mathbb{R}^{n_s}$. Let $t_{n,i} = t_n + c_i h$. The system of equations:

$$k_{n,i} = f(t_{n,i}, x_n + h \sum_{j=1}^{n_s} a_{i,j} k_{n,j}, u_n), \ i = 1, \dots, n_s$$
$$x_{n+1} = x_n + h \sum_{i=1}^{n_s} b_i k_{n,i}$$

Definition (Runge-Kutta method in differential form)

Let n_s be the number of stages. Given the matrix $A \in \mathbb{R}^{n_s \times n_s}$ with the entries $a_{i,j}$ for $i, j = 1, \ldots, n_s$, and the vectors $b, c \in \mathbb{R}^{n_s}$. Let $t_{n,i} = t_n + c_i h$. The system of equations:

$$k_{n,i} = f(t_{n,i}, x_n + h \sum_{j=1}^{n_s} a_{i,j} k_{n,j}, u_n), \ i = 1, \dots, n_s$$
$$x_{n+1} = x_n + h \sum_{i=1}^{n_s} b_i k_{n,i}$$

Definition (Runge-Kutta method in differential form)

Let n_s be the number of stages. Given the matrix $A \in \mathbb{R}^{n_s \times n_s}$ with the entries $a_{i,j}$ for $i, j = 1, \ldots, n_s$, and the vectors $b, c \in \mathbb{R}^{n_s}$. Let $t_{n,i} = t_n + c_i h$. The system of equations:

$$k_{n,i} = f(t_{n,i}, x_n + h \sum_{j=1}^{n_s} a_{i,j} k_{n,j}, u_n), \ i = 1, \dots, n_s$$
$$x_{n+1} = x_n + h \sum_{i=1}^{n_s} b_i k_{n,i}$$

Definition (Runge-Kutta method in differential form)

Let n_s be the number of stages. Given the matrix $A \in \mathbb{R}^{n_s \times n_s}$ with the entries $a_{i,j}$ for $i, j = 1, \ldots, n_s$, and the vectors $b, c \in \mathbb{R}^{n_s}$. Let $t_{n,i} = t_n + c_i h$. The system of equations:

$$k_{n,i} = f(t_{n,i}, x_n + h \sum_{j=1}^{n_s} a_{i,j} k_{n,j}, u_n), \ i = 1, \dots, n_s$$
$$x_{n+1} = x_n + h \sum_{i=1}^{n_s} b_i k_{n,i}$$

Time grid	Butcher tableau	Data	Variables
h , t_n , $t_{n,i}$	$a_{i,j}$, b_i , c_i	x_n , $u_n, f(\cdot)$	x_{n+1} , $k_{n,i}$
$i=1,\ldots,n_{\rm s}$	$i, j = 1, \ldots, n_{\mathrm{s}}$		$i=1,\ldots,n_{\mathrm{s}}$

Unknowns are states at stage points, cannot treat case of $c_1=0$

Definition (Runge-Kutta method in integral form)

Let n_s be the number of stages. Given the matrix $A \in \mathbb{R}^{n_s \times n_s}$ with the entries $a_{i,j}$ for $i, j = 1, \ldots, n_s$, and the vectors $b, c \in \mathbb{R}^{n_s}$. Let $t_{n,i} = t_n + c_i h$. The system of equations:

$$x_{n,i} = x_n + h \sum_{j=1}^{n_s} a_{i,j} f(t_{n,i}, x_{n,j}, u_n), \ i = 1, \dots, n_s$$
$$x_{n+1} = x_n + h \sum_{i=1}^{n_s} b_i f(t_{n,i}, x_{n,i}, u_n),$$

Time grid	Butcher tableau	Data	Variables
h , t_n , $t_{n,i}$	$a_{i,j}$, b_i , c_i	x_n , $u_n, f(\cdot)$	x_{n+1} , $x_{n,i}$
$i = 1, \ldots, n_{\mathrm{s}}$	$i, j = 1, \ldots, n_{\mathrm{s}}$		$i=1,\ldots,n_{\rm s}$

