

Mathematical Programs with
 Complementarity Constraints
 Part 1: Theory

Christian Kirches | Freiburg | September 14, 2023

Overview

- Problem Classes
- KKT Theorem and Details
- Constraint Qualifications
- Optimality Conditions

Problem Class

Continuously differentiable $F: \mathbb{R}^{n} \rightarrow \mathbb{R}, G, H: \mathbb{R}^{n} \rightarrow \mathbb{R}^{c}$
Writing " $\mathbf{0} \leqslant \boldsymbol{u} \perp \boldsymbol{v} \geqslant \mathbf{0}$ " means to ask that

$$
\text { for all } 1 \leqslant i \leqslant c: 0=u_{i} \text { OR } 0=v_{i} \text { holds. }
$$

Smooth-looking Multiplicative Formulations

Under the bounds $\boldsymbol{u} \geqslant 0, \boldsymbol{v} \geqslant 0$, several equivalent formulations exist:

- $\boldsymbol{u}^{\top} \boldsymbol{v}=0 \in \mathbb{R}$
- $\boldsymbol{u}^{\top} \boldsymbol{v} \leqslant 0 \in \mathbb{R}$
- $\boldsymbol{u} \circ \boldsymbol{v}=\mathbf{0} \in \mathbb{R}^{c}$ (Hadamard product)
- $\boldsymbol{u} \circ \boldsymbol{v} \leqslant \mathbf{0} \in \mathbb{R}^{\boldsymbol{c}}$
- $u_{i} \cdot v_{i}=0$ for all $1 \leqslant i \leqslant c$
- $u_{i} \cdot v_{i} \leqslant 0$ for all $1 \leqslant i \leqslant c$

The problem may also be stated with a non-smooth constraint:

- $\min \{\boldsymbol{u}, \boldsymbol{v}\}=\mathbf{0}$
- $\min \left\{u_{i}, v_{i}\right\}=0$ for all $1 \leqslant i \leqslant c$

Vertical Form

Any MPCC can be cast in the so-called vertical form, using only orthogonal complementarities:

$$
\begin{array}{|cl|}
\min _{(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v}) \in \mathbb{R}^{n+2 c}} & F(\boldsymbol{x}) \\
\text { s.t. } & G(\boldsymbol{x})-\boldsymbol{u}=\mathbf{0} \\
& H(\boldsymbol{x})-\boldsymbol{v}=\mathbf{0} \\
& \mathbf{0} \leqslant \boldsymbol{u} \perp \boldsymbol{v} \geqslant \mathbf{0}
\end{array}
$$

When solving MPCCs numerically (later), the vertical form guarantees linear feasibility and typically shows better convergence behavior.

Lifted Form

Any MPCC can be cast in a lifted form by introducing

- a slack $\boldsymbol{w} \in \mathbb{R}^{c}$,
- a penalty function $p(\boldsymbol{w})$,
- and a penalty parameter $\pi>0$:

$$
\begin{array}{|cl|}
\min _{(\boldsymbol{x}, \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \in \mathbb{R}^{n+2 c}} & F(\boldsymbol{x})+\pi \cdot p(\boldsymbol{w}) \\
\text { s.t. } & G(\boldsymbol{x})-\boldsymbol{u}=\mathbf{0} \\
& H(\boldsymbol{x})-\boldsymbol{v}=\mathbf{0} \\
& \boldsymbol{w} \leqslant \boldsymbol{u} \perp \boldsymbol{v} \geqslant \mathbf{0}
\end{array}
$$

Example: $p(\boldsymbol{w})=\|\boldsymbol{w}\|_{1}$

Math. Programs with Vanishing Constraints

MPCCs have a close relative, MPVCs:

$$
\begin{array}{|l|}
\hline \min _{\boldsymbol{x} \in \mathbb{R}^{n}} F(\boldsymbol{x}) \\
\text { s.t. } \\
\quad G(\boldsymbol{x}) \geqslant \mathbf{0} \\
\quad \\
\quad
\end{array}
$$

Any MPVC can be cast as an MPCC by introduction of a slack vector \boldsymbol{s} :

$$
\begin{array}{rl}
\min _{\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{s} \in \mathbb{R}^{c}} & F(\boldsymbol{x}) \\
\text { s.t. } & G(\boldsymbol{x}) \geqslant \mathbf{0} \\
& \boldsymbol{s}-H(\boldsymbol{x}) \geqslant \mathbf{0} \\
& 0 \leqslant G(\boldsymbol{x}) \perp \boldsymbol{s} \geqslant \mathbf{0}
\end{array}
$$

$H(\boldsymbol{x})$

In a solution, the slack will be degenerate. A more detailed analysis shows that MPVCs are slightly more regular than an MPCC plus a slack vector.

Equilibrium Constraints (MPECs)

$$
\begin{aligned}
& \min _{\boldsymbol{x}} F(\boldsymbol{x}, \boldsymbol{y}) \\
& \text { s.t. } \boldsymbol{x} \in X, \boldsymbol{y} \in S(\boldsymbol{x})
\end{aligned}
$$

wherein $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is the objective and $S: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ is a set-valued map, called the "equilibrium constraint".

One example: Bi-level programs The set

$$
S(\boldsymbol{x})=\underset{\boldsymbol{y}}{\operatorname{argmin}}\{F(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{y} \in y\}
$$

is, for a given vector \boldsymbol{x}, the solution set of the inner problem

$$
\min _{\boldsymbol{v}} F(\boldsymbol{x}, \boldsymbol{y}) \text { s.t. } \boldsymbol{y} \in y(\boldsymbol{x})
$$

Under assumptions, the inner problem may be replaced by its first order necessary conditions. We obtain an MPCC if $y(\boldsymbol{x})$ contains inequality constraints.

Game Theory

Stackelberg game: Asymmetric two-player game over turns $k \geqslant 1$.
Leader controls \boldsymbol{x} and minimizes $L(\boldsymbol{x}, \boldsymbol{y})$ considering set $S(\boldsymbol{x})$ of follower's responses:
(leader)

$$
\begin{aligned}
& \min _{\boldsymbol{x}} L(\boldsymbol{x}, \boldsymbol{y}) \\
& \text { s.t. } \boldsymbol{x} \in X, \boldsymbol{y} \in S(\boldsymbol{x})
\end{aligned}
$$

I
(follower)

$$
\begin{aligned}
& \min _{\boldsymbol{y}^{(k)}} F\left(\boldsymbol{x}, \boldsymbol{y}^{(k)}, \boldsymbol{y}^{(k-1)}\right) \\
& \text { s.t. } \boldsymbol{y}^{(k)} \in y\left(\boldsymbol{x}, \boldsymbol{y}^{(k-1)}\right)
\end{aligned}
$$

Follower controls $\boldsymbol{y}^{(k)}$ given the leader's choice \boldsymbol{x} and the follower's response $\boldsymbol{y}^{(k-1)}$ in the previous turn.

Game Theory

For a given element \boldsymbol{x} assume

$$
y\left(\boldsymbol{x}, \boldsymbol{y}^{(k-1)}\right)=\{\boldsymbol{y} \mid G(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0}, H(\boldsymbol{x}, \boldsymbol{y}) \geqslant \mathbf{0}\} .
$$

Under a suitable constraint qualification, an element

$$
\boldsymbol{y} \in S(\boldsymbol{x})=\underset{\boldsymbol{y}}{\operatorname{argmin}}\left\{F(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{y} \in y\left(\boldsymbol{x}, \boldsymbol{y}^{(k-1)}\right)\right\}
$$

necessarily satisfies

$$
\begin{aligned}
\nabla_{\boldsymbol{y}} F(\boldsymbol{x}, \boldsymbol{y})+\nabla_{\boldsymbol{y}} G(\boldsymbol{x}, \boldsymbol{y}) \cdot \boldsymbol{\lambda}+\nabla_{\boldsymbol{y}} H(\boldsymbol{x}, \boldsymbol{y}) \cdot \boldsymbol{\mu} & =\mathbf{0} \\
G(\boldsymbol{x}, \boldsymbol{y}) & =\mathbf{0} \\
\mathbf{0} \leqslant \boldsymbol{\mu} \perp H(\boldsymbol{x}, \boldsymbol{y}) & \geqslant \mathbf{0}
\end{aligned}
$$

for some vectors $\boldsymbol{\lambda}, \boldsymbol{\mu}$. Under assumptions, we may replace the constraint $\boldsymbol{y} \in S(\boldsymbol{x})$ in the leader's problem by these necessary conditions.

