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Mathematical Programs with
Complementarity Constraints
Part 1: Theory
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= Problem Classes
= KKT Theorem and Details
» Constraint Qualifications

= Optimality Conditions



/ feasible set F
0<G(x) L Hx)>0

0

G(x)

Continuously differentiable F : R" -+ R, G, H: R" — R°
Writing “0 < u L v > 0” means to ask that

forall1 <i<c: 0=u; OR0 = v; holds.



Smooth-looking Multiplicative Formulations

Under the bounds u > 0, v > 0, several equivalent formulations exist:
»u'v=0€R

su'v<0eR

= yov =0 € R° (Hadamard product)

= yov<0cR®

= y-v;=0forall1 <i<c
= y-vi<Oforall1 <i<ec
The problem may also be stated with a non-smooth constraint:
= min{u,v}=0

= min{u;, v;}=0forall1 <i<c



Any MPCC can be cast in the so-called vertical form, using only orthogonal

complementarities:
(x,u,mier.!R"‘cm F(X
s.t. G(x)—u=0
H(x)—v=0
oO<u lLv>o0

When solving MPCCs numerically (later), the vertical form guarantees linear
feasibility and typically shows better convergence behavior.



Any MPCC can be cast in a lifted form by
introducing

= aslack w € R¢,
= a penalty function p(w),
= and a penalty parameter 7t > 0:

min F(x)+m- p(w)

(x,u,v,w)eRnt2¢

s.t. G(x)—u=0
H(x)—v=0
w<u lv>0

Example: p(w) = ||wl|4




Math. Programs with Vanishing Constraints

MPCCs have a close relative, MPVCs:

xeR"

min F(x)
st. G(x) >0
G(x) -

Any MPVC can be cast as an MPCC by intro-
duction of a slack vector s:

min
XER", scR¢
s.t.

G(x)

feasible set F

In a solution, the slack will be degenerate. A more detailed analysis shows
that MPVCs are slightly more regular than an MPCC plus a slack vector.



Equilibrium Constraints (MPECs)

min F(x,y)
X
st.xeX, ye S(x)

wherein F : R" x R™ — R is the objective and S: R” = R™ is a set-valued
map, called the “equilibrium constraint”.

One example: Bi-level programs The set

S(x) =argmin {F(x,y) | y € Y}
y

is, for a given vector x, the solution set of the inner problem

myin F(x,y)styeYx)

Under assumptions, the inner problem may be replaced by its first order
necessary conditions. We obtain an MPCC if Y(x) contains inequality
constraints.



Stackelberg game: Asymmetric two-player game over turns k > 1.

Leader controls x and minimizes L(x, y) considering set S(x) of follower’s

responses:
(leader) mxin L(x,y)
st.xeX, ye Sx)
T
(follower) min F(x, y® yk=1)

y(k]
st.y® e y(x, y1)

Follower controls y¥) given the leader’s choice x and the follower’s response
y*=1) in the previous turn.



For a given element x assume
Yx,y* ") ={y | G(x,y) =0, H(x,y) > 0}.
Under a suitable constraint qualification, an element

y € S(x) = argmin {F(x, y)|yeyx, y(k’”)}
y

necessarily satisfies

VyF(x,y)+V,G(x,¥y)- A+ V,H(x,y) - p=0
G(x,y)=0
0<pulHxy >0

for some vectors A, . Under assumptions, we may replace the constraint
y € S(x) in the leader’s problem by these necessary conditions.



Nonconvex Relaxations of Discrete Problems

MINLP with indicator constraints G;(x) > 0 on indicators variables w;:

min F(x,w)
st C(x) =0, D(x)>0
w; - Gi(x) >0

1Tw=1,w;€{0,1}, 1 <i< ny

The problem admits a non-convex relaxation, which is an MPVC:

min F(x, )

X,

st. C(x)=0, D(x) >0
o - Gi(x) >0

1Ta=1, a;€[0,1], 1 <i<ne

Not a magic bullet to combinatorial optimization. Stationary points of the relaxation sometimes

yield good initial guesses.