Unknowns are states at stage points, cannot treat case of $c_1 = 0$

Definition (Runge-Kutta method in integral form)

Let n_s be the number of stages. Given the matrix $A \in \mathbb{R}^{n_s \times n_s}$ with the entries $a_{i,j}$ for $i, j = 1, \ldots, n_s$, and the vectors $b, c \in \mathbb{R}^{n_s}$. Let $t_{n,i} = t_n + c_i h$. The system of equations:

$$x_{n,i} = x_n + h \sum_{j=1}^{n_s} a_{i,j} f(t_{n,i}, x_{n,j}, u_n), \ i = 1, \dots, n_s$$
$$x_{n+1} = x_n + h \sum_{i=1}^{n_s} b_i f(t_{n,i}, x_{n,i}, u_n),$$

Explicit Runge-Kutta 4

$$\begin{aligned} k_{n,1} &= f(t_n, x_n) \\ k_{n,2} &= f(t_n + \frac{h}{2}, x_n + h\frac{k_{n,1}}{2}) \\ k_{n,3} &= f(t_n + \frac{h}{2}, x_n + h\frac{k_{n,2}}{2}) \\ k_{n,5} &= f(t_n + h, x_n + hk_{n,3}) \\ x_{n+1} &= x_n + h(\frac{1}{6}k_{n,1} + \frac{2}{6}k_{n,2} + \frac{2}{6}k_{n,3} + \frac{1}{6}k_{n,4}) \end{aligned}$$

► All *k*_{*n*,*i*} can be found by explicit function evaluations.

Explicit Runge-Kutta 4

$$\begin{aligned} k_{n,1} &= f(t_n, x_n) \\ k_{n,2} &= f(t_n + \frac{h}{2}, x_n + h\frac{k_{n,1}}{2}) \\ k_{n,3} &= f(t_n + \frac{h}{2}, x_n + h\frac{k_{n,2}}{2}) \\ k_{n,5} &= f(t_n + h, x_n + hk_{n,3}) \\ x_{n+1} &= x_n + h(\frac{1}{6}k_{n,1} + \frac{2}{6}k_{n,2} + \frac{2}{6}k_{n,3} + \frac{1}{6}k_{n,4}) \end{aligned}$$

► All *k*_{*n*,*i*} can be found by explicit function evaluations.

Implicit Euler Method

$$k_{n,1} = f(t_n, x_n + hk_{n,1})$$

 $x_{n+1} = x_n + hk_{n,1}$

• All $k_{n,1}$ is found implicitly by solving $k_{n,1} - f(t_n, x_n + hk_{n,1}) = 0.$

The Butcher tableau

Explicit Runge-Kutta method

The Butcher tableau

Explicit Runge-Kutta method

- ▶ $a_{i,j} \neq 0$ only for j < i
- Explicit function evaluations to compute stage values and next step
- Computationally cheap
- ▶ Order: $p = n_s$ if $n_s \le 4$ and $p < n_s$ otherwise

The Butcher tableau

Explicit Runge-Kutta method

Implicit Runge-Kutta method

- ▶ $a_{i,j} \neq 0$ only for j < i
- Explicit function evaluations to compute stage values and next step
- Computationally cheap
- ▶ Order: $p = n_{\rm s}$ if $n_{\rm s} \le 4$ and $p < n_{\rm s}$ otherwise

The Butcher tableau

Explicit Runge-Kutta method

- ▶ $a_{i,j} \neq 0$ only for j < i
- Explicit function evaluations to compute stage values and next step
- Computationally cheap
- ▶ Order: $p = n_s$ if $n_s \le 4$ and $p < n_s$ otherwise

Implicit Runge-Kutta method

- Requires solving nonlinear rootfinding problem with Newton's method
- Expensive but good for stiff systems
- ▶ Order: $p = 2n_s$, $p = 2n_s 1$, ...
- Famous representative: collocation methods - treated next!

