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The Linear Complementarity Problem

The feasibility problem for an MPEC (with constraints linearized if need be) is
a Linear Complementarity Problem (LCP):

(LCP(q,M))

w = q + Mz

w ⩾ 0, z ⩾ 0

zT w = 0

q = 0: homogeneous LCP, z∗ a solution⇒ λz∗ a solution for λ ⩾ 0.

In particular z∗ = 0 is a solution if q = 0. Existence of nonzero solutions is
the question.



LCPs Historically

Historically, LCPs were coined to unify the optimality systems of LPs, QPs,
and bi-matrix games. Their KKT conditions form an LCP.

Example (QP):

min
x∈Rn

cT x + 1
2 xT Qx s.t. Ax ⩾ b

x ⩾ 0

with Q symmetric has the KKT conditions

ν := cT + Qx − ATµ ⩾ 0, x ⩾ 0, xTν = 0

r := −b + Ax ⩾ 0, µ ⩾ 0, rTµ = 0

Now to obtain the LCP notation we simply let

q =

(
c
−b

)
, M =

(
Q −AT

A 0

)
, z =

(
x
µ

)
,w =

(
ν
r

)
with M positive definite if Q is.



QP view on LCPs
Vice versa, every LCP admits a QP formulation.

The LCP

(LCP(q,M))

w = q + Mz

w ⩾ 0, z ⩾ 0

zT w = 0

with general M is the set of optimality conditions for the QP

min
z

zT (q + Mz)

s.t. q + Mz ⩾ 0, z ⩾ 0

Note that M unsymmetric is ok because it can be moved to a constraint.

min
z,z

1
2

(
s
z

)T (
0 1
1 0

)(
s
z

)
s.t. s = q + Mz

s, z ⩾ 0

The QP is non-convex; its objective is bounded from below by 0. Solutions of
(LCP) are global minimizers of the QP with objective 0.



Lemke’s Method

Lemke’s “Scheme I” for solving

w = q + dz0 + Mz ⩾ 0, z0 ⩾ 0, z ⩾ 0, zT w = 0.

Input (q,d,M) where d (“covering vector”) can be chosen, e.g. d = 1.

1. Stop if q ⩾ 0: z = 0 is a solution for LCP(q,M).

2. Let z̄0 ⩾ 0 be the smallest value for which q + dz0 ⩾ 0. Let
wr = argmin{w | z0 = z̄0}. Pivot on (wr , z0). Let zr be the driving variable.

3. If the driving variable’s column has a negative entry, find the blocking
basic variable with minimum ratio. Stop if unblocked: LCP(q,M) is
infeasible if M falls into certain classes.

4. If z0 blocked, pivot on (z0, driving variable) and stop. LCP(q,M) is solved.
If some other variable blocked, then pivot on
(blocking variable, driving variable) and go to 3., using the complementary
paired variable of the blocking one as new driving variable.



Matrix Classes

LCP theory introduces classifications for matrix M that characterize the
difficulty of the LCP, e.g. that of finding a feasible point of a linearized MPCC:

S-matrices (square and ∃z ⩾ 0 : Mz ⩾ 0): LCP(q,M) feasible for all q.

positive definite⇒ S-matrix

P-matrices (all principal minors positive)⇔ LCP(q,M) has a unique
solution for all q.

S-matrix⇒ P-matrix

E-matrices (strictly semi-monotone):
0 ̸= x ⩾ 0 ⇒ [xk > 0 and (Mx)k > 0 for some k].

P-matrix⇒ E-matrix. Lemke’s Scheme I always succeeds for E-matrices.

There are many mmore positive results on Lemke’s Scheme I in the literature.



Bound constrained LPCCs

Consider an LPCC with just two-sided bounds on the variables, i.e. without affine line
constraints:

min
u∈Rc ,v∈Rc

cT u + dT v

s.t. u ⩽ u ⊥ v ⩾ v

u ⩽ u, v ⩽ v

This problem is not combinatorial in nature, but can be trivially decomposed:

min
ui∈R,vi∈R

ciui + divi

s.t. ui ⩽ ui ⊥ vi ⩾ v i

ui ⩽ ui , vi ⩽ v i

 1 ⩽ i ⩽ c

with explicit solutions as follows:

ûi = ui if ci ⩾ 0 and ui otherwise v̂i = v i if di ⩾ 0 and v i otherwise

u∗
i = ûi if ûici ⩽ v̂idi and ui otherwise v∗

i = v̂i if v̂idi < ûici and v i otherwise.

This means the Augmented Lagrangian + SLPCC-EQP approach for solving MPCCs
has cheap and regular subproblems.



