

Mathematical Programs with Complementarity Constraints Part 1: Theory

Christian Kirches | Freiburg | September 14, 2023

- Problem Classes
- KKT Theorem and Details
- Constraint Qualifications
- Optimality Conditions

Problem Class

Continuously differentiable $F : \mathbb{R}^n \to \mathbb{R}, G, H : \mathbb{R}^n \to \mathbb{R}^c$

Writing " $\mathbf{0} \leq \mathbf{u} \perp \mathbf{v} \ge \mathbf{0}$ " means to ask that

for all $1 \leq i \leq c$: $0 = u_i$ **OR** $0 = v_i$ holds.

Under the bounds $u \ge 0$, $v \ge 0$, several equivalent formulations exist:

- $\boldsymbol{u}^T \boldsymbol{v} = \mathbf{0} \in \mathbb{R}$
- $\boldsymbol{u}^T \boldsymbol{v} \leqslant \mathbf{0} \in \mathbb{R}$
- $\boldsymbol{u} \circ \boldsymbol{v} = \boldsymbol{0} \in \mathbb{R}^{c}$ (Hadamard product)
- $\boldsymbol{u} \circ \boldsymbol{v} \leqslant \boldsymbol{0} \in \mathbb{R}^{c}$
- $u_i \cdot v_i = 0$ for all $1 \leq i \leq c$
- $u_i \cdot v_i \leq 0$ for all $1 \leq i \leq c$

The problem may also be stated with a non-smooth constraint:

- min{*u*, *v*} = 0
- $\min\{u_i, v_i\} = 0$ for all $1 \leq i \leq c$

Any MPCC can be cast in the so-called **vertical form**, using only **orthogonal** complementarities:

$$\min_{\substack{(\boldsymbol{x},\boldsymbol{u},\boldsymbol{v}) \in \mathbb{R}^{n+2c}}} F(\boldsymbol{x}) \\ \text{s.t.} \quad G(\boldsymbol{x}) - \boldsymbol{u} = \boldsymbol{0} \\ H(\boldsymbol{x}) - \boldsymbol{v} = \boldsymbol{0} \\ \boldsymbol{0} \leqslant \boldsymbol{u} \perp \boldsymbol{v} \geqslant \boldsymbol{0}$$

When solving MPCCs numerically (later), the vertical form guarantees linear feasibility and typically shows better convergence behavior.

Lifted Form

Any MPCC can be cast in a **lifted form** by introducing

- a slack $\boldsymbol{w} \in \mathbb{R}^{c}$,
- a penalty function p(w),
- and a penalty parameter $\pi > 0$:

$$\begin{array}{l} \min_{\substack{(\boldsymbol{x},\boldsymbol{u},\boldsymbol{v},\boldsymbol{w}) \in \mathbb{R}^{n+2c}}} F(\boldsymbol{x}) + \pi \cdot \rho(\boldsymbol{w}) \\ \text{s.t.} \quad G(\boldsymbol{x}) - \boldsymbol{u} = \boldsymbol{0} \\ H(\boldsymbol{x}) - \boldsymbol{v} = \boldsymbol{0} \\ \boldsymbol{w} \leqslant \boldsymbol{u} \perp \boldsymbol{v} \geqslant \boldsymbol{0} \end{array}$$

Example: $p(w) = ||w||_1$

Math. Programs with Vanishing Constraints

In a solution, the slack will be degenerate. A more detailed analysis shows that MPVCs are *slightly* more regular than an MPCC plus a slack vector.

Equilibrium Constraints (MPECs)

$$\min_{\boldsymbol{x}} F(\boldsymbol{x}, \boldsymbol{y})$$
 s.t. $\boldsymbol{x} \in \mathcal{X}, \ \boldsymbol{y} \in S(\boldsymbol{x})$

wherein $F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ is the objective and $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is a set-valued map, called the "equilibrium constraint".

One example: Bi-level programs The set

$$\mathcal{S}(\mathbf{x}) = \operatorname*{argmin}_{\mathbf{y}} \left\{ F(\mathbf{x}, \mathbf{y}) \mid \mathbf{y} \in \mathcal{Y} \right\}$$

is, for a given vector \boldsymbol{x} , the solution set of the inner problem

$$\min_{\boldsymbol{y}} F(\boldsymbol{x}, \boldsymbol{y}) \text{ s.t. } \boldsymbol{y} \in \boldsymbol{\mathcal{Y}}(\boldsymbol{x})$$

Under assumptions, the inner problem may be replaced by its first order necessary conditions. We obtain an MPCC if $\mathcal{Y}(\mathbf{x})$ contains inequality constraints.