Butcher tableau, six examples

- 1 Basic definitions
- 2 Runge-Kutta methods
- 3 Collocation methods
- 4 Direct collocation for optimal control

Main ideas:

• Approximate x(t) on $t \in [t_n, t_{n+1}]$ with a polynomial $q_n(t)$ of degree n_s

Main ideas:

- Approximate x(t) on $t \in [t_n, t_{n+1}]$ with a polynomial $q_n(t)$ of degree n_s
- ▶ Pick $n_{\rm s}$ distinct numbers: $0 \le c_1 < c_2 < \ldots < c_{n_{\rm s}} \le 1$

Main ideas:

- Approximate x(t) on $t \in [t_n, t_{n+1}]$ with a polynomial $q_n(t)$ of degree n_s
- ▶ Pick $n_{\rm s}$ distinct numbers: $0 \le c_1 < c_2 < \ldots < c_{n_{\rm s}} \le 1$
- Define collocation points $t_{n,i} = t_n + c_i h$, $i = 1, \dots, n_s$

Main ideas:

- Approximate x(t) on $t \in [t_n, t_{n+1}]$ with a polynomial $q_n(t)$ of degree n_s
- ▶ Pick n_s distinct numbers: $0 \le c_1 < c_2 < \ldots < c_{n_s} \le 1$
- Define collocation points $t_{n,i} = t_n + c_i h$, $i = 1, \dots, n_s$
- ▶ The polynomial $q_n(t) \approx x(t)$ satisfies the ODE on the collocation points:

Collocation equations

$$q_n(t_n) = x_n$$

 $\dot{q}_n(t_n + c_ih) = f(t_n + c_ih, q_n(t_n + c_ih), u_n), \quad i = 1, \dots, n_s$

Main ideas:

- Approximate x(t) on $t \in [t_n, t_{n+1}]$ with a polynomial $q_n(t)$ of degree n_s
- Pick n_s distinct numbers: $0 \le c_1 < c_2 < \ldots < c_{n_s} \le 1$
- Define collocation points $t_{n,i} = t_n + c_i h$, $i = 1, \dots, n_s$
- ▶ The polynomial $q_n(t) \approx x(t)$ satisfies the ODE on the collocation points:

Collocation equations

$$q_n(t_n) = x_n$$

 $\dot{q}_n(t_n + c_ih) = f(t_n + c_ih, q_n(t_n + c_ih), u_n), \quad i = 1, \dots, n_s$

▶ Polynomial of degree n_s : $n_s + 1$ coefficient and $n_s + 1$ equations

Main ideas:

- Approximate x(t) on $t \in [t_n, t_{n+1}]$ with a **polynomial** $q_n(t)$ of degree n_s
- Pick n_s distinct numbers: $0 \le c_1 < c_2 < \ldots < c_{n_s} \le 1$
- Define collocation points $t_{n,i} = t_n + c_i h$, $i = 1, \dots, n_s$
- ▶ The polynomial $q_n(t) \approx x(t)$ satisfies the ODE on the collocation points:

Collocation equations

$$q_n(t_n) = x_n$$

 $\dot{q}_n(t_n + c_ih) = f(t_n + c_ih, q_n(t_n + c_ih), u_n), \quad i = 1, \dots, n_s$

▶ Polynomial of degree n_s : $n_s + 1$ coefficient and $n_s + 1$ equations

Next value - simple evaluation: $x_{n+1} = q_n(t_{n+1})$

How to parameterize $q_n(t)$?

Two common (equivalent) choices

How to parameterize $q_n(t)$?

Two common (equivalent) choices

1. Find interpolating polynomial $q_n(t)$ through x_n (at t_n) and state values $x_{n,1}, \ldots, x_{n,n_s}$ at collocation points $t_{n,i}$, $i = 1, \ldots, n_s$ (in Exercise 1).

