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Problem Class

min
x∈Rn

F(x)

s.t. C(x) = 0

D(x) ⩾ 0

0 ⩽ G(x) ⊥ H(x) ⩾ 0

G(x)
0

H(x)

feasible set F

Continuously differentiable F : Rn → R, G,H : Rn → Rc

Writing “0 ⩽ u ⊥ v ⩾ 0” means to ask that

for all 1 ⩽ i ⩽ c : 0 = ui OR 0 = vi holds.



Vertical Form

Any MPCC can be cast in an vertical form that has orthogonal
complementarities only:

min
(x,u,v)∈Rn+2c

F(x)

s.t. G(x) − u = 0

H(x) − v = 0

0 ⩽ u ⊥ v ⩾ 0



Equivalent Formulations

Under the bounds u ⩾ 0, v ⩾ 0, several equivalent formulations exist:

uT v = 0

uT v ⩽ 0

u ◦ v = 0 (Hadamard product)

u ◦ v ⩽ 0

ui · vi = 0 for all 1 ⩽ i ⩽ c

ui · vi ⩽ 0 for all 1 ⩽ i ⩽ c



Non-smooth minimization

An NCP function ϕ : R2 → R satisfies

ϕ(u, v) = 0 ⇐⇒ 0 ⩽ u ⊥ v ⩾ 0.

Using an NCP function, one solves

min
x∈Rn

F(x)

s.t. ϕ(Gi(x),Hi(x)) = 0, 1 ⩽ i ⩽ c

Useful NCP-functions are nondifferentiable in (0, 0).
Differentiable NCP-functions necessarily satisfy ∇ϕ(0, 0) = (0, 0)T .



Bouligand Subdifferential

Denote by Dϕ the set

Dϕ := {x | ϕ is differentiable in x}.

The set

∂Bϕ(x̄) =
{

d
∣∣ ∃{xk } ⊆ Dϕ, lim

k→∞ xk = x̄ : lim
k→∞ϕ(xk) = d

}
is called the Bouligand Subdifferential of ϕ at x̄ .



Bouligand Subdifferential

Denote by Dϕ the set

Dϕ := {x | ϕ is differentiable in x}.

The set

∂Bϕ(x̄) =
{

d
∣∣ ∃{xk } ⊆ Dϕ, lim

k→∞ xk = x̄ : lim
k→∞ϕ(xk) = d

}
is called the Bouligand Subdifferential of ϕ at x̄ .

For MPCC with the NCP function ϕi(x̄) := ϕ(Gi(x̄),Hi(x̄)) we find:

i ∈ I0+(x̄): ∂Bϕi(x̄) =
{
(∇Gi(x̄), 0)T

}
i ∈ I+0(x̄): ∂Bϕi(x̄) =

{
(0,∇Hi(x̄))T

}
i ∈ I00(x̄): ∂Bϕi(x̄) =

{
(∇Gi(x̄), 0)T , (0,∇Hi(x̄))T

}



Clarke Subdifferential

The set
∂Cϕ(x̄) := conv ∂Bϕ(x̄)

is called the Clarke Subdifferential of ϕ at x̄ . For MPCC with the NCP
function ϕi(x̄) := ϕ(Gi(x̄),Hi(x̄)) we find:

i ∈ I0+(x̄): ∂Cϕi(x̄) = ∂Bϕi(x̄)

i ∈ I+0(x̄): ∂Cϕi(x̄) = ∂Bϕi(x̄)

i ∈ I00(x̄): ∂Cϕi(x̄) = conv
{
(∇Gi(x̄), 0)T , (0,∇Hi(x̄))T

}
Chain Rule for ∂C :

∂C(F1 ◦ F2)(x̄) · d ⊆⊆⊆ conv(∂CF1(F2(x̄)) · ∂CF2(x̄)) · d

and equality holds if either F1 is C1 around F2(x̄) or F2 is C1 around x̄ .