Nonconvex Relaxations of Discrete Problems

MINLP with indicator constraints $G_{i}(\boldsymbol{x}) \geqslant \mathbf{0}$ on indicators variables ω_{i} :

$$
\begin{aligned}
\min _{\boldsymbol{x}, \omega} & F(\boldsymbol{x}, \boldsymbol{\omega}) \\
\text { s.t. } & C(\boldsymbol{x})=\mathbf{0}, D(\boldsymbol{x}) \geqslant \mathbf{0} \\
& \omega_{i} \cdot G_{i}(\boldsymbol{x}) \geqslant \mathbf{0} \\
& \mathbf{1}^{\top} \boldsymbol{\omega}=1, \omega_{i} \in\{0,1\}, 1 \leqslant i \leqslant n_{\omega}
\end{aligned}
$$

The problem admits a non-convex relaxation, which is an MPVC:

$$
\begin{aligned}
& \min _{\boldsymbol{x}, \alpha} F(\boldsymbol{x}, \alpha) \\
& \text { s.t. } C(\boldsymbol{x})=\mathbf{0}, D(\boldsymbol{x}) \geqslant \mathbf{0} \\
& \quad \alpha_{i} \cdot G_{i}(\boldsymbol{x}) \geqslant \mathbf{0} \\
& \quad \mathbf{1}^{\top} \alpha=1, \alpha_{i} \in[0,1], 1 \leqslant i \leqslant n_{\omega}
\end{aligned}
$$

Not a magic bullet to combinatorial optimization. Stationary points of the relaxation sometimes yield good initial guesses.

Abs-Normal Form: Structured Nonsmoothness

A non-smooth function $\phi(\boldsymbol{x})$ is in abs-normal form if

$$
\begin{aligned}
\phi(\boldsymbol{x}) & =f(\boldsymbol{x},|\boldsymbol{z}|) \\
\boldsymbol{z} & =F(\boldsymbol{x},|\boldsymbol{z}|) \quad \partial_{|\boldsymbol{z}|} F \text { strictly lower triangular }
\end{aligned}
$$

such that $z_{1}=F(\boldsymbol{x})$ and $z_{k}=F\left(\boldsymbol{x},\left|z_{1}\right|, \ldots,\left|z_{k-1}\right|\right)$ for $k>1$.
Abs-Normal forms are amenable to automatic differentiation, e.g. ADOL-C.
Abs-normal forms are identical to their counterpart complementarity problems in vertical form:

$$
\begin{aligned}
\phi(\boldsymbol{x})= & f(\boldsymbol{x}, \boldsymbol{u}+\boldsymbol{v}) \\
& \boldsymbol{u}-\boldsymbol{v}=F(\boldsymbol{x}, \boldsymbol{u}+\boldsymbol{v}) \\
& \mathbf{0} \leqslant \boldsymbol{u} \perp \boldsymbol{v} \geqslant \mathbf{0}
\end{aligned}
$$

Why MPCCs mean Trouble

Example:

$$
\left.\begin{array}{ll}
\min _{\boldsymbol{x} \in \mathbb{R}^{3}} & x_{1}+x_{2}-x_{3} \\
\text { s.t. } & -4 x_{1}+x_{3} \leqslant 0 \\
& -4 x_{2}+x_{3} \leqslant 0
\end{array} \right\rvert\, \mu_{1}, \mu_{2}
$$

Global Minimum: Observe $x_{3} \leqslant 4 \min \left\{x_{1}, x_{2}\right\}=0$, hence $\boldsymbol{x}^{*}=(0,0,0)$.

Why MPCCs mean Trouble

Example:

$$
\left.\begin{array}{ll}
\min _{\boldsymbol{x} \in \mathbb{R}^{3}} & x_{1}+x_{2}-x_{3} \\
\text { s.t. } & -4 x_{1}+x_{3} \leqslant 0 \\
& -4 x_{2}+x_{3} \leqslant 0
\end{array} \right\rvert\, \mu_{1}, \mu_{2}
$$

Global Minimum: Observe $x_{3} \leqslant 4 \min \left\{x_{1}, x_{2}\right\}=0$, hence $\boldsymbol{x}^{*}=(0,0,0)$.
Remember the KKT theorem and try to verify stationarity:

$$
\left(\begin{array}{ccccc}
-4 & \cdot & -1 & \cdot & \cdot \\
\cdot & -4 & \cdot & -1 & \cdot \\
1 & 1 & \cdot & \cdot & \cdot
\end{array}\right)\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3} \\
\mu_{4} \\
\lambda
\end{array}\right)=-\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

Result: $\mu_{3}=1-4 \mu_{1} \geqslant 0, \mu_{4}=1-4 \mu_{2} \geqslant 0$,

$$
\mu_{1}+\mu_{2}=1, \mu_{1} \geqslant 0, \mu_{2} \geqslant 0
$$

This is impossible, so the global minimizer x^{*} apparently is not a KKT point!

Why MPCCs are Trouble

Example:

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{2}} \psi(\boldsymbol{x}) \text { s.t. } 0 \leqslant x_{1}, 0 \leqslant x_{2}, x_{1} \cdot x_{2}=0
$$

Observation:

- If $x_{1}>0, x_{2}=0$ then:

Gradients of active constraints $(0,1)^{\top}$ and $\left(0, x_{1}\right)^{\top}$ linearly dependent

- If $x_{1}=0, x_{2}>0$ then:

Gradients of active constraints $(1,0)^{T}$ and $\left(x_{2}, 0\right)^{T}$ linearly dependent

- If $x_{1}=0, x_{2}=0$ then:

Gradients of active constraints $(0,1)^{T},(0,1)^{T},(0,0)^{T}$ linearly dependent
\Longrightarrow Lack of Linear Independence Constraint Qualification!
Indeed: Mangasarian-Fromovitz CQ and Abadie's CQ also don't hold. Hence, the KKT theorem does not hold.

Basics on Cones

Cones:

- $\mathcal{C} \subseteq \mathbb{R}^{n}$ a cone if $\alpha \boldsymbol{x} \in \mathcal{C}$ for all $\boldsymbol{x} \in \mathcal{C}$ and all real $\alpha \geqslant 0$

Given cone $\mathcal{C} \subseteq \mathbb{R}^{n}$,

- $\mathcal{C}^{+}:=\left\{\boldsymbol{d} \mid \boldsymbol{d}^{\top} \boldsymbol{x} \geqslant 0 \forall \boldsymbol{x} \in \mathcal{C}\right\}$ is the dual cone and
- $\mathcal{C}^{-}:=\left\{\boldsymbol{d} \mid \boldsymbol{d}^{\top} \boldsymbol{x} \leqslant 0 \forall \boldsymbol{x} \in \mathcal{C}\right\}$ is the polar cone

Basics on Cones

Cones:

- $\mathcal{C} \subseteq \mathbb{R}^{n}$ a cone if $\alpha \boldsymbol{x} \in \mathcal{C}$ for all $\boldsymbol{x} \in \mathcal{C}$ and all real $\alpha \geqslant 0$

Given cone $\mathcal{C} \subseteq \mathbb{R}^{n}$,

- $\mathcal{C}^{+}:=\left\{\boldsymbol{d} \mid \boldsymbol{d}^{\top} \boldsymbol{x} \geqslant 0 \forall \boldsymbol{x} \in \mathcal{C}\right\}$ is the dual cone and

- $\mathcal{C}^{-}:=\left\{\boldsymbol{d} \mid \boldsymbol{d}^{\top} \boldsymbol{x} \leqslant 0 \forall \boldsymbol{x} \in \mathcal{C}\right\}$ is the polar cone

Identities:

- $\mathfrak{C}^{-}=\overline{\operatorname{conve}}$ and $\left(\mathrm{C}^{-}\right)^{-}=\overline{\mathrm{conve}}$
- $\left(\mathfrak{C}_{1} \cap \mathcal{C}_{2}\right)^{-}=\overline{\mathcal{C}_{1}^{-}+\mathcal{C}_{2}^{-}}$

Tangent Cone

Tangent:
$\boldsymbol{d} \in \mathbb{R}^{n}$ is tangent to \mathcal{F} at $\overline{\boldsymbol{x}}$ if there is a sequence $\left\{\boldsymbol{y}_{k}\right\} \subset \mathcal{F}$ with $\lim _{k \rightarrow \infty} \boldsymbol{y}_{k} \rightarrow \overline{\boldsymbol{x}}$ and a sequence $\left\{t_{k}\right\} \subset \mathbb{R} \geqslant 0$ with $\lim _{k \rightarrow \infty} t_{k}=0$ such that

$$
\lim _{k \rightarrow \infty} t_{k}\left(\boldsymbol{y}_{k}-\overline{\boldsymbol{x}}\right)=\boldsymbol{d}
$$

Tangent Cone:
$T(\mathcal{F}, \overline{\boldsymbol{x}})=\left\{\boldsymbol{d} \in \mathbb{R}^{n} \mid \boldsymbol{d}\right.$ tangent to \mathcal{F} at $\left.\overline{\boldsymbol{x}}\right\}$ is the tangent cone.
$P(\mathcal{F}, \overline{\boldsymbol{x}})=\overline{\operatorname{conv} T(\mathcal{F}, \overline{\boldsymbol{x}})}=T(\mathcal{F}, \overline{\boldsymbol{x}})^{--}$is the pseudotangent cone.