Scholtes’ method

A general descent-aided enumerative procedure for NLPs with structured
nonconvexity:

min
x∈Rn

F(x) s.t.C(x) ∈ Z =

c⋃
i=1

Zi

with Zi ⊂ Rn sufficiently regular and Z locally star-shaped, such that:

Every stationary point x∗ then G(x∗) ∈ Zi for at least one index i;

If a feasible point x is stationary for all adjacent Zi , it is stationary for Z .

For MPCC, the Zi can be chosen to be the feasible sets of the piece NLPs.

1. Pick Z0, x0 with C(x0) ∈ Z0, k ← 0.

2. Solve minx∈Rn F(x) s.t.C(x) ∈ Zk starting from xk−1.

3. Let x∗
k be the stationary point found in Zk : Verify stationarity for all

adjacent pieces and stop if successful.

4. Otherwise, choose a Zki adjacent to x∗
k for which x∗

k is not stationary and
go to 2.



General LPCCs
Consider now an LPCC with m polyhedral constraints aT

i x ⩾ bi and a unified notation

0 ⩽ (aT
i x − bi) ⊥ (aT

p+ix − bp+i) ⩾ 0

for p complementarity pairs:

min
x∈Rn

gT x

s.t. aT
i x ⩾ bi , 1 ⩽ i ⩽ m

0 ⩽ (aT
i x − bi) ⊥ (aT

p+ix − bp+i) ⩾ 0, m + 1 ⩽ i ⩽ m + p

We also introduce the complementarity index map

c(i) =


0 if i ⩽ m
i + p if m + 1 ⩽ i ⩽ m + p
i − p if m + p + 1 ⩽ i ⩽ m + 2p

to be able to write (c(i) ̸= 0)

0 ⩽ (aT
i x − bi) ⊥ (aT

c(i)x − bc(i)) ⩾ 0

Note: Can also do this in vertical form to obtain a column basis simplex method.



General LPCCs

We introduce the set of non-strict complementarities at x ∈ Rn

D(x) =
{

m + 1 ⩽ i ⩽ m + p | aT
i x = bi ∧ aT

c(i)x = bc(i),
}

which only includes the smaller index of every non-stricty pair.

If we restrict ourselves to the MPEC-LICQ setting, in which S-stationarity is
necessary, a feasible point x ∈ Rn is S-stationary if λ ∈ Rm+2p exists such
that

g −

m+2p∑
i=1

λi(a
T
i x − bi) = 0

0 ⩽ (aT
i x − bi) ⊥ λi ⩾ 0 1 ⩽ i ⩽ m

aT
i x > bi =⇒ λi = 0 m + 1 ⩽ i ⩽ m + 2p

λi ⩾ 0 ∧ λc(i) ⩾ 0 i ∈ D(x)



An LPCC active set method under MPCC-LICQ

Under MPCC-LICQ, we may assume that

there are exactly n linearly independent active constraints at every vertex

an initial feasible vertex is given and associated with n linearly
independent active constraints.

Given an active set A = {1 ⩽ i ⩽ m + 2p | aT
i x = bi }, complementarity

feasibility requires

{i, c(i)} ∩A ̸= ∅, m + 1 ⩽ i ⩽ m + p.

There is no assumption on strictness, hence {i, c(i)} ⊆ A is admitted.

We introduce subsets of the active set

A0 = A ∩ {1, . . . ,m}, A1 = A ∩ {m + 1, . . . ,m + 2p}.



An LPCC active set method under MPCC-LICQ

Given an active set A, we introduce the basis matrix A = (aj)j∈A and solve

x = A−T b, λ = A−1g

to find (x,λ). Doing this efficiently is part of the mojo of all active set and
simplex codes.

If we start feasible and maintain feasibility, stationarity and complementary
slackness, pivoting takes place towards S-stationarity of λ.

Let A−T = (sj)j∈A and move along sj to increase aT
j x , which becomes

inactive. If λj = sT
j g < 0, this is an improvement of the objective.

For ordinary LP, any active index j may be chosen (pricing). For LPCC, to
maintain complementarity feasibility,

j ∈ {i | λi < 0 ∧ (i ∈ A0 ∨ (i ∈ A1 ∧ c(i) ∈ A1))}

must hold.



Breakdown in absence of MPCC-LICQ

A degenerate example:

min
x∈R3

−x1 s.t. x1 − x2 + x3 ⩾ 0

x1 + x2 + x3 ⩾ 0

− x1 ⩾ − 1

0 ⩽ x1 ⊥ x2 ⩾ 0

Assume x = (0, 0, 0)T , A = {1, 2, 4}. Then

A =

 1 1 1
−1 1 0
1 1 0

 , g =

−1
0
0

 , λ =

 0
0
−1

 .