How to parameterize $q_n(t)$?

Two common (equivalent) choices

- 1. Find interpolating polynomial $q_n(t)$ through x_n (at t_n) and state values $x_{n,1}, \ldots, x_{n,n_s}$ at collocation points $t_{n,i}$, $i = 1, \ldots, n_s$ (in Exercise 1).
- 2. Find $\dot{q}_n(t)$ interpolating polynomial through state derivatives $k_{n,1}, \ldots, k_{n,n_s}$ at collocation points $t_{n,i}$, $i = 1, \ldots, n_s$ (this lecture).

How to parameterize $q_n(t)$?

Two common (equivalent) choices

- 1. Find interpolating polynomial $q_n(t)$ through x_n (at t_n) and state values $x_{n,1}, \ldots, x_{n,n_s}$ at collocation points $t_{n,i}$, $i = 1, \ldots, n_s$ (in Exercise 1).
- 2. Find $\dot{q}_n(t)$ interpolating polynomial through state derivatives $k_{n,1}, \ldots, k_{n,n_s}$ at collocation points $t_{n,i}$, $i = 1, \ldots, n_s$ (this lecture).

• $q_n(t)$ is recovered via:

$$q_n(t) = x_n + \int_{t_n}^t \dot{q}_n(\tau; k_{n,1}, \dots, k_{n,n_s}) \mathrm{d}\tau.$$

How to parameterize $q_n(t)$?

Two common (equivalent) choices

- 1. Find interpolating polynomial $q_n(t)$ through x_n (at t_n) and state values $x_{n,1}, \ldots, x_{n,n_s}$ at collocation points $t_{n,i}$, $i = 1, \ldots, n_s$ (in Exercise 1).
- 2. Find $\dot{q}_n(t)$ interpolating polynomial through state derivatives $k_{n,1}, \ldots, k_{n,n_s}$ at collocation points $t_{n,i}$, $i = 1, \ldots, n_s$ (this lecture).

• $q_n(t)$ is recovered via:

$$q_n(t) = x_n + \int_{t_n}^t \dot{q}_n(\tau; k_{n,1}, \dots, k_{n,n_s}) \mathrm{d}\tau.$$

with:

$$\dot{q}_{n}(t) = \ell_{1} \left(\frac{t - t_{n}}{h} \right) k_{n,1} + \ell_{2} \left(\frac{t - t_{n}}{h} \right) k_{n,2} + \dots + \ell_{n_{s}} \left(\frac{t - t_{n}}{h} \right) k_{n,n_{s}}$$
$$= \sum_{i=1}^{n_{s}} \ell_{i} \left(\frac{t - t_{n}}{h} \right) \underbrace{f(t_{n} + c_{i}, q_{n}(t_{n} + c_{i}h), u_{0})}_{=k_{n,i}}$$

Lagrange polynomial basis

$$\ell_i(\tau) = \prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau - c_j}{c_i - c_j}.$$

Lagrange polynomial basis

$$\ell_i(\tau) = \prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau - c_j}{c_i - c_j}.$$

$$\ell_i(c_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

Lagrange polynomial basis

$$\ell_i(\tau) = \prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau - c_j}{c_i - c_j}.$$

$$\ell_i(c_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

Lagrange polynomial basis

$$\ell_i(\tau) = \prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau - c_j}{c_i - c_j}.$$

$$\ell_i(c_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

Lagrange polynomial basis

$$\ell_i(\tau) = \prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau - c_j}{c_i - c_j}.$$

$$\ell_i(c_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

Lagrange polynomial basis

$$\ell_i(\tau) = \prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau - c_j}{c_i - c_j}.$$

$$\ell_i(c_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

Lagrange polynomial basis

$$\ell_i(\tau) = \prod_{j=1, i \neq j}^{n_{\mathrm{s}}} \frac{\tau - c_j}{c_i - c_j}.$$

$$\ell_i(c_j) = \begin{cases} 1 & \text{if } j = i \\ 0 & \text{if } j \neq i \end{cases}$$

$$\sum_{i=1}^{n_{\rm s}} \ell_i(t) = 1$$

Collocation - how to implement it - continued

• Evaluate $q_n(t)$ at collocation points

$$q_n(t_n + c_i h) = x_n + \int_{t_n}^{t_n + c_i h} \dot{q}_n(\tau; k_{n,1}, \dots, k_{n,n_s}) \mathrm{d}\tau$$