Abs-Normal Form: Structured Nonsmoothness

A non-smooth function ¢ (x) is in abs-normal form if

d(x) = f(x, [2])

z = F(x,|z]) 0yF strictly lower triangular

such that z; = F(x) and zx = F(x, |z|, ..., |zxk_1|) for k > 1.
Abs-Normal forms are amenable to automatic differentiation, e.g. ADOL-C.

Abs-normal forms are identical to their counterpart complementarity problems
in vertical form:

d(x)=f(x,u+v)
u—v=Fx,u+v)
O<u lLv>0




Example: min X; + Xo — X3
XER3
st —4x;+x3<0 | Ly
—4X2 + X3 < 0 | U2
0<x, 0< X2, Xi- X =01z, Ha, A

Global Minimum: Observe x3 < 4 min{xy, X} = 0, hence x* = (0, 0, 0).



Why MPCCs mean Trouble

Example: min xi + X2 — X3
XER3
st —4x;+x3 <0 | 1y
—4x2+x3 <0 | h2
0<x1, 0< X2, X - X2 =0 g, a, A

Global Minimum: Observe x3 < 4 min{xy, X} = 0, hence x* = (0, 0, 0).

Remember the KKT theorem and try to verify stationarity:

—4 - 1\ 1
. —4 . -1 . <E§> = — 1
11 - - AR —1

Result: uys =1—4u; >0,y =1 —4pu, >0,
m+pe =1, 20, p > 0.

This is impossible, so the global minimizer x* apparently is not a KKT point!



Why MPCCs are Trouble

Example: min Pp(x) st 0< X, 0< X, X1- X =0
xER?

Observation:

= If x; > 0, x> = 0 then:
Gradients of active constraints (0,1)7 and (0, x;)7 linearly dependent

= If x; =0, x» > 0 then:
Gradients of active constraints (1,0)7 and (x, 0)7 linearly dependent

= If x; =0, x> = 0 then:
Gradients of active constraints (0,1)7, (0,1)7, (0,0)" linearly dependent

= Lack of Linear Independence Constraint Qualification!

Indeed: Mangasarian-Fromovitz CQ and Abadie’s CQ also don't hold.
Hence, the KKT theorem does not hold.



Cones:

= CCR"aconeif ax € Cforall x € G and
allreal « > 0

Given cone C C R”, ¢
= Ct:={d|d"x > 0Vx € C}is the dual e-\o
cone and

= C:={d|d"x <0Vx € €} is the polar
cone



Cones:
= CCR"aconeif ax € Cforall x € € and
allreal x > 0 @ \0
Given cone € C R”,
» CT:={d|d"x > 0Vx € C}is the dual
cone and

» C:={d|d"x <0Vx € C}is the polar
cone

Identities:
» 6 =conv€ and ()~ =convC

n (G NG = 61_+€2_




Tangent Cone

Tangent:

d € R"is tangent to F at x if there is a sequence {yx} C F with klim Yk — X
—00

and a sequence {t} C R> with klim t, = 0 such that
—>00
k—o00

Tangent Cone:
T(F,x) ={d € R"| d tangent to F at X} is the tangent cone.

P(F,x) =convT(JF,x) = T(F, x)"~ is the pseudotangent cone.




15! Order Necessary Optimality Conditions

Consider the problem

min P(x)st. xeF
x€Rn

with feasible set ¥ C R".

Theorem (1% Order Necessary Optimality Condition)

Let x minimize \ over F. Then

V(%) € PH(F,X) == {q €R"

q’d >0vd e P(7, )’()}
holds, and P(F, x) = convT(J, X) denotes the pseudotangent cone of F at X.

This theorem is great because we don’t have to impose particular structural
restrictions on the set J.



Proof:
1. Let d € T(F, X). Then by definition, there is {xx}x C F with klim Xk =X
—00
and {tx}x C Rog with lim t, =0and lim t(xx — X) = d.
k— o0 k— o0



Proof:
1. Let d € T(F, X). Then by definition, there is {xx}x C F with klim Xk =X
—00
and {t}x C Rog with lim tx =0and lim t(xx —X) = d.
k— o0 k— o0

2. As x minimizes 1 over F, P (xx) — W (Xx) > 0 for all k > 0 holds.



Proof (15t Order Necessary Optimality Condition)

Proof:
1. Let d € T(F, x). Then by definition, there is {xx}x C F with klim Xk =X

—00
and {tx}x C R-o with lim tx =0and lim t(xx — X) = d.
k— o0 k— o0
2. As X minimizes 1 over F, {(xx) — P (x) > 0 for all k > 0 holds.
3. By differentiability of 1 at X,

W) — W(X) = V(X)T (% — X) + of|1x, — XII).