$1^{\text {st }}$ Order Necessary Optimality Conditions

Consider the problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \psi(\boldsymbol{x}) \text { s.t. } \boldsymbol{x} \in \mathcal{F}
$$

with feasible set $\mathcal{F} \subset \mathbb{R}^{n}$.

Theorem ($1^{\text {st }}$ Order Necessary Optimality Condition)

Let $\overline{\boldsymbol{x}}$ minimize ψ over \mathcal{F}. Then

$$
\nabla \psi(\overline{\boldsymbol{x}}) \in P^{+}(\mathcal{F}, \overline{\boldsymbol{x}}):=\left\{\boldsymbol{q} \in \mathbb{R}^{n} \mid \boldsymbol{q}^{T} \boldsymbol{d} \geqslant 0 \forall \boldsymbol{d} \in P(\mathcal{F}, \overline{\boldsymbol{x}})\right\}
$$

holds, and $P(\mathcal{F}, \overline{\boldsymbol{x}})=\overline{\operatorname{conv} T(\mathcal{F}, \overline{\boldsymbol{x}})}$ denotes the pseudotangent cone of \mathcal{F} at $\overline{\boldsymbol{x}}$.
This theorem is great because we don't have to impose particular structural restrictions on the set \mathcal{F}.

Proof ($1^{\text {st }}$ Order Necessary Optimality Condition)

Proof:

1. Let $d \in T(\mathcal{F}, \overline{\boldsymbol{x}})$. Then by definition, there is $\left\{\boldsymbol{x}_{k}\right\}_{k} \subset \mathcal{F}$ with $\lim _{k \rightarrow \infty} \boldsymbol{x}_{k}=\overline{\boldsymbol{x}}$ and $\left\{t_{k}\right\}_{k} \subset \mathbb{R}_{>0}$ with $\lim _{k \rightarrow \infty} t_{k}=0$ and $\lim _{k \rightarrow \infty} t_{k}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right)=d$.

Proof ($1^{\text {st }}$ Order Necessary Optimality Condition)

Proof:

1. Let $d \in T(\mathcal{F}, \overline{\boldsymbol{x}})$. Then by definition, there is $\left\{\boldsymbol{x}_{k}\right\}_{k} \subset \mathcal{F}$ with $\lim _{k \rightarrow \infty} \boldsymbol{x}_{k}=\overline{\boldsymbol{x}}$ and $\left\{t_{k}\right\}_{k} \subset \mathbb{R}_{>0}$ with $\lim _{k \rightarrow \infty} t_{k}=0$ and $\lim _{k \rightarrow \infty} t_{k}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right)=d$.
2. As $\overline{\boldsymbol{x}}$ minimizes ψ over $\mathcal{F}, \psi\left(\boldsymbol{x}_{k}\right)-\psi(\overline{\boldsymbol{x}}) \geqslant 0$ for all $k \geqslant 0$ holds.

Proof ($1^{\text {st }}$ Order Necessary Optimality Condition)

Proof:

1. Let $d \in T(\mathcal{F}, \overline{\boldsymbol{x}})$. Then by definition, there is $\left\{\boldsymbol{x}_{k}\right\}_{k} \subset \mathcal{F}$ with $\lim _{k \rightarrow \infty} \boldsymbol{x}_{k}=\overline{\boldsymbol{x}}$ and $\left\{t_{k}\right\}_{k} \subset \mathbb{R}_{>0}$ with $\lim _{k \rightarrow \infty} t_{k}=0$ and $\lim _{k \rightarrow \infty} t_{k}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right)=d$.
2. As $\overline{\boldsymbol{x}}$ minimizes ψ over $\mathcal{F}, \psi\left(\boldsymbol{x}_{k}\right)-\psi(\overline{\boldsymbol{x}}) \geqslant 0$ for all $k \geqslant 0$ holds.
3. By differentiability of ψ at $\overline{\boldsymbol{x}}$,

$$
\psi\left(\boldsymbol{x}_{k}\right)-\psi(\overline{\boldsymbol{x}})=\nabla \psi(\overline{\boldsymbol{x}})^{T}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right)+o\left(\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\|\right) .
$$

Proof ($1^{\text {st }}$ Order Necessary Optimality Condition)

Proof:

1. Let $d \in T(\mathcal{F}, \overline{\boldsymbol{x}})$. Then by definition, there is $\left\{\boldsymbol{x}_{k}\right\}_{k} \subset \mathcal{F}$ with $\lim _{k \rightarrow \infty} \boldsymbol{x}_{k}=\overline{\boldsymbol{x}}$ and $\left\{t_{k}\right\}_{k} \subset \mathbb{R}_{>0}$ with $\lim _{k \rightarrow \infty} t_{k}=0$ and $\lim _{k \rightarrow \infty} t_{k}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right)=d$.
2. As $\overline{\boldsymbol{x}}$ minimizes ψ over $\mathcal{F}, \psi\left(\boldsymbol{x}_{k}\right)-\psi(\overline{\boldsymbol{x}}) \geqslant 0$ for all $k \geqslant 0$ holds.
3. By differentiability of ψ at $\overline{\boldsymbol{x}}$,

$$
\psi\left(\boldsymbol{x}_{k}\right)-\psi(\overline{\boldsymbol{x}})=\nabla \psi(\overline{\boldsymbol{x}})^{T}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right)+o\left(\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\|\right) .
$$

4. Then, we have

$$
\nabla \psi(\overline{\boldsymbol{x}})^{\top} t_{k}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right) \geqslant-\frac{o\left(\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\|\right)}{\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\|} t_{k}\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\| .
$$

Proof ($1^{\text {st }}$ Order Necessary Optimality Condition)

Proof:

1. Let $d \in T(\mathcal{F}, \overline{\boldsymbol{x}})$. Then by definition, there is $\left\{\boldsymbol{x}_{k}\right\}_{k} \subset \mathcal{F}$ with $\lim _{k \rightarrow \infty} \boldsymbol{x}_{k}=\overline{\boldsymbol{x}}$ and $\left\{t_{k}\right\}_{k} \subset \mathbb{R}_{>0}$ with $\lim _{k \rightarrow \infty} t_{k}=0$ and $\lim _{k \rightarrow \infty} t_{k}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right)=d$.
2. As $\overline{\boldsymbol{x}}$ minimizes ψ over $\mathcal{F}, \psi\left(\boldsymbol{x}_{k}\right)-\psi(\overline{\boldsymbol{x}}) \geqslant 0$ for all $k \geqslant 0$ holds.
3. By differentiability of ψ at $\overline{\boldsymbol{x}}$,

$$
\psi\left(\boldsymbol{x}_{k}\right)-\psi(\overline{\boldsymbol{x}})=\nabla \psi(\overline{\boldsymbol{x}})^{T}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right)+o\left(\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\|\right) .
$$

4. Then, we have

$$
\nabla \psi(\overline{\boldsymbol{x}})^{\top} t_{k}\left(\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right) \geqslant-\frac{o\left(\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\|\right)}{\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\|} t_{k}\left\|\boldsymbol{x}_{k}-\overline{\boldsymbol{x}}\right\| .
$$

5. Now let $k \rightarrow \infty$ and obtain

$$
\nabla \psi(\overline{\boldsymbol{x}})^{T} d \geqslant 0
$$

Some more structure

If don't know anything about \mathcal{F}, the condition $\boldsymbol{q} \in P^{+}(\mathcal{F}, \overline{\boldsymbol{x}})$ is difficult to check computationally.

Hence, we impose slightly more structure by considering the problem

$$
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} \psi(\boldsymbol{x}) \text { s.t. } \boldsymbol{x} \in \mathcal{C}, \boldsymbol{a}(\boldsymbol{x}) \in \mathcal{B}
$$

where now $\mathcal{F}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{x} \in \mathcal{C}, \boldsymbol{a}(\boldsymbol{x}) \in \mathcal{B}\right\}$ and $\boldsymbol{a}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \mathcal{B} \subset \mathbb{R}^{m}$.
The sets \mathcal{B}, \mathcal{C} are assumed to be easy enough to check membership in cones, e.g. by looking at signs of some vector entries.

Cones: $P(\mathcal{F}, \overline{\boldsymbol{x}}), P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$
MPCCs: We'll try to encode complementarities in $\mathcal{B}, \mathcal{C}, \boldsymbol{a}(\boldsymbol{x})$ in a moment.