Collocation - how to implement it - continued

• Evaluate $q_n(t)$ at collocation points

$$q_n(t_n + c_i h) = x_n + \int_{t_n}^{t_n + c_i h} \dot{q}_n(\tau; k_{n,1}, \dots, k_{n,n_s}) d\tau$$
$$= x_n + \int_{t_n}^{t_n + c_i h} \sum_{j=1}^{n_s} \ell_j \left(\frac{\tau - t_n}{h}\right) k_{n,j} d\tau$$

Collocation - how to implement it - continued

• Evaluate $q_n(t)$ at collocation points

$$q_n(t_n + c_i h) = x_n + \int_{t_n}^{t_n + c_i h} \dot{q}_n(\tau; k_{n,1}, \dots, k_{n,n_s}) d\tau$$
$$= x_n + \int_{t_n}^{t_n + c_i h} \sum_{j=1}^{n_s} \ell_j \left(\frac{\tau - t_n}{h}\right) k_{n,j} d\tau$$
$$= x_n + h \sum_{j=1}^{n_s} k_j \underbrace{\int_0^{c_i} \ell_j(\sigma) d\sigma}_{:=a_{i,j}}$$

Collocation - how to implement it - continued

• Evaluate $q_n(t)$ at collocation points

$$q_n(t_n + c_i h) = x_n + \int_{t_n}^{t_n + c_i h} \dot{q}_n(\tau; k_{n,1}, \dots, k_{n,n_s}) d\tau$$
$$= x_n + \int_{t_n}^{t_n + c_i h} \sum_{j=1}^{n_s} \ell_j \left(\frac{\tau - t_n}{h}\right) k_{n,j} d\tau$$
$$= x_n + h \sum_{j=1}^{n_s} k_j \underbrace{\int_0^{c_i} \ell_j(\sigma) d\sigma}_{:=a_{i,j}}$$
$$= x_n + h \sum_{j=1}^{n_s} k_j a_{i,j}$$

Collocation - how to implement it - continued

• Evaluate $q_n(t)$ at collocation points

$$q_n(t_n + c_i h) = x_n + \int_{t_n}^{t_n + c_i h} \dot{q}_n(\tau; k_{n,1}, \dots, k_{n,n_s}) d\tau$$
$$= x_n + \int_{t_n}^{t_n + c_i h} \sum_{j=1}^{n_s} \ell_j \left(\frac{\tau - t_n}{h}\right) k_{n,j} d\tau$$
$$= x_n + h \sum_{j=1}^{n_s} k_j \underbrace{\int_0^{c_i} \ell_j(\sigma) d\sigma}_{:=a_{i,j}}$$
$$= x_n + h \sum_{j=1}^{n_s} k_j a_{i,j}$$

Similarly $q_n(t)$ evaluated at $t_{n+1} = t_n + h$:

$$q_n(t_n+h) = x_n + h \sum_{i=1}^{n_s} k_i \underbrace{\int_0^1 \ell_i(\sigma) \mathrm{d}\sigma}_{:=b_i} = x_n + h \sum_{i=1}^{n_s} k_i b_i$$

$$\begin{aligned} q_n(t_n) &= x_n & \text{(initial value)} \\ \dot{q}_n(t_n + c_i h) &= f(t_n + c_i, q_n(t_n + c_i h), u_n), \quad i = 1, \dots, n_{\mathrm{s}} & \text{(stage eqs.)} \\ x_{n+1} &= q_n(t_{n+1}) & \text{(next value)} \end{aligned}$$

$$q_n(t_n) = x_n$$

 $k_{n,i} = f(t_n + c_i h, q_n(t_n + c_i h), u_n), \quad i = 1, \dots, n_s$
 $x_{n+1} = q_n(t_{n+1})$