Proof (15t Order Necessary Optimality Condition)

Proof:
1. Let d € T(F, x). Then by definition, there is {xx}x C F with kIme Xk =X
and {tx}x C R-o with lim tx =0and lim t(xx — X) = d.
k—o0 k—o0
2. As X minimizes 1 over F, {(xx) — P (x) > 0 for all k > 0 holds.
3. By differentiability of 1 at X,

W) — W(X) = V(X)T (% — X) + of|1x, — XII).

4. Then, we have

o([[xx — xlI) -
7_tk\\xk—xll.

V(%) t (X — X) > —
lIxx — x|



Proof (15t Order Necessary Optimality Condition)

Proof:

1. Let d € T(F, x). Then by definition, there is {xx}x C F with klim Xk =X
—00

and {tx}x C R-o with lim tx =0and lim t(xx — X) = d.
k— o0 k— o0
2. As X minimizes 1 over F, {(xx) — P (x) > 0 for all k > 0 holds.
3. By differentiability of 1 at X,
Y(x) — (X)) = V(X) (x — X) + o[ x¢ — XI)).

4. Then, we have



Some more structure

If don’t know anything about &, the condition g € P (F, Xx) is difficult to
check computationally.

Hence, we impose slightly more structure by considering the problem

min P(x) s.t. x € C, a(x) € B,
xeR"

wherenow F={x e R" | x € @, a(x) € Blanda:R" — R™, B Cc R™.

The sets B, € are assumed to be easy enough to check membership in
cones, e.g. by looking at signs of some vector entries.

Cones: P(F,Xx), P(B, a(x))

MPCCs: We'll try to encode complementarities in B, €, a(x) in a moment.



X:
2
ao (X

G
X
— a(x)

Rn



Denote by
K:={deR"|Va(x)'d c P(B,a(X))}

the cone of first order feasible directions at x w.r.t. a(x) € B,
and denote by

H:={qeR"|g=Va(X)-\, A€ P (B,a(x))}
the cone of first order optimal gradients at X w.r.t. a(x) € B.

Theorem (Guignard’s KKT Theorem)

Let H be closed and let G be some closed convex cone such that
KN G=P(JF,x) andthat K~ + G is closed.

If X minimizes \p(x) over F, there is A € P™(B, a(x)) such that

—Vi(X)+Va(x))-Ae G .



1. By the previous theorem, —V\)(X) € P~ (T, X).



1. By the previous theorem, —V\)(X) € P~ (T, X).
2. By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (F,X).



1. By the previous theorem, —V\)(X) € P~ (T, X).
2. By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (F,X).
3. Then, there is g € K such that —V{(X) + g€ G .



1. By the previous theorem, —V)(Xx) € P~ (F, X).

2. By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (F,X).
3. Then, there is g € K such that —V{(X) + g€ G .

4. Letd € H-. Then (Va(x)-A\)"d < 0forall A € P(B, a(x)).



Proof (Guignard’s KKT Theorem)

By the previous theorem, —V{(x) € P~ (F, x).

By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (&, x).
Then, there is g € K such that —V{(X) + g€ G .

Letd € H~. Then (Va(x)-\)"d < 0forall X € P(B, a(x)).

H>wbh =

5. Suppose now that Va(x)"d ¢ P(B, a(x)). Since P(B, a(x)) is a cone,
separation (R is a separable Banach space) yields existence of an
element p € R™ with

(Va(X) - pu)'d>0>pu"™Xx VXeP(B, ax)).



Proof (Guignard’s KKT Theorem)

H>wbh =

By the previous theorem, —V{(x) € P~ (F, x).

By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (&, x).
Then, there is g € K such that —V{(X) + g€ G .