Game Theory

Stackelberg game: Asymmetric two-player game over turns $k \ge 1$.

Leader controls \boldsymbol{x} and minimizes $L(\boldsymbol{x}, \boldsymbol{y})$ considering set $S(\boldsymbol{x})$ of follower's responses:

Follower controls $y^{(k)}$ given the leader's choice x and the follower's response $y^{(k-1)}$ in the previous turn.

Game Theory

For a given element **x** assume

$$\mathfrak{Y}(\boldsymbol{x}, \boldsymbol{y}^{(k-1)}) = \left\{ \boldsymbol{y} \mid \boldsymbol{G}(\boldsymbol{x}, \boldsymbol{y}) = \boldsymbol{0}, \ \boldsymbol{H}(\boldsymbol{x}, \boldsymbol{y}) \geqslant \boldsymbol{0} \right\}.$$

Under a suitable constraint qualification, an element

$$\boldsymbol{y} \in \boldsymbol{S}(\boldsymbol{x}) = \operatorname*{argmin}_{\boldsymbol{y}} \left\{ F(\boldsymbol{x}, \boldsymbol{y}) \mid \boldsymbol{y} \in \boldsymbol{\mathcal{Y}}(\boldsymbol{x}, \boldsymbol{y}^{(k-1)}) \right\}$$

necessarily satisfies

$$\begin{aligned} \nabla_{\mathbf{y}} F(\mathbf{x}, \mathbf{y}) + \nabla_{\mathbf{y}} G(\mathbf{x}, \mathbf{y}) \cdot \mathbf{\lambda} + \nabla_{\mathbf{y}} H(\mathbf{x}, \mathbf{y}) \cdot \boldsymbol{\mu} &= \mathbf{0} \\ G(\mathbf{x}, \mathbf{y}) &= \mathbf{0} \\ \mathbf{0} \leqslant \boldsymbol{\mu} \perp H(\mathbf{x}, \mathbf{y}) \geqslant \mathbf{0} \end{aligned}$$

for some vectors λ , μ . Under assumptions, we may replace the constraint $y \in S(x)$ in the leader's problem by these necessary conditions.

Nonconvex Relaxations of Discrete Problems

MINLP with indicator constraints $G_i(\mathbf{x}) \ge \mathbf{0}$ on indicators variables ω_i :

$$\min_{\boldsymbol{x},\omega} F(\boldsymbol{x},\omega) \\ \text{s.t. } C(\boldsymbol{x}) = \boldsymbol{0}, \ D(\boldsymbol{x}) \ge \boldsymbol{0} \\ \omega_i \cdot G_i(\boldsymbol{x}) \ge \boldsymbol{0} \\ \boldsymbol{1}^T \omega = 1, \ \omega_i \in \{0,1\}, \ 1 \le i \le n_{\omega}$$

The problem admits a non-convex relaxation, which is an MPVC:

$$\begin{split} \min_{\boldsymbol{x}, \boldsymbol{\alpha}} F(\boldsymbol{x}, \boldsymbol{\alpha}) \\ \text{s.t. } C(\boldsymbol{x}) = \boldsymbol{0}, \ D(\boldsymbol{x}) \geqslant \boldsymbol{0} \\ \alpha_i \cdot G_i(\boldsymbol{x}) \geqslant \boldsymbol{0} \\ \boldsymbol{1}^T \boldsymbol{\alpha} = \boldsymbol{1}, \ \alpha_i \in [0, 1], \ \boldsymbol{1} \leqslant i \leqslant n_{\omega} \end{split}$$

Not a magic bullet to combinatorial optimization. Stationary points of the relaxation sometimes yield good initial guesses.

A non-smooth function $\phi(\mathbf{x})$ is in **abs-normal form** if

$$\begin{split} \varphi(\pmb{x}) &= f(\pmb{x}, |\pmb{z}|) \\ \pmb{z} &= F(\pmb{x}, |\pmb{z}|) \quad \partial_{|\pmb{z}|} F \text{ strictly lower triangular} \end{split}$$

such that $z_1 = F(\mathbf{x})$ and $z_k = F(\mathbf{x}, |z_1|, ..., |z_{k-1}|)$ for k > 1.