Scholtes’ Relaxation
Solve a sequence of parameterized NLPs for t ⩾ 0:

(NLP(t))

min
x∈Rn

F(x)

s.t. C(x) = 0

D(x) ⩾ 0

Gi(x) · Hi(x) ⩽ t, 1 ⩽ i ⩽ c

Theorem
Let x̄ ∈ Rn be feasible for (MPCC) and let MPCC-MFCQ hold at x̄ . Then there is an
open neighborhood U(x̄) and threshold t̄ > 0 such that for all t ∈ [0, t̄] one has: If
x ∈ U(x̄) is feasible for NLP(t), then MFCQ holds at x .

Theorem
Let lim

k→∞{t(k)} = 0, let x(k) be KKT points of NLP(t(k)) with lim
k→∞{x(k)} = x∗, and let

MPCC-MFCQ hold at x∗. Then x∗ is a C-stationary point.

Under MPCC-LICQ, convergence can also be shown for the unique sequence of
MPCC-multipliers.



Scholtes’ Relaxation
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Scholtes’ relaxation for the MPCC constraint 0 ⩽ u ⊥ v ⩾ 0.



Scholtes’ Relaxation

C-stationary is necessary under MPCC-MFCQ. But even assuming
MPCC-LICQ does not help. The result is sharp in the following sense:

min
x∈R2

(x1 − 1)2 + (x2 − 1)2

s.t. 0 ⩽ x1 ⊥ x2 ⩾ 0

has two S-stationary local minima at (0, 1)T and (1, 0)T , where MPCC-LICQ
holds. The local maximum (0, 0)T is C-stationary.

For t > 0 sufficiently small, the points x(t) = (
√

t,
√

t)T are classical KKT
points of the smooth relaxed problem NLP(t).



Scholtes’ Relaxation
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C-stationarity example for Scholtes’ relaxation.



Lin-Fukushima Relaxation

Solve a sequence of parameterized NLPs for t ⩾ 0:

(NLP(t))

min
x∈Rn

F(x)

s.t. C(x) = 0, D(x) ⩾ 0

Gi(x) · Hi(x) ⩽ t2, 1 ⩽ i ⩽ c

(Gi(x) + t) · (Hi(x) + t)) ⩾ t2, 1 ⩽ i ⩽ c

Theorem

Let lim
k→∞{t(k)} = 0, let x(k) be KKT points of NLP(t(k)) with lim

k→∞{x(k)} = x∗,

and let MPCC-MFCQ hold at x∗. Then x∗ is a C-stationary point.



Lin-Fukushima Relaxation
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Lin-Fukushima relaxation for the MPCC constraint 0 ⩽ u ⊥ v ⩾ 0.



Steffensen-Ulbrich Smoothing-Relaxation
Solve a sequence of parameterized NLPs for t ⩾ 0:

(NLP(t))

min
x∈Rn

F(x)

s.t. C(x) = 0, D(x) ⩾ 0

Gi(x) ⩾ 0, Hi(x) ⩾ 0, 1 ⩽ i ⩽ c

ΦSU(Gi(x),Hi(x)) ⩽ 0, 1 ⩽ i ⩽ c

wherein
ΦSU(u, v) = u + v − ϕt(u − v)

and

ϕt(a) =

{
|a| if |a| ⩾ t
tθ(a/t) if |a| < t

and θ : (−1, 1)→ R a certain regularization function.

Theorem

Let lim
k→∞{t(k)} = 0, let x(k) be KKT points of NLP(t(k)) with lim

k→∞{x(k)} = x∗,

and let MPCC-CPLD hold at x∗. Then x∗ is a C-stationary point.



Kadrani’s Kinked Relaxation

Solve a sequence of parameterized NLPs for t ⩾ 0:

(NLP(t))

min
x∈Rn

F(x)

s.t. C(x) = 0, D(x) ⩾ 0

Gi(x) ⩾ −t, Hi(x) ⩾ −t, 1 ⩽ i ⩽ c

(Gi(x) − t)(Hi(x) − t) ⩽ 0, 1 ⩽ i ⩽ c

This is not really a relaxation as it excludes the regions [0, t)× {0} and
{0}× [0, t] and creates a disjoint feasible set. Nonetheless, it was the first
relaxation for which one can show:

Theorem

Let lim
k→∞{t(k)} = 0, let x(k) be KKT points of NLP(t(k)) with lim

k→∞{x(k)} = x∗,

and let MPCC-CPLD hold at x∗. Then x∗ is an M-stationary point.