(initial value) (stage eqs.) (next value)

$$q_n(t_n) = x_n$$
 (initial value)

$$k_{n,i} = f(t_n + c_i h, x_n + h \sum_{j=1}^{n_s} k_j a_{i,j}, u_n), \quad i = 1, \dots, n_s$$
 (stage eqs.)

$$x_{n+1} = q_n(t_{n+1})$$
 (next value)

$$q_n(t_n) = x_n$$
(initial value)

$$k_{n,i} = f(t_n + c_i h, x_n + h \sum_{j=1}^{n_s} k_j a_{i,j}, u_n), \quad i = 1, \dots, n_s$$
(stage eqs.)

$$x_{n+1} = x_n + h \sum_{i=1}^{n_s} k_i b_i$$
(next value)

▶ We arrived at the implicit RK equations in differential form

• Unknowns:
$$x_{n+1} \in \mathbb{R}^{n_x}$$
 and $z_n = (k_{n,1}, \dots, k_{n,n_s}) \in \mathbb{R}^{n_s n_x}$

• $(n_{\rm s}+1)n_x$ equations and $(n_{\rm s}+1)n_x$ variables - solve via Newton's methods

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

 $\dot{x}(t) = -0.5x(t)^2 - x(t) + \sin(10t), x(0) = 1$

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ▶ Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

 $\dot{x}(t) = -0.5x(t)^2 - x(t) + \sin(10t), x(0) = 1$

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ▶ Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

 $\dot{x}(t) = -0.5x(t)^2 - x(t) + \sin(10t), x(0) = 1$

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

 $\dot{x}(t) = -0.5x(t)^2 - x(t) + \sin(10t), x(0) = 1$

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

$$\dot{x}(t) = -0.5x(t)^2 - x(t) + \sin(10t), x(0) = 1$$

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

• Choice of points c_1, \ldots, c_{n_s} determines properties of method.

► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s - 1$ good for stiff systems, Lobatto family $p = 2n_s - 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

• Choice of points c_1, \ldots, c_{n_s} determines properties of method.

► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s - 1$ good for stiff systems, Lobatto family $p = 2n_s - 2$.

• Choice of points c_1, \ldots, c_{n_s} determines properties of method.

► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s - 1$ good for stiff systems, Lobatto family $p = 2n_s - 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- Choice of points c_1, \ldots, c_{n_s} determines properties of method.
- ► Gauss-Legendre $p = 2n_s$, Radau-IIA $p = 2n_s 1$ good for stiff systems, Lobatto family $p = 2n_s 2$.

- 1 Basic definitions
- 2 Runge-Kutta methods
- 3 Collocation methods
- 4 Direct collocation for optimal control

Direct collocation in optimal control

Variables
$$x_{n+1} \in \mathbb{R}^{n_x}$$
 and $z_n = (k_{n,1}, \dots, k_{n,n_s}) \in \mathbb{R}^{n_s n_x}$

Collocation equations

$$\begin{split} x_{n+1} &= x_n + h \sum_{i=1}^{n_{\rm s}} k_i b_i & (\text{next value}) \\ k_{n,1} &= f(t_n + c_1 h, x_n + h \sum_{j=1}^{n_{\rm s}} k_{n,j} a_{1,j}, u_n) & (\text{stage Eq. 1}) \\ &\vdots \\ k_{n,n_{\rm s}} &= f(t_n + c_{n_{\rm s}} h, x_n + h \sum_{j=1}^{n_{\rm s}} k_{n,j} a_{n_{\rm s},j}, u_n), & (\text{stage Eq. } n_{\rm s}) \end{split}$$