Letd € H~. Then (Va(x)-\)"d < 0forall X € P(B, a(x)).

Suppose now that Va(x)"d ¢ P(B, a(x)). Since P(B, a(X)) is a cone,
separation (R is a separable Banach space) yields existence of an
element p € R™ with

(Va(X) - pu)'d>0>pu"™Xx VXeP(B, ax)).

Therefore, p € P~ (B, a(x)) and Va(x) - u € H.



Proof (Guignard’s KKT Theorem)

H>wbh =

By the previous theorem, —V{(x) € P~ (F, x).
By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (&, x).
Then, there is g € K such that —V{(X) + g€ G .
Letd € H~. Then (Va(x)-\)"d < 0forall X € P(B, a(x)).
Suppose now that Va(x)"d ¢ P(B, a(x)). Since P(B, a(x)) is a cone,
separation (R is a separable Banach space) yields existence of an
element p € R™ with

(Va(x)-p)'d>0=>p'Xx VA€ P(B a(x)).

Therefore, p € P~ (B, a(x)) and Va(x) - u € H.

7. But this contradicts (Va(X) - 1) 7d > 0.



Proof (Guignard’s KKT Theorem)

H>wbh =

By the previous theorem, —V{(x) € P~ (F, x).
By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (&, x).
Then, there is g € K such that —V{(X) + g€ G .
Letd € H~. Then (Va(x)-\)"d < 0forall X € P(B, a(x)).
Suppose now that Va(x)"d ¢ P(B, a(x)). Since P(B, a(x)) is a cone,
separation (R is a separable Banach space) yields existence of an
element p € R™ with

(Va(x)-p)'d>0=>p'Xx VA€ P(B a(x)).

Therefore, p € P~ (B, a(x)) and Va(x) - u € H.

7. But this contradicts (Va(X) - 1) 7d > 0.

Hence Va(x)'d € P(B, a(x)).



Proof (Guignard’s KKT Theorem)

H>wbh =

By the previous theorem, —V{(x) € P~ (F, x).

By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (&, x).
Then, there is g € K such that —V{(X) + g€ G .

Letd € H~. Then (Va(x)-\)"d < 0forall X € P(B, a(x)).

Suppose now that Va(x)"d ¢ P(B, a(x)). Since P(B, a(X)) is a cone,
separation (R is a separable Banach space) yields existence of an
element p € R™ with

(Va(X) - pu)'d>0>pu"™Xx VXeP(B, ax)).

Therefore, p € P~ (B, a(x)) and Va(x) - u € H.

7. But this contradicts (Va(X) - 1) 7d > 0.

Hence Va(x)'d € P(B, a(x)).

Thatis, d € K holds for all d € H™. In other words, H~ C K.



Proof (Guignard’s KKT Theorem)

H>wbh =

By the previous theorem, —V{(x) € P~ (F, x).
By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (&, x).
Then, there is g € K such that —V{(X) + g€ G .
Letd € H~. Then (Va(x)-\)"d < 0forall X € P(B, a(x)).
Suppose now that Va(x)"d ¢ P(B, a(x)). Since P(B, a(x)) is a cone,
separation (R is a separable Banach space) yields existence of an
element p € R™ with

(Va(x)-p)'d>0=>p'Xx VA€ P(B a(x)).

Therefore, p € P~ (B, a(x)) and Va(x) - u € H.

7. But this contradicts (Va(X) - 1) 7d > 0.

Hence Va(x)'d € P(B, a(x)).

. Thatis, d € K holds for all d € H™. In other words, H~ C K.
. Because H and K are closed convex cones, K~ C H follows.



Proof (Guignard’s KKT Theorem)

By the previous theorem, —V{(x) € P~ (F, x).

By assumption, K~ + G~ is closed, hence K~ + G~ = P~ (&, x).
Then, there is g € K such that —V{(X) + g€ G .

Letd € H~. Then (Va(x)-\)"d < 0forall X € P(B, a(x)).

H>wbh =

5. Suppose now that Va(x)"d ¢ P(B, a(x)). Since P(B, a(x)) is a cone,
separation (R is a separable Banach space) yields existence of an
element p € R™ with

(Va(X) - pu)'d>0>pu"™Xx VXeP(B, ax)).