Abs-Normal forms are amenable to automatic differentiation, e.g. ADOL-C.

Abs-normal forms are identical to their counterpart complementarity problems in vertical form:

$$\begin{aligned} \varphi(\mathbf{x}) &= f(\mathbf{x}, \mathbf{u} + \mathbf{v}) \\ \mathbf{u} - \mathbf{v} &= F(\mathbf{x}, \mathbf{u} + \mathbf{v}) \\ \mathbf{0} &\leq \mathbf{u} \perp \mathbf{v} \geq \mathbf{0} \end{aligned}$$

Why MPCCs mean Trouble

Example:

$$\begin{array}{l} \min_{\mathbf{x} \in \mathbb{R}^3} x_1 + x_2 - x_3 \\ \text{s.t.} & -4x_1 + x_3 \leqslant 0 \qquad | \ \mu_1 \\ & -4x_2 + x_3 \leqslant 0 \qquad | \ \mu_2 \\ & 0 \leqslant x_1, \ 0 \leqslant x_2, \ x_1 \cdot x_2 = 0 \ | \ \mu_3, \ \mu_4, \lambda \end{array}$$

Global Minimum: Observe $x_3 \leq 4 \min\{x_1, x_2\} = 0$, hence $x^* = (0, 0, 0)$.

Why MPCCs mean Trouble

Example:

$$\min_{\mathbf{x} \in \mathbb{R}^3} \begin{array}{l} x_1 + x_2 - x_3 \\ \text{s.t.} & -4x_1 + x_3 \leqslant 0 & | \ \mu_1 \\ & -4x_2 + x_3 \leqslant 0 & | \ \mu_2 \\ & 0 \leqslant x_1, \ 0 \leqslant x_2, \ x_1 \cdot x_2 = 0 \ | \ \mu_3, \ \mu_4, \lambda \end{array}$$

Global Minimum: Observe $x_3 \le 4 \min\{x_1, x_2\} = 0$, hence $x^* = (0, 0, 0)$.

Remember the KKT theorem and try to verify stationarity:

$$\begin{pmatrix} -4 & \cdot & -1 & \cdot & \cdot \\ \cdot & -4 & \cdot & -1 & \cdot \\ 1 & 1 & \cdot & \cdot & \cdot \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \\ \mu_4 \\ \lambda \end{pmatrix} = - \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

 $\begin{aligned} \text{Result:} \ \mu_3 = 1 - 4\mu_1 \geqslant 0, \ \mu_4 = 1 - 4\mu_2 \geqslant 0, \\ \mu_1 + \mu_2 = 1, \ \mu_1 \geqslant 0, \ \mu_2 \geqslant 0. \end{aligned}$

This is impossible, so the global minimizer x^* apparently is not a KKT point!

Example:

$$\min_{\boldsymbol{x}\in\mathbb{R}^2}\psi(\boldsymbol{x}) \text{ s.t. } 0\leqslant x_1, \ 0\leqslant x_2, \ x_1\cdot x_2=0$$

Observation:

- If $x_1 > 0$, $x_2 = 0$ then: Gradients of active constraints $(0, 1)^T$ and $(0, x_1)^T$ linearly dependent
- If x₁ = 0, x₂ > 0 then:
 Gradients of active constraints (1, 0)^T and (x₂, 0)^T linearly dependent
- If $x_1 = 0$, $x_2 = 0$ then: Gradients of active constraints $(0, 1)^T$, $(0, 1)^T$, $(0, 0)^T$ linearly dependent
- ⇒ Lack of Linear Independence Constraint Qualification!

Indeed: Mangasarian-Fromovitz CQ and Abadie's CQ also don't hold. Hence, the KKT theorem does not hold.