There is only one eligible pivot, λ3 = −1 < 0. The paired complementarity constraint x2 ⩾ 0 is
active but 5 /∈ A due to degeneracy. We now have two options:

Following our algorithm we cannot make x1 ⩾ 0 inactive. The method stalls.

Deviating from our algorithm, we make x1 ⩾ 0 inactive anyway. Then x2 ⩾ 0 must be added
to A to maintain complementarity feasibility. Now the method breaks down as

A =

 1 1 0
−1 1 1
1 1 0

 .



An LPCC active set method without MPCC-LICQ

We need to distinguish between active constraints in the basis matrix, and
active constraints to maintain complementarity feasibility:

Ā = A ∪ E, A ∩ E = ∅,

where E is an extension collecting complementarity constraints that should
be active but cannot become so for rank reasons. We now ask for

{i, c(i)} ∩ Ā ̸= ∅

but allow {i, c(i)} ∩A = ∅. This now allows to take option 2 as follows:

1. If an index q ∈ A leaves and index c(q) is not in Ā, then c(q) is added to
E to maintain complementarity feasibility.

2. If a step ends up making a constraint with index p ∈ E active, we move p
from E to A.

3. If a constraint index p /∈ Ā enters A, we remove c(p) from E if found there
(it could also be in A).

This maintains regularity of the basis matrix (aT
p sq ̸= 0).



An LPCC active set method without MPCC-LICQ

Revisiting the degenerate example:

min
x∈R3

−x1 s.t. x1 − x2 + x3 ⩾ 0

x1 + x2 + x3 ⩾ 0

− x1 ⩾ − 1

0 ⩽ x1 ⊥ x2 ⩾ 0

Assume x = (0, 0, 0)T , A = {1, 2, 4}. Then

A =

 1 1 1
−1 1 0
1 1 0

 , g =

−1
0
0

 , λ =

 0
0
−1

 .

There is only one eligible pivot, λ4 = −1 < 0. The paired complementarity
constraint x2 ⩾ 0 is active but 5 /∈ A due to degeneracy. We make x1 ⩾ 0
inactive, s4 = (1, 0,−1)T and let E = {5} immediately.

The entering constraint now is 3, resulting in A = {1, 2, 3} and
x = (1, 0,−1)T . This vertex is S-stationary with λ = (0, 0, 1)T .



An LPCC active set method without MPCC-LICQ

If we lift the CQ restriction, B-stationarity characterizes the situation that no
feasible descent (first order) direction exists:

A feasible point x is B-stationary if is a minimizer of all 2|D(x)| piece LPs.

Equivalently, for all P ⊆ D(x), a vector λP ∈ Rm+2p exists such that

g −

m+2p∑
i=1

λPi (a
T
i x − bi) = 0

0 ⩽ (aT
i x − bi) ⊥ λPi ⩾ 0 1 ⩽ i ⩽ m

aT
i x > bi =⇒ λPi = 0 m + 1 ⩽ i ⩽ m + 2p

λPc(i) ⩾ 0 i ∈ P

λPi ⩾ 0 i ∈ D(x) \ P

Note: MPEC-ACQ generically holds for polyhedral MPECs, and
M-stationarity is necessary.



An LPCC active set method without MPCC-LICQ

A B-stationarity example:

min
x∈R3

x1 + x2 + x3 s.t. 4x1 − x3 ⩾ 0

4x2 − x3 ⩾ 0

0 ⩽ x1 ⊥ x2 ⩾ 0

The non-strict vertex x = (0, 0, 0)T is the only feasible point. There, 1
1
−1

 =

 4 0 1 0
0 4 0 1
−1 −1 0 0

λ.

This has no nonnegative solution in λ, hence x is not S-stationary.

We have D = {3}. The LP pieces are P = {3} (x1 = 0 ⩽ x2) and P = ∅ (x1 ⩾ 0 = x2),
with multipliers λ{3} = ( 3

4 ,
1
4 ,−2, 0)T and λ∅ = ( 1

4 ,
3
4 , 0,−2)T . Hence x is

B-stationary.

Starting our algorithm in x , pivoting is possible on either index 3 or 4 and leads to an
infinite loop of zero length steps without a certificate of stationarity.



An LPCC active set method without MPCC-LICQ

In absence of MPCC-LICQ, zero length steps must be handled to recognize
B-stationary points that are not also S-stationary. LP anticycling methods
(e.g. Bland’s rule) can be shown to fail, too.

1. Monitor the sequence of the k ⩾ 2 most recent active set changes and
detect cycles (Chvátal cycle detection). Reset the monitor as soon as a
positive step is taken.