Kadrani’s Kinked Relaxation
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Kandrani’s relaxation for the MPCC constraint 0 ⩽ u ⊥ v ⩾ 0.



Kanzow-Schwartz’ Kinked Relaxation
Consider the NCP function

ϕ(a, b) :=

{
ab if a + b ⩾ 0
− 1

2 (a
2 + b2) if a + b < 0

Solve a sequence of parameterized NLPs for t ⩾ 0:

(NLP(t))

min
x∈Rn

F(x)

s.t. C(x) = 0, D(x) ⩾ 0

Gi(x) ⩾ 0, Hi(x) ⩾ 0, 1 ⩽ i ⩽ c

ϕ(Gi(x) − t,Hi(x) − t) ⩽ 0, 1 ⩽ i ⩽ c

This has been derived from Kadrani’s formulation and addresses the
disjointness issue.

Theorem

Let lim
k→∞{t(k)} = 0, let x(k) be KKT points of NLP(t(k)) with lim

k→∞{x(k)} = x∗,

and let MPCC-CPLD hold at x∗. Then x∗ is an M-stationary point.



Kanzow-Schwartz Kinked Relaxation
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The Kanzow-Schwartz relaxation for the MPCC constraint 0 ⩽ u ⊥ v ⩾ 0.



Inexactness Effects

Relaxation and smoothing convergence theorems assume that subproblems
are solved exactly. Computing inexact KKT points with tolerance 0 < εk has
detrimental effects on their validity.

Scholtes, Lin-Fukushima: If εk ∈ O(tk) then x∗ is C-stationary.

All others: x∗ will only be weakly stationary!

Example (Kanzow-Schwartz):

min
x∈R2

−x1 − x2 s.t. 0 ⩽ x1 ⊥ x2 ⩾ 0.

For a sequence tk → 0 and assuming εk = (tk)2, one verifies the family of
εt -KKT points

x t = ((1 − t)t, (1 − t)t)T

for NLP(tk) with multiplier δt = 1/εt for the NCP inequality of the
Kanzow-Schwartz relaxation.

The limit (0, 0) is only C-stationary (and satisfies MPCC-LICQ). This is in
contrast to the theorem guaranteeing M-stationarity.



Penalty approach

A generic and common approach to deal with difficult constraints C in an NLP

min
x∈Rn

F(x) s.t. C(x) = 0, x ∈ Ω

is to replace them by a suitable penalty term PC(x) in the objective,

min
x∈Rn

F(x) + ρPC(x) s.t. x ∈ Ω,

which one tries to drive to zero by taking ρ→∞.

Exact penalty functions: P(x) = 0 iff x solves the original problem.

ℓ1 and ℓ∞ penalty functions are exact, but non-smooth.

The ℓ2 penalty function is not exact, but differentiable.



ℓ1-penalty approach

The ℓ1 penalty approach for MPCCs in vertical form reads as follows.
For ρ≫ 0 solve

min
x∈Rn

F(x) + ρ

c∑
i=1

|uivi |

s.t. 0 ⩽ u = G(x)

0 ⩽ v = H(x)

This is non-smooth, but may also be written as

min
x∈Rn

F(x) + ρ

c∑
i=1

ξi

s.t. uivi ⩽ ξi , 1 ⩽ i ⩽ c

0 ⩽ u = G(x)

0 ⩽ v = H(x)

Assuming G and H are sufficiently regular, this violates CQs only in ξ = 0.



ℓ∞-penalty approach

The ℓ∞ penalty approach for MPCCs in vertical form reads as follows:
For ρ≫ 0 solve

min
x∈Rn

F(x) + ρ max
1⩽i⩽c

{|uivi |}

s.t. 0 ⩽ u = G(x)

0 ⩽ v = H(x)

This is non-smooth, but may also be written as

min
x∈Rn

F(x) + ρξ

s.t. uivi ⩽ ξ, 1 ⩽ i ⩽ c

0 ⩽ u = G(x)

0 ⩽ v = H(x)

Assuming G and H are regular themselves, this violates CQs in ξ = 0.