Some more structure

Guignard's KKT Theorem

Denote by

$$
K:=\left\{\boldsymbol{d} \in \mathbb{R}^{n} \mid \nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))\right\}
$$

the cone of first order feasible directions at $\overline{\boldsymbol{x}}$ w.r.t. $\boldsymbol{a}(\overline{\boldsymbol{x}}) \in \mathcal{B}$, and denote by

$$
H:=\left\{\boldsymbol{q} \in \mathbb{R}^{n} \mid \boldsymbol{q}=\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}, \boldsymbol{\lambda} \in P^{-}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))\right\}
$$

the cone of first order optimal gradients at $\overline{\boldsymbol{x}}$ w.r.t. $\boldsymbol{a}(\overline{\boldsymbol{x}}) \in \mathcal{B}$.

Theorem (Guignard's KKT Theorem)

Let H be closed and let G be some closed convex cone such that $K \cap G=P(\mathcal{F}, \overline{\boldsymbol{x}})$ and that $K^{-}+G^{-}$is closed.
If $\overline{\boldsymbol{x}}$ minimizes $\psi(\boldsymbol{x})$ over \mathcal{F}, there is $\boldsymbol{\lambda} \in P^{+}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ such that

$$
-\nabla \psi(\overline{\boldsymbol{x}})+\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})) \cdot \boldsymbol{\lambda} \in \mathcal{G}^{-} .
$$

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in \mathcal{G}^{-}$.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in G^{-}$.
4. Let $\boldsymbol{d} \in H^{-}$. Then $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^{T} \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in \mathcal{G}^{-}$.
4. Let $\boldsymbol{d} \in H^{-}$. Then $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^{T} \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
5. Suppose now that $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^{k} is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^{m}$ with

$$
(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0 \geqslant \boldsymbol{\mu}^{T} \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}})) .
$$

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in \mathcal{G}^{-}$.
4. Let $\boldsymbol{d} \in H^{-}$. Then $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^{T} \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
5. Suppose now that $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^{k} is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^{m}$ with

$$
(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0 \geqslant \boldsymbol{\mu}^{\top} \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}})) .
$$

6. Therefore, $\boldsymbol{\mu} \in P^{-}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in H$.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in \mathcal{G}^{-}$.
4. Let $\boldsymbol{d} \in H^{-}$. Then $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^{T} \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
5. Suppose now that $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^{k} is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^{m}$ with

$$
(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0 \geqslant \boldsymbol{\mu}^{\top} \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}})) .
$$

6. Therefore, $\boldsymbol{\mu} \in P^{-}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in H$.
7. But this contradicts $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0$.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in \mathcal{G}^{-}$.
4. Let $\boldsymbol{d} \in H^{-}$. Then $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^{T} \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
5. Suppose now that $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^{k} is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^{m}$ with

$$
(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0 \geqslant \boldsymbol{\mu}^{\top} \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}})) .
$$

6. Therefore, $\boldsymbol{\mu} \in P^{-}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in H$.
7. But this contradicts $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0$.
8. Hence $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in \mathcal{G}^{-}$.
4. Let $\boldsymbol{d} \in H^{-}$. Then $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^{T} \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
5. Suppose now that $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^{k} is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^{m}$ with

$$
(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0 \geqslant \boldsymbol{\mu}^{\top} \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}})) .
$$

6. Therefore, $\boldsymbol{\mu} \in P^{-}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in H$.
7. But this contradicts $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0$.
8. Hence $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
9. That is, $\boldsymbol{d} \in K$ holds for all $\boldsymbol{d} \in H^{-}$. In other words, $H^{-} \subseteq K$.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in \mathcal{G}^{-}$.
4. Let $\boldsymbol{d} \in H^{-}$. Then $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^{T} \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
5. Suppose now that $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^{k} is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^{m}$ with

$$
(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0 \geqslant \boldsymbol{\mu}^{\top} \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}})) .
$$

6. Therefore, $\boldsymbol{\mu} \in P^{-}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in H$.
7. But this contradicts $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0$.
8. Hence $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
9. That is, $\boldsymbol{d} \in K$ holds for all $\boldsymbol{d} \in H^{-}$. In other words, $H^{-} \subseteq K$.
10. Because H and K are closed convex cones, $K^{-} \subseteq H$ follows.

Proof (Guignard's KKT Theorem)

1. By the previous theorem, $-\nabla \psi(\overline{\boldsymbol{x}}) \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
2. By assumption, $K^{-}+G^{-}$is closed, hence $K^{-}+G^{-}=P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})$.
3. Then, there is $\boldsymbol{q} \in K^{+}$such that $-\nabla \psi(\overline{\boldsymbol{x}})+\boldsymbol{q} \in \mathcal{G}^{-}$.
4. Let $\boldsymbol{d} \in H^{-}$. Then $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^{T} \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
5. Suppose now that $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^{k} is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^{m}$ with

$$
(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0 \geqslant \boldsymbol{\mu}^{\top} \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}})) .
$$

6. Therefore, $\boldsymbol{\mu} \in P^{-}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in H$.
7. But this contradicts $(\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^{T} \boldsymbol{d}>0$.
8. Hence $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d} \in P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$.
9. That is, $\boldsymbol{d} \in K$ holds for all $\boldsymbol{d} \in H^{-}$. In other words, $H^{-} \subseteq K$.
10. Because H and K are closed convex cones, $K^{-} \subseteq H$ follows.
11. Then, there is $\boldsymbol{\lambda} \in P^{+}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ with $-\nabla \psi(\overline{\boldsymbol{x}})+\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda} \in \mathcal{G}^{-}$.

Application to NLPs

Let us reconcile this with the KKT theorem for NLPs you all know.

$$
\begin{array}{rl}
\min _{\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{s} \in \mathbb{R}^{\boldsymbol{c}}} & F(x) \\
\text { s.t. } & G(\boldsymbol{x})=0, H(\boldsymbol{x})-\boldsymbol{s}=0 \\
& \boldsymbol{s} \geqslant \mathbf{0}
\end{array}
$$

In our setting $\mathcal{F}=\{(\boldsymbol{x}, \boldsymbol{s}) \in \mathcal{C} \mid \boldsymbol{a}(\boldsymbol{x}, \boldsymbol{s}) \in \mathcal{B}\}$, we have

$$
\boldsymbol{a}(\boldsymbol{x})=(\mathcal{G}(\boldsymbol{x}), H(\boldsymbol{x})-\boldsymbol{s}), \mathcal{B}=\{\mathbf{0}\}, \mathcal{C}=\mathbb{R}^{n} \times \mathbb{R}_{\geqslant 0}^{c} .
$$

Cones:

- $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}, \overline{\boldsymbol{s}}))=\{\mathbf{0}\}$
- $K=\left\{\left(\boldsymbol{d}_{x}, \boldsymbol{d}_{s}\right) \mid \nabla G(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}_{x}=\mathbf{0}, \nabla H(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}_{x}-\boldsymbol{d}_{s}=\mathbf{0}\right\}$
- $H=\left\{\left(\boldsymbol{q}_{x}, \boldsymbol{q}_{s}\right) \mid \boldsymbol{q}_{x}=\nabla G(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}_{G}+\nabla H(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}_{H}, \boldsymbol{q}_{s}=-\boldsymbol{\lambda}_{H},\left(\boldsymbol{\lambda}_{G}, \boldsymbol{\lambda}_{H}\right) \in \mathbb{R}^{2 c}\right\}$

Also, K and H are closed convex cones, as required.

Guignard's Constraint Qualification (GCQ)

- We're supposed to choose a set G to satisfy the prerequisite. If we let

$$
G=P(\mathcal{C}, \overline{\boldsymbol{x}}, \overline{\boldsymbol{s}})=\left\{\left(\boldsymbol{d}_{x}, \boldsymbol{d}_{s}\right) \in \mathbb{R}^{n+c} \mid d_{s, i} \geqslant 0 \text { if } \bar{s}_{i}=0\right\},
$$

the prerequisite of the theorem $K \cap G \stackrel{!}{=} P(\mathcal{F}, \overline{\mathbf{x}})$ reads

$$
\begin{aligned}
& \left\{\left(\boldsymbol{d}_{x}, \boldsymbol{d}_{s}\right) \mid \nabla G(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}_{x}=\mathbf{0}, \nabla H(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}_{x}-\boldsymbol{d}_{s}=\mathbf{0}, \boldsymbol{d}_{s, i} \leqslant \mathbf{0} \text { if } s_{i}=0\right\} \\
\stackrel{!}{=} & P(\mathcal{F}, \overline{\boldsymbol{x}})=\overline{\operatorname{conv} T(\mathcal{F}, \overline{\boldsymbol{x}})}=(\operatorname{conv} T(\mathcal{F}, \overline{\mathbf{x}}))^{--} .
\end{aligned}
$$

- The left hand side is the linearized cone, and the prerequisite simplifies to

$$
L(\mathcal{F}, \overline{\boldsymbol{x}})^{-}=T(\mathcal{F}, \overline{\boldsymbol{x}})^{-},
$$

"the dual of the linearized cone must equal the dual of the tangent cone".