2. If a cycle is detected, solve all piece LPs hot-starting in the current vertex.
This requires effort exponential in the number of non-strict
complementarity pairs.

2.1 Either the current vertex is confirmed optimal for all piece LPs, in which case
B-stationarity is confirmed

2.2 or one of the piece LPs takes a positive descent step, revealing a descent
direction towards an improved vertex, and this breaks the cycle.



No useful dual problem for an LPCC

LP duality:

min
x∈Rn

cT x s.t. Ax ⩾ b, x ⩾ 0 ⇐⇒ max
λ∈Rm

bTλ s.t. ATλ ⩽ c, λ ⩾ 0

LPCCs don’t have a useful dual problem associated with them:

min
u,v∈Rn

cT u + dT v s.t. Au + Bv ⩾ b, 0 ⩽ u ⊥ v ⩾ 0

Consider the case n = 1 and the two LP pieces (u = 0 or v = 0):

min
v

dv s.t. Bv ⩾ b, v ⩾ 0, min
u

cu s.t. Au ⩾ b, u ⩾ 0

with duals

min
λ

bλ s.t. BTλ ⩽ d , λ ⩾ 0, min
λ

bλ s.t. ATλ ⩽ c, λ ⩾ 0

The dual pieces select inequality constraints, while the paired constraint
drops out.



No useful dual problem for an LPCC
One way of writing this as a single complementarity problem is the following:

min
λ,w

bλ

s.t. ATλ− c ⩽ w1,

BTλ− d ⩽ w2,

λ ⩾ 0,

0 ⩽ w1 ⊥ w2 ⩾ 0.

This could be generalized to more than one complementarity constraint, but
requires expoentially many constraints since w are a unary encoding of the
choice of piece.

There is no strong duality theorem, and the solution of the dual will not, in
general, help to make decisions on the primal.

Hence there is no obvious path to an efficient dual active set / simplex
method for LPCCs (?)
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Duals of an LPCC problem
The Lagrangian dual problem for the (nonlinear) multiplicative form of the LPCC reads

max
λ,µ,
ν,ξ

[
inf

u,v∈Rn
cT u + dT v − (Au + Bv − b)Tλ− (u ◦ v)Tµ− uTν − vTξ

]
s.t. λ,ν,ξ ⩾ 0.

The problem is non-convex. Still, the Wolfe dual problem can be written as follows:

max
λ,µ,ν,ξ,u,v

cT u + dT v − (Au + Bv − b)Tλ− (u ◦ v)Tµ− uTν − vTξ

s.t. c − ATλ− v ◦µ− ν = 0

d − BTλ− u ◦µ− ξ = 0,

λ,ν,ξ ⩾ 0

This can be simplified, but it remains a nonlinear problem:

max
λ,µ,u,v

bTλ+ (u ◦ v)Tµ

s.t. c − ATλ ⩾ v ◦µ
d − BTλ ⩾ u ◦µ
λ ⩾ 0



The Fukushima-Tseng ϵ-active set algorithm

Pick A0, B0, ϵ0, ν0, x0.

1. Solve

minF(x) s.t. Gi(x) = Gi(x
k) i ∈ Ak

Hi(x) = Hi(x
k) i ∈ Bk

Gi(x) ⩾ 0 i ∈ Bk \ Ak

Hi(x) ⩾ 0 i ∈ Ak \ Bk

for ẑk using an NLP solver up to feasibility tolerance ϵk .

2. If Aϵ(x̂k) ∩Bϵ(x̂k) ⊊ Ak ∩Bk : Set zk+1 ← ẑk and loop for k ← k + 1.

3. If Aϵ(x̂k) ∩Bϵ(x̂k) = Ak ∩Bk : If µG,i ⩾ −νk and µH,i ⩾ −νk for all
i ∈ Ik

00, set

νk+1 ← ωνk for some ω ∈ (0, 1), zk+1 ← ẑk

and go to 5.



The Fukushima-Tseng “ϵ-active set” algorithm

4. There is ik ∈ Ak ∩Bk such that vk
ik < −νk or wk

ik < −νk . Then a feasible
descent direction d with ||d ||∞ ⩽ 1 and ∇F(xk)T d ⩽ −ηνk/2 can be
found by solving a certain linear system.

Let t̄k = min{tmax, sup{t | ẑk + td ∈ Fε}} and perform an Armjo line search
on F along d on the step size interval (0, t̄k) to find zk+1.

5. Choose ϵk+1 smaller than ϵk . Let Ak+1 ← Aϵk+1(zk+1),
Bk+1 ← Bϵk+1(zk+1) and loop for k ← k + 1.

This can be shown to convergence to S-stationary points unter MPCC-LICQ.