6. Therefore, u € P~ (B, a(x)) and Va(x) - p € H.
7. But this contradicts (Va(X) - 1) 7d > 0.
8. Hence Va(x)"d € P(B, a(x)).

9. Thatis, d € K holds for all d € H™. In other words, H~ C K.
10. Because H and K are closed convex cones, K~ C H follows.
11. Then, thereis A € P™(B, a(x)) with —V(X) +Va(x) - Ac G~. O



Application to NLPs

Let us reconcile this with the KKT theorem for NLPs you all know.

min _ F(x)
xcR" seRe
st. G(x)=0, Hx)—s=0
s>0

In our setting ¥ = {(x, s) € C| a(x, s) € B}, we have
a(x) = (G(x), H(x)—s), B={0}, C=R" x RS,.

Cones:

» P(B,a(x,s)) = {0}

» K={(dy,ds) | VG(X)"d, =0, VH(X)"dy — ds = 0}

* H={(qx. qs) | gx = VG(X)- A+ VH(X)-An, gs = —An, (Ag, An) € R*}

Also, K and H are closed convex cones, as required.



Guignard’s Constraint Qualification (GCQ)

= We're supposed to choose a set G to satisfy the prerequisite. If we let
G=P(C,x,8) ={(dy,ds) €R"° | ds; > 0if 5; = 0},
the prerequisite of the theorem K N G = P(F, x) reads
{(dy, ds) | VG(X)"d, =0, VH(X) dy — ds =0,ds; < 0if s; = 0}
< P(F, %) = convT (T, x) = (convT(F,%)) .

= The left hand side is the linearized cone, and the prerequisite simplifies to

“the dual of the linearized cone must equal the dual of the tangent cone”.

= This is called Guignard’s Constraint Qualification (GCQ), and is the
weakest condition under which a variant of the KKT theorem can be
proven.



= The theorem’s statement now reads:

If X minimizes {(x) over F and GCQ holds for F at X, there are Ag, Ay
such that

—Vb(X) + VG(X) - A+ VH(X) - Ay =0
)\H',‘ZOifS,'>0
Awi<0ifs;=0

This is the usual form of the KKT theorem.
= Notes:
P (B,a(x)) = R¢
G_(S’F, X, S) = {0}" X {)\H | }\H,i =0ifs; >0, }\H,i <0ifsi = O}



Application to MPCCs: First Attempt

Let’s now try to obtain an optimality condition for the most simple MPCC

’minlp(u, vist.o<ul v}O.‘

Certainly, { can be chosen such that x* = (v*, v*) = (0, 0) is a minimizer.
Encode J: a(x) = u-v, B ={0}, C=R%.

Cones:

» K = R? because Va(x) =0, and P(B, a(x)) ={0}, P™ (B, a(x)) = R?

= P(F,x) =F, acone but not convex; P~ (F,Xx) = Rio

» G = P(F, x) is the only (and trivial) choice that satisfies K N G = P(F, X)
» Then G~ = Rio
Guignard’s KKT theorem now yields the following statement:

If X minimizes 1\ over &,
“there is A € R? such that —V(X) + Va(x) - X < 0.



Application to MPCCs: Second Attempt

This is very weak. Clearly, our encoding is to blame. Here’s a better idea:
Encode: a(x) = (u, v), B = (Rx x {0}) U ({0} x R5), C = R2.
Cones:
= K = B because Va(X) =/, and P(B, a(X)) = B, P"(B,a(x)) = R%,
» G = R? now satisfies KN G = P(F, X)
= Then G~ = {0}
Guignard’s theorem now yields the following, much improved statement:

If X minimizes 1\ over &,
‘there is A € 2, such that —V(x) + Va(x) - A = 0.



MPCC-Lagrangian Function

The second encoding discourages the notation v - v = 0 and motivates the
introduction of a pair of multiplier vectors for the complementarity constraint:

MPCC as NLP:

in F
i A

s.t.0 = G(x) - H(x)
0 < G(x),0 < H(x)

NLP-Lagrangian:
L(x, Xoh, pe, ) = F(X) — A54(G(X) - H(x)) — p&G(x) — plH(x).