Interior Point Methods (refresher)

The nonlinear program

min
x∈Rn

F(x) s.t H(x) ⩾ 0

is reformulated using a log-barrier,

min
x∈Rn, w∈Rk

F(x) − θ

k∑
i=1

log(wi)

s.t. H(x) − w = 0

The first order necessary optimality conditions read

∇F(x) −∇H(x)λ = 0

−θ1 + WΛ1 = 0

H(x) − w = 0



Interior Point Methods (refresher)

Newton’s method applied to this root finding problem solves(
−∇2

xxL(x,λ) ∇H(x)
∇H(x)T WΛ−1

)(
∆x
∆λ

)(
σ

ρ+ WΛ−1γ

)
,

wherein

σ := ∇F(x) −∇H(x)λ,

γ := θW−11 −Λ,

ρ := w − H(x).

and
∆w = WΛ−1(γ − ∆λ).

Step sizes for w and λ are chosen such that they remain positive and reduce
either the barrier or the infeasibility without increasing the respective other
quantity by too much.



Interior Point Methods for MPCC
Remember GCQ implies MPCC-LICQ. The first admits unbounded KKT
multipliers while the second is already considered restrictive. Hence,

WΛ = θ1

in the IP method will lead to slack entries wi → 0 as λi →∞. The IP method
has to pick tiny step sizes as a consequence. If θ≫ 0 when this happens,
the IP method may stall.

Consider the log-barrier formulation of the MPCC:

min
x∈Rn

F(x) − θ

c∑
i=1

logwi − θ

c∑
i=1

log ti − θ

c∑
i=1

log zi

s.t. G(x) − u = 0

H(x) − v = 0

u ◦ v + w = 0

u − t = 0

v − z = 0



Interior Point Methods for MPCC
We partition u = (uI , uJ) and v = (vI , vJ) such that uI = 0 and vJ = 0. The
stationarity part of the KKT conditions for this log-barrier problem reads

∇uL = −λG +

(
0 0
0 VJ

)(
λw

I
λw

J

)
+

(
λt

I
λt

J

)
∇vL = −λH +

(
UI 0
0 0

)(
λw

I
λw

J

)
+

(
λz

I
λz

J

)
∇wiL = 0 implies λw

i wi = θ

∇ziL = 0 implies λz
i zi = θ

∇tiL = 0 implies λt
i ti = θ

Even under LLSCC, θ→ 0 will result in λw
i →∞ or λz

i →∞ for some
components.

If a complementarity pair is non-strict, ui = vi = 0, then the corresponding λw
i

drops out and the system becomes rank-deficient.

Theorem
If an IP method is applied to the ℓ1- or ℓ∞-penalty form of an MPCC that
satisfies MPCC-LICQ, the set of classical KKT multipliers remains bounded.



Sequential Quadratic Programming (refresher)

The nonlinear program

min
x∈Rn

F(x) s.t H(x) ⩾ 0

is solved by iteratively minimizing a quadratic model of the objective and a
linear model of the constraints:

min
∆x∈Rn

1
2∆xT Bk∆x +∇F(xk)T∆x(QPk )

s.t ∇H(xk)T∆x + H(xk) ⩾ 0

wherein Bk ≈ ∇2
xxL(x

k ,λk).
Step sizes for ∆x are chosen such that, for example, they reduce a merit
function balancing the objective against the infeasibility.



Sequential Quadratic Programming

Consider now the application of SQP to the MPCC.

The quadratic model reads

min
∆x∈Rn

1
2∆xT Bk∆x +∇F(xk)T∆x(QPk )

s.t
(
Hi(x

k)∇Gi(x
k)T + Gi(x

k)∇Hi(x
k)T
)
∆x = 0, 1 ⩽ i ⩽ c

In a strictly complementary pair, Gi(xk) = Hi(xk) = 0, the linearization drops
out and the step ∆x can point into arbitrary infeasible direction w.r.t. the
complementarity indexed by i. This leads to near-zero step size and stalling
of the method.