Basics on Cones

Cones:

• $\mathcal{C} \subseteq \mathbb{R}^n$ a cone if $\alpha \mathbf{x} \in \mathcal{C}$ for all $\mathbf{x} \in \mathcal{C}$ and all real $\alpha \ge 0$

Given cone $\mathcal{C} \subseteq \mathbb{R}^n$,

- $\mathbb{C}^+ := \{ \boldsymbol{d} \mid \boldsymbol{d}^T \boldsymbol{x} \ge 0 \ \forall \boldsymbol{x} \in \mathbb{C} \}$ is the dual cone and
- $\mathcal{C}^- := \{ \boldsymbol{d} \mid \boldsymbol{d}^T \boldsymbol{x} \leq 0 \ \forall \boldsymbol{x} \in \mathcal{C} \}$ is the polar cone

Basics on Cones

Cones:

• $\mathcal{C} \subseteq \mathbb{R}^n$ a cone if $\alpha \mathbf{x} \in \mathcal{C}$ for all $\mathbf{x} \in \mathcal{C}$ and all real $\alpha \ge 0$

Given cone $\mathcal{C} \subseteq \mathbb{R}^n$,

- $\mathcal{C}^+ := \{ \boldsymbol{d} \mid \boldsymbol{d}^T \boldsymbol{x} \ge 0 \ \forall \boldsymbol{x} \in \mathcal{C} \}$ is the dual cone and
- $\mathcal{C}^- := \{ \boldsymbol{d} \mid \boldsymbol{d}^T \boldsymbol{x} \leq 0 \ \forall \boldsymbol{x} \in \mathcal{C} \}$ is the polar cone

Identities:

•
$$\mathcal{C}^- = \overline{\operatorname{conv}}\overline{\mathcal{C}}^-$$
 and $(\mathcal{C}^-)^- = \overline{\operatorname{conv}}\overline{\mathcal{C}}$

•
$$(\mathcal{C}_1 \cap \mathcal{C}_2)^- = \overline{\mathcal{C}_1^- + \mathcal{C}_2^-}$$

Tangent Cone

Tangent:

 $d \in \mathbb{R}^n$ is tangent to \mathcal{F} at \bar{x} if there is a sequence $\{y_k\} \subset \mathcal{F}$ with $\lim_{k \to \infty} y_k \to \bar{x}$ and a sequence $\{t_k\} \subset \mathbb{R}_{\geq 0}$ with $\lim_{k \to \infty} t_k = 0$ such that

$$\lim_{k\to\infty} t_k(\boldsymbol{y}_k-\bar{\boldsymbol{x}})=\boldsymbol{d}.$$

Tangent Cone:

 $T(\mathcal{F}, \bar{\mathbf{x}}) = \{ \mathbf{d} \in \mathbb{R}^n \mid \mathbf{d} \text{ tangent to } \mathcal{F} \text{ at } \bar{\mathbf{x}} \} \text{ is the tangent cone.}$

 $P(\mathcal{F}, \bar{\mathbf{x}}) = \overline{\operatorname{conv} T(\mathcal{F}, \bar{\mathbf{x}})} = T(\mathcal{F}, \bar{\mathbf{x}})^{--}$ is the pseudotangent cone.

Consider the problem

$$\min_{\pmb{x}\in\mathbb{R}^n}\,\psi(\pmb{x})~\text{s.t.}~\pmb{x}\in\mathfrak{F}$$

with feasible set $\mathcal{F} \subset \mathbb{R}^n$.

Theorem (1st Order Necessary Optimality Condition)

Let $\bar{\mathbf{x}}$ minimize ψ over \mathfrak{F} . Then

$$\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^+(\boldsymbol{\mathcal{F}}, \bar{\boldsymbol{x}}) := \left\{ \boldsymbol{q} \in \mathbb{R}^n \ \middle| \ \boldsymbol{q}^{\mathsf{T}} \boldsymbol{d} \geqslant \boldsymbol{0} \ \forall \boldsymbol{d} \in \boldsymbol{P}(\boldsymbol{\mathcal{F}}, \bar{\boldsymbol{x}}) \right\}$$

holds, and $P(\mathcal{F}, \bar{\mathbf{x}}) = \overline{\operatorname{conv} T(\mathcal{F}, \bar{\mathbf{x}})}$ denotes the pseudotangent cone of \mathcal{F} at $\bar{\mathbf{x}}$.

This theorem is great because we don't have to impose particular structural restrictions on the set \mathcal{F} .

Proof:

1. Let $d \in T(\mathcal{F}, \bar{\mathbf{x}})$. Then by definition, there is $\{\mathbf{x}_k\}_k \subset \mathcal{F}$ with $\lim_{k \to \infty} \mathbf{x}_k = \bar{\mathbf{x}}$ and $\{t_k\}_k \subset \mathbb{R}_{>0}$ with $\lim_{k \to \infty} t_k = 0$ and $\lim_{k \to \infty} t_k (\mathbf{x}_k - \bar{\mathbf{x}}) = d$.