MPCC:

in F
i, )

st.0< G(x) LH(x)>0

MPCC-Lagrangian:

Lwpcc (X, e, pr) = F(X) — p&G(x) — phH(x)



Active Sets

Hi(x)
Active sets of strict complementarities: T
Lio(X) :=={i| Gi(x) >0, H;(x) =0} s
lo+(X) :=={i| Gi(X) =0, Hi(x) > 0}
Active set of non-strict complementarity pairs
(biactive set):
loo(X) :={i'| Gi(x) =0, Hi(x) =0}
— G,‘(X)
loo l+o

We say that Lower-Level Strict Complementarity (LLSCC) is satisfied at x
if loo(X) = 0. Then, the constraint 0 = G(x) - H(x) can locally be disposed of.
The MPCC locally looks like an NLP satisfying constraint qualifications.

Assuming (LLSCC) is usually held for way too strong a restriction to be of
practical interest.



Strong Stationarity (S)

Remember that GCQ had a chance of be-
ing satisfied by an MPCC.

Then, if X minimizes 1\ over JF, there is
A € PT(B, a(x)) such that

—Vip(x)+ Va(x) - A e P (F,Xx).

Alphabet soup of stationarity conditions.

Strong or S-Stationarity: If X € J is a local minimizer of MPCC and GCQ
holds at x, there are multipliers A¢, wp, pa, py such that

VLwpce (X, Ac, i, 6, H) =0 tp >0
wo = 0if Di(X) > 0

HG,i = 0, up,; = 0ifi € lo(X)

wyi=0ifi € lhy

e = 0ifi € Iy

)
)

(x
(x



AH,i

Agi

Optimal multiplier signs for i € lyy(X) under S-stationarity.



MPCC-Linear Independence CQ

We say that MPCC-Linear Independence CQ (MPCC-LICQ) holds at X € &
if the gradients

(vcm VDi(X) VG(X) VH;(X)

Di(x) =0 i€ o (X)Ulo(X) i€ liof

><|\_/

) U lpo(X)

are linearly independent.

MPCC-LICQ is LICQ for the tightened NLP at X: A,
foip Fx
s.t. C(X) =0 }\G,i
D(x)>0 0
G,‘(X) =0, H,'(X) >0ifie /0+(7)
Gi(x) =0, Hi(x)=0ifi € . (X) ' o
G,'(X) -0 H,-(X) —0ifie /00()_() Optimal multiplier signs for TNLP(x)

in Igo()_()




Theorem
If MPCC-LICQ holds at x € &, then GCQ holds at x.

Sketch of proof: For sets P C Iy (X) we have
TFx) =JTEFP.x) = T(Fx°=)TFP), X"
PCloo (X) PClyo (X)

If a constraint qualification holds at x for all sets F(P), we have

T(F,X)° = |LIF(P), X)°.

PCloo (X)

For GCQ to hold at X, we now have to show T(F, x)° C L(F, X)°, as
T(F,x)° D L(F, x)° always holds.



MPCC-LICQ implies GCQ

Sketch of proof, continued: The cones L(F(P), X)° have the explicit
representations L(F(P), x) =
w=VC(X) Ac+VD(X) - up+ VG(X) - ug + VH(X) - py
wp, = 0if Di(X) >0, pup,; > 0if D;(x) >0
ug, = 0ifi € I o(X), pG,>0|f/ePC
Hei=0if i € lo1(X), pu,;i =
MPCC-LICQ implies a CQ for every F(P). Now for any element

w € T(F(P), x)°, use this to show that for every P there exist vectors A¢,
1o, UG, iy such that w € L(F(P), x)°.

Finally, MPCC-LICQ for all F(P) implies uniqueness of the multipliers across
all P C Ipg(X). Then w € T(F, x)° implies w € L(F, x)°, which shows that
GCQholds. O



S-Stationarity and Local Minimizers

Summarizing, we have just proven the following:

Theorem (S-Stationarity is necessary under MPCC-LICQ)

If MPCC-LICQ holds at x € J, then GCQ holds at x. If X is a local minimum
of MPCC, and GCQ holds at x, then X is an S-stationary point.