Linearizations of the MPCC constraints 0 ⩽ u ⊥ v ⩾ 0 are not sensible.



Sequential Quadratic Programming

SQP applied to the ℓ1-penalty formulation of MPCC.

Refresher: The ℓ1-penalty formulation of an MPCC in vertical form reads

min
x∈Rn ,u∈Rc

v∈Rc ,ξ∈Rc

F(x) + ρ

c∑
i=1

ξi

s.t. uivi ⩽ ξi , 1 ⩽ i ⩽ c

0 ⩽ u = G(x)

0 ⩽ v = H(x)



Sequential Quadratic Programming

The quadratic model reads

min
∆x∈Rn ,∆u∈Rc

∆v∈Rc ,∆ξ∈Rc

1
2∆xT Bk∆x +∇F(xk)T∆x + ρ

c∑
i=1

∆ξi

s.t vk
i ∆ui + uk

i ∆vi − ∆ξi − ξk
i ⩽ 0, 1 ⩽ i ⩽ c

∇Gi(x
k)T∆x + Gi(x

k) − ∆ui = 0, 1 ⩽ i ⩽ c

∇Hi(x
k)T∆x + Hi(x

k) − ∆vi = 0, 1 ⩽ i ⩽ c

∆u + uk ⩾ 0

∆v + vk ⩾ 0

In a strictly complementary pair uk
i vk

i = 0, the linearization will result in
∆ξ∗i = −ξk

i . The unknowns (∆ui ,∆vi) drop out, but full row rank of the
reduced linear system may in general be maintained by an active-set method
for solving the QP.

This usually results in (∆u∗
i ,∆v∗

i ) = (0, 0) and attracts non-strict local
solutions.



Augmented Lagrangian Methods (refresher)

The nonlinear program

min
x∈Rn,w∈Rk

F(x) s.t H(x) − w = 0

is solved by iteratively solving the bound-constrained problems

min
x∈Rn,w∈Rk

F(x) +
µk

2

k∑
i=1

w2
i +

k∑
i=1

λk
i wi(NLP(λk ,µk))

s.t. w ⩾ 0

and updating

λk+1 ← λk + µkw .

The penalty µk is adjusted by monitoring the infeasibility. The subproblems
NLP(λk ,µk) can be solved using, e.g., SQP with BQP subproblems.



Augmented Lagrangian Methods

Application to the MPCC in vertical form:

min
x∈Rn ,u∈Rc

v∈Rc

F(x) s.t. u ◦ v = 0
u = G(x), v = H(x),

u ⩾ 0, v ⩾ 0.

Iteratively solve the bound-constrained problems NLP(λk ,µk)

min
x∈Rn ,u∈Rc

v∈Rc

F(x) +
µk

2

∑c

i=1

[
(Gi(x) − ui)

2 + (Hi(x) − vi)
2 + (uivi)

2
]

+
∑c

i=1
λk

i [(Gi(x) − ui) + (Hi(x) − vi) + (uivi)]

s.t. u ⩾ 0, v ⩾ 0.

and updating

λk+1 ← λk + µk

G(x) − u
H(x) − v

u ◦ v

 .



Non-smooth subproblems

So far we relaxed / smoothed / regularized the non-smooth MPCC in the
original problem and generated smooth / linear subproblems.

Another approach is to keep non-differentiable structures in the subproblems
generated by iterative methods:

Linear systems with complementarity constraints: LCPs

LPs with complementarity constraints: LPCCs

Bound constrained QPs with complementarity constraints: BQPCCs

QPs with complementarity constraints: QPCCs

With the exception of LCPs, it is somehwhat difficult to find solvers for these,
let alone reliable and fast ones.



Sequential QPCC

Sequential quadratic programming with linearization applied to the two
branches of every complementarity constraint.

The quadratic model with linearized complementarity constraints (QPCC)
reads

min
∆x∈Rn

1
2∆xT Bk∆x +∇F(xk)T∆x(QPCCk )

s.t 0 ⩽ ∇G(xk)∆x + G(xk) ⊥ ∇H(xk)∆x + H(xk) ⩾ 0

This requires an algorithm for solving QPCCs.

Convergence to C-stationary points is all one can show.