Direct collocation in optimal control

Variables
$$x_{n+1} \in \mathbb{R}^{n_x}$$
 and $z_n = (k_{n,1}, \dots, k_{n,n_s}) \in \mathbb{R}^{n_s n_x}$

Collocation equations

x

$$\begin{aligned} n_{n+1} &= x_n + h \sum_{i=1}^{n_s} k_i b_i & \text{(next value)} \\ 0 &= k_{n,1} - f(t_n + c_1 h, x_n + h \sum_{j=1}^{n_s} k_{n,j} a_{1,j}, u_n) & \text{(stage Eq. 1)} \\ \vdots & \\ 0 &= k_{n,n_s} - f(t_n + c_{n_s} h, x_n + h \sum_{j=1}^{n_s} k_{n,j} a_{n_s,j}, u_n), & \text{(stage Eq. n_s)} \end{aligned}$$

Variables
$$x_{n+1} \in \mathbb{R}^{n_x}$$
 and $z_n = (k_{n,1}, \dots, k_{n,n_s}) \in \mathbb{R}^{n_s n_x}$

$$\begin{aligned} x_{n+1} &= x_n + h \sum_{i=1}^{n_s} k_i b_i \eqqcolon \phi_f(x_n, z_n, u_n) & \text{(next value)} \\ 0 &= \begin{bmatrix} k_{n,1} - f(t_n + c_1 h, x_n + h \sum_{j=1}^{n_s} k_{n,j} a_{1,j}, u_n) \\ \vdots \\ k_{n,n_s} - f(t_n + c_{n_s} h, x_n + h \sum_{j=1}^{n_s} k_{n,j} a_{n_s,j}, u_n) \end{bmatrix} \rightleftharpoons \phi_{\text{int}}(x_n, z_n, u_n) & \text{(stage Eqs.)} \end{aligned}$$

Variables
$$x_{n+1} \in \mathbb{R}^{n_x}$$
 and $z_n = (k_{n,1}, \dots, k_{n,n_s}) \in \mathbb{R}^{n_s n_x}$

$$x_{n+1} = \phi_f(x_n, z_n, u_n)$$
$$0 = \phi_{\text{int}}(x_n, z_n, u_n)$$

(next value) (stage Eqs.)

Use to discretize optimal control problem

Continuous time OCP

```
 \min_{x(\cdot),u(\cdot)} \int_{0}^{T} L_{c}(x(t), u(t)) dt + E(x(T)) 
s.t. x(0) = \bar{x}_{0}
\dot{x}(t) = f(x(t), u(t))
0 \ge h(x(t), u(t)), t \in [0, T]
0 \ge r(x(T))
```

 Direct methods: first discretize, then optimize
Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

 $\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$ s.t. $x(0) = \bar{x}_0$ $\dot{x}(t) = f(x(t), u(t))$ $0 \ge h(x(t), u(t)), \ t \in [0, T]$ $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize 1. Parametrize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$

Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), \ t \in [0, T]$
 $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize

- 1. Parametrize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$
- 2. Discretize cost and dynamics via collocation

$$L_{\rm d}(x_n, u_n) = \int_{t_n}^{t_{n+1}} L_{\rm c}(x(t), u(t)) \, {\rm d}t.$$

Replace $\dot{x} = f(x, u)$ by

$$x_{n+1} = \phi_f(x_n, z_n, u_n),$$

$$0 = \phi_{\text{int}}(x_n, z_n, u_n).$$

Continious time OCP into Nonlinear Programs (NLP)

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) \, dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), \ t \in [0, T]$
 $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize

- 1. Parametrize controls, e.g. $u(t) = u_n, t \in [t_n, t_{n+1}].$
- 2. Discretize cost and dynamics via collocation

$$L_{\rm d}(x_n, u_n) = \int_{t_n}^{t_{n+1}} L_{\rm c}(x(t), u(t)) \,\mathrm{d}t.$$