“Convex” MPCCs satisfy GCQ and permit to also prove the converse:

Theorem (S-Stationarity is sufficient under MPCC-convexity)

If F is convex, D is concave, and C, G, and H are affine linear, then every
S-stationary point of MPCC is a local minimum.

On the other hand, we have already seen that GCQ may not hold. Hence,
MPCC-LICQ is usually considered too restrictive to serve as a working basis.



An NCP function ¢ : R? — R satisfies
d(u,v)=0 < 0<u Lv=0.

Example:
$(u, v) = min{u, v}

Fip F0

st. d(Gi(x), Hi(x))=0,1<i<¢

Differentiable NCP-functions necessarily satisfy V(0,0) = (0,0)”.

Useful NCP-functions are nondifferentiable in (0, 0).



Denote by Dy, the set
Dy, :={x | ¢ is differentiable in x}.
The set
By : T _
0°¢(X) = {d | I{x C Dy, kll—>mo<>XK =X: kl|_>mood)(xk) =d}

is called the Bouligand Subdifferential of ¢ at x.



Denote by Dy, the set
Dy, :={x | ¢ is differentiable in x}.
The set
% (X) = {d | 3x} C Dy, lim x =X: lim d(xi) = d}

is called the Bouligand Subdifferential of ¢ at x

For MPCC with the NCP function d> (X) := &(Gi(X), Hi(x)) we find:

i€y (X): 0%¢i(X) = {(VGi(x T}

" i€ 1o(X): By (X) = {OVH N7}

" i€ loo(X): 3%¢i(X) = {(VGi(X),0)7, (0, VH;(x))}



Branch or Piece NLPs

We may pick an element of the Bouligand subdifferential by specifying a
subset P C Iyp(X) and its complement PC := Iy (X) \ P relative to oo (X).

Then define the branch NLP for P at x:

fp F0
st.C(x)=0
(NLP(x, P)) D(x) >0
Gi(x) =0, Hi(x) > 0ifi € o (X)UP
Gi(x) >0, Hi(x)=0ifie [ o(X)UP°

There are 2/ (¥l pranch NLPs in a point X € F. If LLSCC holds, there is only
one. Then, in a small neighborhood of X, MPCC looks like that branch NLP.



Bouligand Stationarity (B)

Bouligand- or B-Stationarity: A point X € JF is called B-stationary if for
every P C ly(X) there are multipliers A¢, up, pe, py (possibly depending
on P) such that

VLwupcc (X, Ac, o, pg, pir) =0 tp =0
wp,; = 0if D;}(X) >0
wpi = 0ifi €l (X)
ug,i =0if i € l1o(X)
Wy = 0if i€ P C lyo(X)
e, = 0ifi € P C lpg(X)

Theorem
A local minimizer x € 3 of MPCC is B-stationary.
A piece P C Iy (X) with a non-optimal multiplier is a poly-size certificate for

non-B-stationarity. The B-stationarity decision problem is in co-NP (in
absence for further CQs) because there are 2/ (¥)! pieces P to check.



c=1, Ioo()_() :{1}

AH,i AH,i
0 Ag,i 0 Ag,i
Optimal multiplier signs for piece Optimal multiplier signs for piece

P=0. P={1}.



Clarke subdifferential

The set
b (X) := conv 0B (X)

is called the Clarke Subdifferential of ¢ at x. For MPCC with the NCP
function ¢;(x) := d)(G,»()_(), H;(x)) we find:

" i € loy (X): 0 (X) = 0Bpi(X)
= i€ Lo(X):0 dDI()_()—aBdD( )
" i€ loo(X): 3%;(X) = conv{(VG;(x),0)7, (0, VH;(x))"}

Chain Rule for 9 :
9C(Fy 0 F2)(X) - d C conv(d°Fi (Fa(X)) - 3CFo(X)) - d

and equality holds if either F; is ' around F»(X) or F, is @' around X.