- This is called Guignard's Constraint Qualification (GCQ), and is the weakest condition under which a variant of the KKT theorem can be proven.

KKT Theorem under GCQ

- The theorem's statement now reads:

If $\overline{\boldsymbol{x}}$ minimizes $\psi(\boldsymbol{x})$ over \mathcal{F} and GCQ holds for \mathcal{F} at $\overline{\boldsymbol{x}}$, there are $\boldsymbol{\lambda}_{G}, \boldsymbol{\lambda}_{H}$ such that

$$
\begin{aligned}
-\nabla_{x} \psi(\overline{\boldsymbol{x}})+\nabla G(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}_{G}+\nabla H(\overline{\boldsymbol{x}}) \cdot \lambda_{H} & =0 \\
\lambda_{H, i} & =0 \text { if } s_{i}>0 \\
\lambda_{H, i} & \leqslant 0 \text { if } s_{i}=0
\end{aligned}
$$

This is the usual form of the KKT theorem.

- Notes:
$P^{+}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))=\mathbb{R}^{c}$
$\mathcal{G}^{-}(\mathcal{F}, \boldsymbol{x}, \boldsymbol{s})=\{0\}^{n} \times\left\{\lambda_{H} \mid \lambda_{H, i}=0\right.$ if $s_{i}>0, \lambda_{H, i} \leqslant 0$ if $\left.s_{i}=0\right\}$

Application to MPCCs: First Attempt

Let's now try to obtain an optimality condition for the most simple MPCC

$$
\min \psi(u, v) \text { s.t. } 0 \leqslant u \perp v \geqslant 0
$$

Certainly, ψ can be chosen such that $\boldsymbol{x}^{*}=\left(u^{*}, v^{*}\right)=(0,0)$ is a minimizer.
Encode $\mathcal{F}: \mathbf{a}(\boldsymbol{x})=u \cdot v, \mathcal{B}=\{0\}, \mathcal{C}=\mathbb{R}_{\geqslant 0}^{2}$.

Cones:

- $K=\mathbb{R}^{2}$ because $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})=\mathbf{0}$, and $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))=\{\mathbf{0}\}, P^{+}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))=\mathbb{R}^{2}$
- $P(\mathcal{F}, \overline{\boldsymbol{x}})=\mathcal{F}$, a cone but not convex; $P^{-}(\mathcal{F}, \overline{\boldsymbol{x}})=\mathbb{R}_{\leqslant 0}^{2}$
- $G=P(\mathcal{F}, \overline{\boldsymbol{x}})$ is the only (and trivial) choice that satisfies $K \cap G=\mathcal{P}(\mathcal{F}, \overline{\boldsymbol{x}})$
- Then $G^{-}=\mathbb{R}_{\leqslant 0}^{2}$

Guignard's KKT theorem now yields the following statement:
If $\overline{\boldsymbol{x}}$ minimizes ψ over \mathcal{F}, "there is $\boldsymbol{\lambda} \in \mathbb{R}^{2}$ such that $-\nabla \psi(\overline{\boldsymbol{x}})+\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda} \leqslant 0$ ".

Application to MPCCs: Second Attempt

This is very weak. Clearly, our encoding is to blame. Here's a better idea:
Encode: $\boldsymbol{a}(\boldsymbol{x})=(u, v), \mathcal{B}=\left(\mathbb{R}_{\geqslant 0} \times\{0\}\right) \cup\left(\{0\} \times \mathbb{R}_{\geqslant 0}\right), \mathcal{C}=\mathbb{R}^{2}$.
Cones:

- $K=\mathcal{B}$ because $\nabla \boldsymbol{a}(\overline{\boldsymbol{x}})=\boldsymbol{I}$, and $P(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))=\mathcal{B}, P^{+}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))=\mathbb{R}_{\geqslant 0}^{2}$
- $G=\mathbb{R}^{2}$ now satisfies $K \cap G=\mathcal{P}(\mathcal{F}, \overline{\boldsymbol{x}})$
- Then $G^{-}=\{0\}$

Guignard's theorem now yields the following, much improved statement:
If $\overline{\boldsymbol{x}}$ minimizes ψ over \mathcal{F}, "there is $\boldsymbol{\lambda} \in \mathbb{R}_{\geqslant 0}^{2}$ such that $-\nabla \psi(\overline{\boldsymbol{x}})+\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}=0$."

MPCC-Lagrangian Function

The second encoding discourages the notation $u \cdot v=0$ and motivates the introduction of a pair of multiplier vectors for the complementarity constraint:

MPCC as NLP:

$$
\begin{array}{rl}
\min _{\boldsymbol{x} \in \mathbb{R}^{n}} & F(\boldsymbol{x}) \\
\text { s.t. } \mathbf{0} & =G(\boldsymbol{x}) \cdot H(\boldsymbol{x}) \\
\mathbf{0} & \leqslant G(\boldsymbol{x}), \mathbf{0} \leqslant H(\boldsymbol{x})
\end{array}
$$

NLP-Lagrangian:

$$
\mathcal{L}\left(\boldsymbol{x}, \boldsymbol{\lambda}_{G H}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}\right):=F(\boldsymbol{x})-\boldsymbol{\lambda}_{G H}^{\top}(G(x) \cdot H(\boldsymbol{x}))-\boldsymbol{\mu}_{G}^{\top} G(\boldsymbol{x})-\boldsymbol{\mu}_{H}^{\top} H(\boldsymbol{x}) .
$$

MPCC:

$$
\begin{aligned}
& \min _{\boldsymbol{x} \in \mathbb{R}^{n}} F(\boldsymbol{x}) \\
& \text { s.t. } \mathbf{0} \leqslant G(\boldsymbol{x}) \perp H(\boldsymbol{x}) \geqslant \mathbf{0}
\end{aligned}
$$

MPCC-Lagrangian:

$$
\mathcal{L}_{\mathrm{MPCC}}\left(\boldsymbol{x}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}\right):=F(\boldsymbol{x})-\boldsymbol{\mu}_{G}^{\top} G(\boldsymbol{x})-\boldsymbol{\mu}_{H}^{\top} H(\boldsymbol{x})
$$

Active Sets

Active sets of strict complementarities:
$I_{+0}(\overline{\boldsymbol{x}}):=\left\{i \mid G_{i}(\overline{\boldsymbol{x}})>0, H_{i}(\overline{\boldsymbol{x}})=0\right\}$
$I_{0+}(\overline{\boldsymbol{x}}):=\left\{i \mid G_{i}(\overline{\boldsymbol{x}})=0, H_{i}(\overline{\boldsymbol{x}})>0\right\}$

We say that Lower-Level Strict Complementarity (LLSCC) is satisfied at $\overline{\boldsymbol{x}}$ if $I_{00}(\overline{\boldsymbol{x}})=\emptyset$. Then, the constraint $\mathbf{0}=\boldsymbol{G}(\boldsymbol{x}) \cdot H(\boldsymbol{x})$ can locally be disposed of. The MPCC locally looks like an NLP satisfying constraint qualifications.
Assuming (LLSCC) is usually held for way too strong a restriction to be of practical interest.

Strong Stationarity (S)

Remember that GCQ had a chance of being satisfied by an MPCC.
Then, if $\overline{\boldsymbol{x}}$ minimizes ψ over \mathcal{F}, there is $\boldsymbol{\lambda} \in P^{+}(\mathcal{B}, \boldsymbol{a}(\overline{\boldsymbol{x}}))$ such that

$$
-\nabla \psi(\overline{\boldsymbol{x}})+\nabla \boldsymbol{a}(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda} \in P^{-}(\mathcal{F}, \overline{\boldsymbol{x}}) .
$$

Strong or S-Stationarity: If $\overline{\boldsymbol{x}} \in \mathcal{F}$ is a local minimizer of MPCC and GCQ holds at $\overline{\boldsymbol{x}}$, there are multipliers $\boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}$ such that

$$
\begin{aligned}
& \nabla \mathcal{L}_{\mathrm{MPCC}}\left(\overline{\boldsymbol{x}}, \boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}\right)=\mathbf{0} \\
& \begin{aligned}
\mu_{D} & \geqslant 0 \\
\mu_{D, i} & =0 \text { if } D_{i}(\overline{\boldsymbol{x}})>0 \\
\mu_{G, i} \geqslant 0, \mu_{H, i} & \geqslant 0 \text { if } i \in I_{00}(\overline{\boldsymbol{x}}) \\
\mu_{H, i} & =0 \text { if } i \in I_{0+}(\overline{\boldsymbol{x}}) \\
\mu_{G, i} & =0 \text { if } i \in I_{+0}(\overline{\boldsymbol{x}})
\end{aligned}
\end{aligned}
$$

S-Stationarity multiplier set

Optimal multiplier signs for $i \in I_{00}(\overline{\boldsymbol{x}})$ under S-stationarity.