Sequential QPCC
Failure of SQPCC: Consider the problem

min
x∈R2

(x1 − 1)2 + x3
2 + x2

2 s.t. 0 ⩽ x1 ⊥ x2 ⩾ 0.

The point x̂(0, 0)T is M-stationary with trivial descent direction (1, 0)T to
x∗ = (1, 0), which is B-stationary but not S-stationary. Compute

∇f (x) =

(
2(x1 − 1)
2x2

2 + 2x2

)
, ∇2L(x) =

(
2 0
0 6x2 + 2

)
.

The QPEC at any x(k) is (x(k)
1 = 0)

min
d

d2
1+(3x(k)

2 +2)d2
2+2(x(k)

1 −1)d1+(3x(k)
2

2
+2x(k)

2 )d2 s.t. 0 ⩽ d1 ⊥ x(k)
2 +d2 ⩾ 0.

Starting in x(0) = (0, t) for some t ∈ (0, 1) SQPEC will generate the
sequence

x(k) =

(
0,

3y(k)2

6y(k) + 2

)T

which shows q-quadratic convergence (as desired) but to (0, 0), which is
M-stationary.



Sequential LPCC Programming (SLPCC)
Instead of solving QPs to compute Newton-type steps, we can solve LPs and
compute constrained gradient-descent steps.

Sequential linear programming with linearization applied to the two branches
of every complementarity constraint.

The linear model with linearized complementarity constraints (LPCC) reads

min
∆x∈Rn

∇F(xk)T∆x(LPCCk(∆k))

s.t 0 ⩽ ∇G(xk)∆x + G(xk) ⊥ ∇H(xk)∆x + H(xk) ⩾ 0

||∆x ||∞ ⩽ ∆k
LP

This requires an additional trust-region constraint for boundedness from
below, and handling the trust region in the neighborhood of the
complementarity kink requires special attention.

Also, this requires an algorithm for solving LPCCs. Also, do this for the
vertical form.

Convergence to B-stationary points can be shown assuming LPCC can be
solved.



SLPCC with an Accelerating Newton Step
Similar to SLP-EQP methods in NLP. Solve

min
∆x∈Rn

∇F(xk)T∆x(LPCC(∆k
LP))

s.t 0 ⩽ ∇G(xk)∆x + G(xk) ⊥ ∇H(xk)∆x + H(xk) ⩾ 0

||∆x ||∞ ⩽ ∆k
LP

to find a constrained gradient-descent step ∆xLP onto a new active set A. Fix
this and solve

min
∆x∈Rn

1
2∆xT Bk∆x +∇F(xk)T∆x(EQPk )

s.t 0 = ∇Gi(x
k)∆x + Gi(x

k), i ∈ A ∩ I0+

0 = ∇H(xk)∆x + H(xk), i ∈ A ∩ I+0

for a Newton-type step step ∆xEQP on the null-space of the constraints in A.
This is just an indefinite linear system if Bk positive semidefinite. Requires an
ℓ2 trust-region if Bk indefinite→ CG-Steihaug.

Take a convex combination of these steps that reduces a merit function.



Augmented Lagrangian Methods
Application to the MPCC in vertical form:

min
x∈Rn ,u∈Rc

v∈Rc

F(x) s.t. 0 ⩽ u ⊥ v ⩾ 0
u = G(x), v = H(x),

u ⩾ 0, v ⩾ 0.

Iteratively solve the bound-constrained complementarity problems MPCC(λk ,µk)

min
x∈Rn ,u∈Rc

v∈Rc

F(x) +
µk

2

∑c

i=1

[
(Gi(x) − ui)

2 + (Hi(x) − vi)
2
]

+
∑c

i=1
λk

i [(Gi(x) − ui) + (Hi(x) − vi)]

s.t. 0 ⩽ u ⊥ v ⩾ 0.

and update

λk+1 ← λk + µk

(
G(x) − u
H(x) − v

)
.

Solving MPCC (λk ,µk) can be done by trust region SQP. The resulting BQPCCs
enjoy MPCC-LICQ and can be solved efficiently by projected gradient descent with
CG acceleration.