Applying this chain rule to the NCP function ¢;(X) = min(G;(X), H;(X)) yields
the estimate

2%i(X) C conv{VG;(X), VH;(X)}
={(&VG(X), (1 —&)VH(X)) |0 < & < 1}

and equality can be shown by a refined argument.



Using the Clarke subdifferential in KKT

Applying this chain rule to the NCP function ¢;(X) = min(G;(X), H;(x)) yields
the estimate

3°¢;(X) C conv{VGi(X), VHi(X)}
={(&VG(X), (1 —&)VH(X)) |0 < & < 1}

and equality can be shown by a refined argument.

Inserting any particular element from 9%¢;(X) (given by a € € [0, 1]°) into the
KKT conditions yields

VF(X) €Y VGI(X) 8+ ) VH(X)-8+ ) conv{VGi(x), VH(X)}-5;

i€l (X) i€lo(X) i€loo (X)

with MPCC multipliers

8§  ifi€ by (X) 0 it i € o, (X)
}\G,i = 5,/6,‘ ifi € Ioo()_() and )\ij = (1 — E,i)é,‘ if i € Ioo()_{)
0 ifielo(x) 5 if i € 1,0(X).



We may simplify the conditions on Ag and Ay for the biactive set to

A Ami=&(1—&)82 >0, i € lp(X).

A point x € J is called Clarke- or C-stationarity if there are multipliers Ac,
Ko, Ba, Py such that

VLwpcc (X, Ac, pip, G, r) =0 pp =0
to, = 0if Dy(%) > 0
UG, - UH,i= 0if i € lpo(X)
wp,i = 0ifi € lpy (X)
(

e =0if i € I o(X)



AH,i

Agi

Optimal — multiplier signs for C-
stationarity.

C-stationarity ignores trivial descent directions. Algorithmically, it is an
unsatisfying concept for MPCCs.



Clarke stationarity (C)

MPCC-Mangasarian-Fromovitz CQ holds at X € J if the gradients VC(X)
and VD;(x) for D;(X) =0, VG;(x) for i € Iy, (X) U lpo(X), and VH;(X) for
i € Io(X) U lpo(X) are positively linearly independent.
This means that there are nontrivial multipliers Ag, up > 0, ug > 0, and

> 0 such that

0=VC(X)- A+ ) VDI(X) - ppi+ Y VGi(X)-ugi+ Y VH(X):un,.

i: D;Z0 lo+Uloo I40Ulno

MPCC-LICQ at x implies MPCC-MFCQ at x.

Theorem
Let x be a local minimum of MPCC and let MPCC-MFCQ hold at Xx. Then X
is C-stationary.

Unforunately, many feasible points with descent directions turn out to be
C-stationary as well, so the criterion is considered a very weak one.



MPCC-Abadie CQ and MPCC-Guignard CQ

The MPCC-linearized cone is
Lwpcc(F,X) = L(F, X) N {d | (VG(X)"d) - (VH,(X)"d) =0, i € lpo(X)}

and satisfies
T(F,X) € Lypcc(F, X) € L(F, X).

This motivates the definitions:
MPCC-ACQ holds at x € Fif

T(F, %) = Lupcc (T, X).
MPCC-GCQ holds at x € Fif

T(F,X)° = Lupcc (T, X)°.



A point x € J is called Mordukhovich- or M-stationarity if there are
multipliers A¢, pp, pe, py such that

VLwupcc (X, Ac, o, pe, ppr) =0 tp >0
tp, = 0if Dy(X) > 0

WG, MHi=00rpug; =0, uy; = 0if i € lo(X)

HHi = 0ifi € loy (X)

(x

)

e =0ifi € Iyg

Theorem
If X is a local minimum of MPCC, and MPCC-GCQ holds at X, then X is an
M-stationary point.



AH,i

AGi

Optimal multiplier signs for M-
stationarity.



(always) ——— B-stationarity

»
KKT GCQ € MPCC-LICQ —— S-stationarity
o~ /2 /2
AGCQ MPCC-MFCQ M-stationarity
o~ /2 /2
MFEQ MPCC-ACQ C-stationarity
o~ /2
Hea MPCC-GCQ
= “implies”

— “is a necessary optimality condition”

| haven't talked about A-, L-, T-, and W-stationarity ...