MPCC-Linear Independence CQ

We say that MPCC-Linear Independence CQ (MPCC-LICQ) holds at $\overline{\boldsymbol{x}} \in \mathcal{F}$ if the gradients

$$
\begin{array}{llll}
(\nabla C(\overline{\boldsymbol{x}}) & \nabla D_{i}(\overline{\boldsymbol{x}}) & \nabla G_{i}(\overline{\boldsymbol{x}}) & \left.\nabla H_{i}(\overline{\boldsymbol{x}})\right) \\
& D_{i}(\overline{\boldsymbol{x}})=0 & i \in I_{0+}(\overline{\boldsymbol{x}}) \cup I_{00}(\overline{\boldsymbol{x}}) & i \in I_{+0}(\overline{\boldsymbol{x}}) \cup I_{00}(\overline{\boldsymbol{x}})
\end{array}
$$

are linearly independent.

MPCC-LICQ is LICQ for the tightened NLP at $\overline{\boldsymbol{x}}$:
$\lambda_{H, i}$

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & F(\boldsymbol{x}) \\
\text { s.t. } & C(\boldsymbol{x})=0 \\
\quad D(\boldsymbol{x}) \geqslant 0 \\
\quad G_{i}(\boldsymbol{x})=0, H_{i}(\boldsymbol{x}) \geqslant 0 \text { if } i \in I_{0+}(\overline{\boldsymbol{x}}) \\
\quad G_{i}(\boldsymbol{x}) \geqslant 0, H_{i}(\boldsymbol{x})=0 \text { if } i \in I_{+0}(\overline{\boldsymbol{x}}) \\
& G_{i}(\boldsymbol{x})=0, H_{i}(\boldsymbol{x})=0 \text { if } i \in I_{00}(\overline{\boldsymbol{x}})
\end{array}
$$

MPCC-LICQ implies GCQ

Theorem

If MPCC-LICQ holds at $\overline{\boldsymbol{x}} \in \mathcal{F}$, then GCQ holds at $\overline{\boldsymbol{x}}$.
Sketch of proof: For sets $P \subseteq I_{00}(\overline{\boldsymbol{x}})$ we have

$$
T(\mathcal{F}, \overline{\boldsymbol{x}})=\bigcup_{P \subseteq l_{00}(\overline{\boldsymbol{x}})} T(\mathcal{F}(P), \overline{\boldsymbol{x}}) \quad \Longrightarrow \quad T(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ} \bigcap_{P \subseteq l_{00}(\overline{\boldsymbol{x}})} T(\mathcal{F}(P), \overline{\boldsymbol{x}})^{\circ}
$$

If a constraint qualification holds at $\overline{\boldsymbol{x}}$ for all sets $\mathcal{F}(P)$, we have

$$
T(\mathcal{F}, \overline{\boldsymbol{X}})^{\circ}=\bigcap_{P \subseteq l_{00}(\overline{\boldsymbol{x}})} L(\mathcal{F}(P), \overline{\boldsymbol{x}})^{\circ} .
$$

For GCQ to hold at $\overline{\boldsymbol{x}}$, we now have to show $T(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ} \subseteq L(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ}$, as $T(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ} \supseteq L(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ}$ always holds.

MPCC-LICQ implies GCQ

Sketch of proof, continued: The cones $L(\mathcal{F}(P), \overline{\boldsymbol{x}})^{\circ}$ have the explicit representations $L(\mathcal{F}(P), \overline{\boldsymbol{x}})=$

$$
\left\{\begin{array}{c|l}
\boldsymbol{w} & \begin{array}{l}
\boldsymbol{w}=\nabla C(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}_{C}+\nabla D(\overline{\boldsymbol{x}}) \cdot \mu_{D}+\nabla G(\overline{\boldsymbol{x}}) \cdot \mu_{G}+\nabla H(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\mu}_{H} \\
\mu_{D, i}=0 \text { if } D_{i}(\overline{\boldsymbol{x}})>0, \mu_{D, i} \geqslant 0 \text { if } D_{i}(\overline{\boldsymbol{x}}) \geqslant 0 \\
\mu_{G, i}=0 \text { if } i \in I_{+0}(\overline{\boldsymbol{x}}), \mu_{G, i} \geqslant 0 \text { if } i \in P^{C} \\
\mu_{H, i}=0 \text { if } i \in I_{0+}(\overline{\boldsymbol{x}}), \mu_{H, i} \geqslant 0 \text { if } i \in P
\end{array}
\end{array}\right\} .
$$

MPCC-LICQ implies a CQ for every $\mathcal{F}(P)$. Now for any element $\boldsymbol{w} \in T(\mathcal{F}(P), \overline{\boldsymbol{x}})^{\circ}$, use this to show that for every P there exist vectors $\boldsymbol{\lambda}_{C}$, $\boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}$ such that $\boldsymbol{w} \in L(\mathcal{F}(P), \overline{\boldsymbol{x}})^{\circ}$.

Finally, MPCC-LICQ for all $\mathcal{F}(P)$ implies uniqueness of the multipliers across all $P \subset I_{00}(\overline{\boldsymbol{x}})$. Then $\boldsymbol{w} \in T(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ}$ implies $\boldsymbol{w} \in L(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ}$, which shows that GCQ holds.

S-Stationarity and Local Minimizers

Summarizing, we have just proven the following:
Theorem (S-Stationarity is necessary under MPCC-LICQ)
If MPCC-LICQ holds at $\overline{\boldsymbol{x}} \in \mathcal{F}$, then GCQ holds at $\overline{\boldsymbol{x}}$. If $\overline{\boldsymbol{x}}$ is a local minimum of MPCC, and GCQ holds at $\overline{\boldsymbol{x}}$, then $\overline{\boldsymbol{x}}$ is an S-stationary point.
"Convex" MPCCs satisfy GCQ and permit to also prove the converse:
Theorem (S-Stationarity is sufficient under MPCC-convexity)
If F is convex, D is concave, and C, G, and H are affine linear, then every S-stationary point of MPCC is a local minimum.

On the other hand, we have already seen that GCQ may not hold. Hence, MPCC-LICQ is usually considered too restrictive to serve as a working basis.

Non-smooth minimization

An NCP function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ satisfies

$$
\phi(u, v)=0 \Longleftrightarrow 0 \leqslant u \perp v \geqslant 0 .
$$

Example:

$\phi(u, v)=\min \{u, v\}$

$$
\begin{aligned}
& \min _{\boldsymbol{x} \in \mathbb{R}^{n}} F(\boldsymbol{x}) \\
& \text { s.t. } \phi\left(G_{i}(\boldsymbol{x}), H_{i}(\boldsymbol{x})\right)=0,1 \leqslant i \leqslant c
\end{aligned}
$$

Differentiable NCP-functions necessarily satisfy $\nabla \phi(0,0)=(0,0)^{T}$. Useful NCP-functions are nondifferentiable in (0,0).

Bouligand Subdifferential

Denote by D_{ϕ} the set

$$
D_{\phi}:=\{\boldsymbol{x} \mid \phi \text { is differentiable in } \boldsymbol{x}\} .
$$

The set

$$
\partial^{\mathrm{B}} \phi(\overline{\boldsymbol{x}})=\left\{\boldsymbol{d} \mid \exists\left\{\boldsymbol{x}_{k}\right\} \subseteq D_{\phi}, \lim _{k \rightarrow \infty} \boldsymbol{x}_{k}=\overline{\boldsymbol{x}}: \lim _{k \rightarrow \infty} \phi\left(\boldsymbol{x}_{k}\right)=\boldsymbol{d}\right\}
$$

is called the Bouligand Subdifferential of ϕ at $\overline{\boldsymbol{x}}$.