Replace $\dot{x} = f(x, u)$ by

$$x_{n+1} = \phi_f(x_n, z_n, u_n),$$

$$0 = \phi_{\text{int}}(x_n, z_n, u_n).$$

3. Relax path constraints, e.g., evaluate only at $t = t_n$

$$0 \ge h(x_n, u_n), \ n = 0, \dots N - 1.$$

Continuous time OCP

$$\min_{x(\cdot),u(\cdot)} \int_0^T L_c(x(t), u(t)) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), t \in [0, T]$
 $0 \ge r(x(T))$

 Direct methods: first discretize, then optimize

Discrete time OCP (an NLP)

$$\min_{\mathbf{x},\mathbf{z},\mathbf{u}} \sum_{k=0}^{N-1} L_{\mathbf{d}}(x_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{n+1} = \phi_f(x_n, z_n, u_n)$
 $0 = \phi_{\mathrm{int}}(x_n, z_n u_n)$
 $0 \ge h(x_n, u_n), \ n = 0, \dots, N-1$
 $0 \ge r(x_N)$

Variables
$$\mathbf{x} = (x_0, ..., x_N)$$
, $\mathbf{z} = (z_0, ..., z_N)$
and $\mathbf{u} = (u_0, ..., u_{N-1})$.

3

Discrete time OCP (an NLP)

$$\min_{\mathbf{x},\mathbf{z},\mathbf{u}} \sum_{k=0}^{N-1} L_{d}(x_{k}, u_{k}) + E(x_{N})$$

s.t. $x_{0} = \bar{x}_{0}$
 $x_{n+1} = \phi_{f}(x_{n}, z_{n}, u_{n})$
 $0 = \phi_{int}(x_{n}, z_{n}u_{n})$
 $0 \ge h(x_{n}, u_{n}), n = 0, \dots, N-1$
 $0 \ge r(x_{N})$

Variables $w = (\mathbf{x}, \mathbf{z}, \mathbf{u})$

Discrete time OCP (an NLP)

$$\min_{\mathbf{x},\mathbf{z},\mathbf{u}} \sum_{k=0}^{N-1} L_{d}(x_{k}, u_{k}) + E(x_{N})$$

s.t. $x_{0} = \bar{x}_{0}$
 $x_{n+1} = \phi_{f}(x_{n}, z_{n}, u_{n})$
 $0 = \phi_{int}(x_{n}, z_{n}u_{n})$
 $0 \ge h(x_{n}, u_{n}), n = 0, \dots, N-1$
 $0 \ge r(x_{N})$

Nonlinear Program (NLP)

$$\min_{w \in \mathbb{R}^{n_x}} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

Obtain large and sparse NLP

Variables $w = (\mathbf{x}, \mathbf{z}, \mathbf{u})$

Variables $w = (\mathbf{x}, \mathbf{z}, \mathbf{u})$

$$\min_{w \in \mathbb{R}^{n_x}} F(w)$$

s.t. $G(w) = 0$
 $H(w) \ge 0$

Obtain large and sparse NLP

- Numerical simulation methods used to solve ODEs approximately.
- Integration accuracy order and stability play key roles.
- Collocation methods are implicit Runge-Kutta methods with favorable properties.
- ► All collocation methods are IRK methods, the converse is not true.
- Collocation methods can be used to discretize an OCP into an NLP.
- Choice of discretization method has huge influence on efficacy and reliability of NLP solution.
- Best choice is problem dependent and often requires lot of care.
- Used for practical problems and straightforward to apply.
- Many good software packages exist.

- Moritz Diehl, Sébastien Gros. "Numerical optimal control (Draft)," Lecture notes, 2019.
- James B. Rawlings, David Q. Mayne, and Moritz Diehl. Model predictive control: theory, computation, and design. Vol. 2. Madison, WI: Nob Hill Publishing, 2017.
- Gerhard Wanner, Ernst Hairer. "Solving ordinary differential equations II." Vol. 375. New York: Springer Berlin Heidelberg, 1996.