Bouligand Subdifferential

Denote by D_{ϕ} the set

$$
D_{\phi}:=\{\boldsymbol{x} \mid \phi \text { is differentiable in } \boldsymbol{x}\} .
$$

The set

$$
\partial^{\mathrm{B}} \phi(\overline{\boldsymbol{x}})=\left\{\boldsymbol{d} \mid \exists\left\{\boldsymbol{x}_{k}\right\} \subseteq D_{\phi}, \lim _{k \rightarrow \infty} \boldsymbol{x}_{k}=\overline{\boldsymbol{x}}: \lim _{k \rightarrow \infty} \phi\left(\boldsymbol{x}_{k}\right)=\boldsymbol{d}\right\}
$$

is called the Bouligand Subdifferential of ϕ at $\overline{\boldsymbol{x}}$.
For MPCC with the NCP function $\phi_{i}(\overline{\boldsymbol{x}}):=\phi\left(G_{i}(\overline{\boldsymbol{x}}), H_{i}(\overline{\boldsymbol{x}})\right)$ we find:

- $i \in I_{0+}(\overline{\boldsymbol{x}}): \partial^{\mathrm{B}} \phi_{i}(\overline{\boldsymbol{x}})=\left\{\left(\nabla G_{i}(\overline{\boldsymbol{x}}), 0\right)^{\top}\right\}$
- $i \in I_{+0}(\overline{\boldsymbol{x}}): \partial^{\mathrm{B}} \phi_{i}(\overline{\boldsymbol{x}})=\left\{\left(0, \nabla H_{i}(\overline{\boldsymbol{x}})\right)^{T}\right\}$
- $i \in I_{00}(\overline{\boldsymbol{x}}): \partial^{\mathrm{B}} \phi_{i}(\overline{\boldsymbol{x}})=\left\{\left(\nabla G_{i}(\overline{\boldsymbol{x}}), 0\right)^{T},\left(0, \nabla H_{i}(\overline{\boldsymbol{x}})\right)^{T}\right\}$

Branch or Piece NLPs

We may pick an element of the Bouligand subdifferential by specifying a subset $P \subseteq I_{00}(\overline{\boldsymbol{x}})$ and its complement $P^{C}:=I_{00}(\overline{\boldsymbol{x}}) \backslash P$ relative to $I_{00}(\overline{\boldsymbol{x}})$.
Then define the branch NLP for P at $\overline{\boldsymbol{x}}$:
$(\operatorname{NLP}(\overline{\boldsymbol{x}}, P))$

$$
\begin{array}{rl}
\min _{x \in \mathbb{R}^{n}} & F(\boldsymbol{x}) \\
\text { s.t. } & C(\boldsymbol{x})=\mathbf{0} \\
& D(\boldsymbol{x}) \geqslant \mathbf{0} \\
& G_{i}(\boldsymbol{x})=0, H_{i}(\boldsymbol{x}) \geqslant 0 \text { if } i \in I_{0+}(\overline{\boldsymbol{x}}) \cup P \\
& G_{i}(\boldsymbol{x}) \geqslant 0, H_{i}(\boldsymbol{x})=0 \text { if } i \in I_{+0}(\overline{\boldsymbol{x}}) \cup P^{\mathrm{C}}
\end{array}
$$

There are $2^{\left|l_{0}(\overline{\boldsymbol{x}})\right|}$ branch NLPs in a point $\overline{\boldsymbol{x}} \in \mathcal{F}$. If LLSCC holds, there is only one. Then, in a small neighborhood of $\overline{\boldsymbol{x}}$, MPCC looks like that branch NLP.

Bouligand Stationarity (B)

Bouligand- or B-Stationarity: A point $\overline{\boldsymbol{x}} \in \mathcal{F}$ is called B-stationary if for every $P \subseteq I_{00}(\overline{\boldsymbol{x}})$ there are multipliers $\boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}$ (possibly depending on P) such that

$$
\begin{aligned}
& \nabla \mathcal{L}_{\mathrm{MPCC}}\left(\overline{\boldsymbol{x}}, \boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}\right)=\mathbf{0} \quad \boldsymbol{\mu}_{D} \geqslant \mathbf{0} \\
& \mu_{D, i}=0 \text { if } D_{i}(\overline{\boldsymbol{x}})>0 \\
& \mu_{H, i}=0 \text { if } i \in I_{0+}(\overline{\boldsymbol{x}}) \\
& \mu_{G, i}=0 \text { if } i \in I_{+0}(\overline{\boldsymbol{x}}) \\
& \mu_{H, i} \geqslant 0 \text { if } i \in P \subset I_{00}(\overline{\boldsymbol{x}}) \\
& \mu_{G, i} \geqslant 0 \text { if } i \in P^{C} \subset I_{00}(\overline{\boldsymbol{x}})
\end{aligned}
$$

Theorem

A local minimizer $\overline{\boldsymbol{x}} \in \mathcal{F}$ of MPCC is B-stationary.
A piece $P \subset I_{00}(\overline{\boldsymbol{x}})$ with a non-optimal multiplier is a poly-size certificate for non-B-stationarity. The B -stationarity decision problem is in co-NP (in absence for further CQs) because there are $2^{\left|\log _{0}(\overline{\mathbf{x}})\right|}$ pieces P to check.

B-stationarity multiplier sets

$$
c=1, I_{00}(\overline{\boldsymbol{x}})=\{1\}
$$

Optimal multiplier signs for piece $P=\emptyset$.

Optimal multiplier signs for piece $P=\{1\}$.

Clarke subdifferential

The set

$$
\partial^{\mathrm{C}} \phi(\overline{\boldsymbol{x}}):=\operatorname{conv} \partial^{\mathrm{B}} \phi(\overline{\boldsymbol{x}})
$$

is called the Clarke Subdifferential of ϕ at $\overline{\boldsymbol{x}}$. For MPCC with the NCP function $\phi_{i}(\overline{\boldsymbol{x}}):=\phi\left(G_{i}(\overline{\boldsymbol{x}}), H_{i}(\overline{\boldsymbol{x}})\right)$ we find:

- $i \in I_{0+}(\overline{\boldsymbol{x}}): \partial^{\mathrm{C}} \phi_{i}(\overline{\boldsymbol{x}})=\partial^{\mathrm{B}} \phi_{i}(\overline{\boldsymbol{x}})$
- $i \in I_{+0}(\overline{\boldsymbol{x}}): \partial^{\mathrm{C}} \phi_{i}(\overline{\boldsymbol{x}})=\partial^{\mathrm{B}} \phi_{i}(\overline{\boldsymbol{x}})$
- $i \in I_{00}(\overline{\boldsymbol{x}}): \partial^{\mathrm{C}} \phi_{i}(\overline{\boldsymbol{x}})=\operatorname{conv}\left\{\left(\nabla G_{i}(\overline{\boldsymbol{x}}), 0\right)^{T},\left(0, \nabla H_{i}(\overline{\boldsymbol{x}})\right)^{T}\right\}$

Chain Rule for ∂^{c} :

$$
\partial^{\mathrm{C}}\left(F_{1} \circ F_{2}\right)(\overline{\boldsymbol{x}}) \cdot \boldsymbol{d} \subseteq \operatorname{conv}\left(\partial^{\mathrm{C}} F_{1}\left(F_{2}(\overline{\boldsymbol{x}})\right) \cdot \partial^{\mathrm{C}} F_{2}(\overline{\boldsymbol{x}})\right) \cdot \boldsymbol{d}
$$

and equality holds if either F_{1} is \mathcal{C}^{1} around $F_{2}(\overline{\boldsymbol{x}})$ or F_{2} is \mathfrak{C}^{1} around $\overline{\boldsymbol{x}}$.

Using the Clarke subdifferential in KKT

Applying this chain rule to the NCP function $\phi_{i}(\overline{\boldsymbol{x}})=\min \left(G_{i}(\overline{\boldsymbol{x}}), H_{i}(\overline{\boldsymbol{x}})\right)$ yields the estimate

$$
\begin{aligned}
\partial^{C} \phi_{i}(\overline{\boldsymbol{x}}) & \subseteq \operatorname{conv}\left\{\nabla G_{i}(\overline{\boldsymbol{x}}), \nabla H_{i}(\overline{\boldsymbol{x}})\right\} \\
& =\left\{\left(\xi_{i} \nabla G_{i}(\overline{\boldsymbol{x}}),\left(1-\xi_{i}\right) \nabla H_{i}(\overline{\boldsymbol{x}})\right) \mid 0 \leqslant \xi_{i} \leqslant 1\right\}
\end{aligned}
$$

and equality can be shown by a refined argument.

Using the Clarke subdifferential in KKT

Applying this chain rule to the NCP function $\phi_{i}(\overline{\boldsymbol{x}})=\min \left(G_{i}(\overline{\boldsymbol{x}}), H_{i}(\overline{\boldsymbol{x}})\right)$ yields the estimate

$$
\begin{aligned}
\partial^{\complement} \phi_{i}(\overline{\boldsymbol{x}}) & \subseteq \operatorname{conv}\left\{\nabla G_{i}(\overline{\boldsymbol{x}}), \nabla H_{i}(\overline{\boldsymbol{x}})\right\} \\
& =\left\{\left(\xi_{i} \nabla G_{i}(\overline{\boldsymbol{x}}),\left(1-\xi_{i}\right) \nabla H_{i}(\overline{\boldsymbol{x}})\right) \mid 0 \leqslant \xi_{i} \leqslant 1\right\}
\end{aligned}
$$

and equality can be shown by a refined argument.
Inserting any particular element from $\partial^{C} \phi_{i}(\overline{\boldsymbol{x}})$ (given by a $\boldsymbol{\xi} \in[0,1]^{c}$) into the KKT conditions yields

$$
\nabla F(\overline{\boldsymbol{x}}) \in \sum_{i \in I_{0+}(\overline{\boldsymbol{x}})} \nabla G_{i}(\overline{\boldsymbol{x}}) \cdot \delta_{i}+\sum_{i \in I_{+0}(\overline{\boldsymbol{x}})} \nabla H_{i}(\overline{\boldsymbol{x}}) \cdot \delta_{i}+\sum_{i \in l_{00}(\overline{\boldsymbol{x}})} \operatorname{conv}\left\{\nabla G_{i}(\overline{\boldsymbol{x}}), \nabla H_{i}(\overline{\boldsymbol{x}})\right\} \cdot \delta_{i}
$$

with MPCC multipliers

$$
\lambda_{G, i}=\left\{\begin{array}{ll}
\delta_{i} & \text { if } i \in I_{0+}(\overline{\boldsymbol{x}}) \\
\xi_{i} \delta_{i} & \text { if } i \in I_{00}(\overline{\boldsymbol{x}}) \\
0 & \text { if } i \in I_{+0}(\overline{\boldsymbol{x}})
\end{array} \text { and } \quad \lambda_{H, i}= \begin{cases}0 & \text { if } i \in I_{0+}(\overline{\boldsymbol{x}}) \\
\left(1-\xi_{i}\right) \delta_{i} & \text { if } i \in I_{00}(\overline{\boldsymbol{x}}) \\
\delta_{i} & \text { if } i \in I_{+0}(\overline{\boldsymbol{x}}) .\end{cases}\right.
$$

Clarke stationarity (C)

We may simplify the conditions on $\boldsymbol{\lambda}_{G}$ and $\boldsymbol{\lambda}_{H}$ for the biactive set to

$$
\lambda_{G, i} \cdot \lambda_{H, i}=\xi_{i}\left(1-\xi_{i}\right) \delta_{i}^{2} \geqslant 0, i \in I_{00}(\overline{\boldsymbol{x}}) .
$$

A point $\boldsymbol{x} \in \mathcal{F}$ is called Clarke- or C-stationarity if there are multipliers $\boldsymbol{\lambda}_{C}$, $\boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}$ such that

$$
\begin{aligned}
& \nabla \mathcal{L}_{M P C C}\left(\overline{\boldsymbol{x}}, \boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}\right)=\mathbf{\mu _ { D }} \geqslant \mathbf{0} \\
& \mu_{D, i}=0 \text { if } D_{i}(\overline{\boldsymbol{x}})>0 \\
& \mu_{G, i} \cdot \mu_{H, i} \geqslant 0 \text { if } i \in I_{00}(\overline{\boldsymbol{x}}) \\
& \mu_{H, i}=0 \text { if } i \in I_{0+}(\overline{\boldsymbol{x}}) \\
& \mu_{G, i}=0 \text { if } i \in I_{+0}(\overline{\boldsymbol{x}})
\end{aligned}
$$

C-stationarity multiplier set

C-stationarity ignores trivial descent directions. Algorithmically, it is an unsatisfying concept for MPCCs.

Clarke stationarity (C)

MPCC-Mangasarian-Fromovitz CQ holds at $\overline{\boldsymbol{x}} \in \mathcal{F}$ if the gradients $\nabla C(\overline{\boldsymbol{x}})$ and $\nabla D_{i}(\overline{\boldsymbol{x}})$ for $D_{i}(\overline{\boldsymbol{x}})=0, \nabla G_{i}(\overline{\boldsymbol{x}})$ for $i \in I_{0_{+}}(\overline{\boldsymbol{x}}) \cup I_{00}(\overline{\boldsymbol{x}})$, and $\nabla H_{i}(\overline{\boldsymbol{x}})$ for $i \in I_{+0}(\overline{\boldsymbol{x}}) \cup I_{00}(\overline{\boldsymbol{x}})$ are positively linearly independent.
This means that there are nontrivial multipliers $\boldsymbol{\lambda}_{G}, \boldsymbol{\mu}_{D} \geqslant \mathbf{0}, \boldsymbol{\mu}_{G} \geqslant \mathbf{0}$, and $\boldsymbol{\mu}_{\boldsymbol{H}} \geqslant \mathbf{0}$ such that

$$
\mathbf{0}=\nabla C(\overline{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}+\sum_{i: D_{i} \geqslant 0} \nabla D_{i}(\overline{\boldsymbol{x}}) \cdot \mu_{D, i}+\sum_{I_{0}+\cup /{ }_{100}} \nabla G_{i}(\overline{\boldsymbol{x}}) \cdot \mu_{G, i}+\sum_{I_{+0} \cup 100} \nabla H_{i}(\overline{\boldsymbol{x}}) \cdot \mu_{H, i} .
$$

MPCC-LICQ at $\overline{\boldsymbol{x}}$ implies MPCC-MFCQ at $\overline{\boldsymbol{x}}$.

Theorem

Let $\overline{\boldsymbol{x}}$ be a local minimum of MPCC and let MPCC-MFCQ hold at $\overline{\boldsymbol{x}}$. Then $\overline{\boldsymbol{x}}$ is C-stationary.

Unforunately, many feasible points with descent directions turn out to be C-stationary as well, so the criterion is considered a very weak one.

MPCC-Abadie CQ and MPCC-Guignard CQ

The MPCC-linearized cone is

$$
L_{\mathrm{MPCC}}(\mathcal{F}, \overline{\boldsymbol{x}})=L(\mathcal{F}, \overline{\boldsymbol{x}}) \cap\left\{\boldsymbol{d} \mid\left(\nabla G_{i}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}\right) \cdot\left(\nabla H_{i}(\overline{\boldsymbol{x}})^{T} \boldsymbol{d}\right)=0, i \in I_{00}(\overline{\boldsymbol{x}})\right\}
$$

and satisfies

$$
T(\mathcal{F}, \overline{\boldsymbol{x}}) \subseteq L_{\mathrm{MPCC}}(\mathcal{F}, \overline{\boldsymbol{x}}) \subseteq L(\mathcal{F}, \overline{\boldsymbol{x}}) .
$$

This motivates the definitions:
MPCC-ACQ holds at $\overline{\boldsymbol{x}} \in \mathcal{F}$ if

$$
T(\mathcal{F}, \overline{\boldsymbol{x}})=L_{\mathrm{MPCC}}(\mathcal{F}, \overline{\boldsymbol{x}}) .
$$

MPCC-GCQ holds at $\overline{\boldsymbol{x}} \in \mathcal{F}$ if

$$
T(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ}=L_{\mathrm{MPCC}}(\mathcal{F}, \overline{\boldsymbol{x}})^{\circ} .
$$

Mordukhovich stationarity (M)

A point $\boldsymbol{x} \in \mathcal{F}$ is called Mordukhovich- or \mathbf{M}-stationarity if there are multipliers $\boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}$ such that

$$
\begin{aligned}
& \nabla \mathcal{L}_{\mathrm{MPCC}}\left(\overline{\boldsymbol{x}}, \boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}\right)=\mathbf{0} \quad \boldsymbol{\mu}_{D} \geqslant \mathbf{0} \\
& \mu_{D, i}=0 \text { if } D_{i}(\overline{\boldsymbol{x}})>0 \\
& \mu_{G, i} \cdot \mu_{H, i}=0 \text { or } \mu_{G, i} \geqslant 0, \mu_{H, i} \geqslant 0 \text { if } i \in I_{00}(\overline{\boldsymbol{x}}) \\
& \mu_{H, i}=0 \text { if } i \in I_{0_{+}}(\overline{\boldsymbol{x}}) \\
& \mu_{G, i}=0 \text { if } i \in I_{+0}(\overline{\boldsymbol{x}})
\end{aligned}
$$

Theorem

If $\overline{\boldsymbol{x}}$ is a local minimum of MPCC, and MPCC-GCQ holds at $\overline{\boldsymbol{x}}$, then $\overline{\boldsymbol{x}}$ is an M-stationary point.

M-stationarity multiplier set

Summary of Implication Chains

\longrightarrow "implies"
\longrightarrow "is a necessary optimality condition"