Proof:

- 1. Let $d \in T(\mathcal{F}, \bar{x})$. Then by definition, there is $\{x_k\}_k \subset \mathcal{F}$ with $\lim_{k \to \infty} x_k = \bar{x}$ and $\{t_k\}_k \subset \mathbb{R}_{>0}$ with $\lim_{k \to \infty} t_k = 0$ and $\lim_{k \to \infty} t_k (x_k - \bar{x}) = d$.
- 2. As $\bar{\boldsymbol{x}}$ minimizes ψ over \mathfrak{F} , $\psi(\boldsymbol{x}_k) \psi(\bar{\boldsymbol{x}}) \ge 0$ for all $k \ge 0$ holds.

Proof:

- 1. Let $d \in T(\mathcal{F}, \bar{\mathbf{x}})$. Then by definition, there is $\{\mathbf{x}_k\}_k \subset \mathcal{F}$ with $\lim_{k \to \infty} \mathbf{x}_k = \bar{\mathbf{x}}$ and $\{t_k\}_k \subset \mathbb{R}_{>0}$ with $\lim_{k \to \infty} t_k = 0$ and $\lim_{k \to \infty} t_k (\mathbf{x}_k - \bar{\mathbf{x}}) = d$.
- 2. As $\bar{\boldsymbol{x}}$ minimizes ψ over \mathfrak{F} , $\psi(\boldsymbol{x}_k) \psi(\bar{\boldsymbol{x}}) \ge 0$ for all $k \ge 0$ holds.
- 3. By differentiability of ψ at \bar{x} ,

$$\psi(\boldsymbol{x}_k) - \psi(\bar{\boldsymbol{x}}) = \nabla \psi(\bar{\boldsymbol{x}})^T (\boldsymbol{x}_k - \bar{\boldsymbol{x}}) + o(||\boldsymbol{x}_k - \bar{\boldsymbol{x}}||).$$

Proof:

- 1. Let $d \in T(\mathcal{F}, \bar{\mathbf{x}})$. Then by definition, there is $\{\mathbf{x}_k\}_k \subset \mathcal{F}$ with $\lim_{k \to \infty} \mathbf{x}_k = \bar{\mathbf{x}}$ and $\{t_k\}_k \subset \mathbb{R}_{>0}$ with $\lim_{k \to \infty} t_k = 0$ and $\lim_{k \to \infty} t_k (\mathbf{x}_k - \bar{\mathbf{x}}) = d$.
- 2. As $\bar{\boldsymbol{x}}$ minimizes ψ over \mathfrak{F} , $\psi(\boldsymbol{x}_k) \psi(\bar{\boldsymbol{x}}) \ge 0$ for all $k \ge 0$ holds.
- 3. By differentiability of ψ at \bar{x} ,

$$\psi(\mathbf{x}_k) - \psi(\bar{\mathbf{x}}) = \nabla \psi(\bar{\mathbf{x}})^T (\mathbf{x}_k - \bar{\mathbf{x}}) + o(||\mathbf{x}_k - \bar{\mathbf{x}}||).$$

4. Then, we have

$$\nabla \psi(\bar{\boldsymbol{x}})^{\mathsf{T}} t_k(\boldsymbol{x}_k - \bar{\boldsymbol{x}}) \geq -\frac{o(||\boldsymbol{x}_k - \bar{\boldsymbol{x}}||)}{||\boldsymbol{x}_k - \bar{\boldsymbol{x}}||} t_k ||\boldsymbol{x}_k - \bar{\boldsymbol{x}}||.$$

Proof:

- 1. Let $d \in T(\mathcal{F}, \bar{\mathbf{x}})$. Then by definition, there is $\{\mathbf{x}_k\}_k \subset \mathcal{F}$ with $\lim_{k \to \infty} \mathbf{x}_k = \bar{\mathbf{x}}$ and $\{t_k\}_k \subset \mathbb{R}_{>0}$ with $\lim_{k \to \infty} t_k = 0$ and $\lim_{k \to \infty} t_k (\mathbf{x}_k - \bar{\mathbf{x}}) = d$.
- 2. As $\bar{\boldsymbol{x}}$ minimizes ψ over \mathfrak{F} , $\psi(\boldsymbol{x}_k) \psi(\bar{\boldsymbol{x}}) \ge 0$ for all $k \ge 0$ holds.
- 3. By differentiability of ψ at \bar{x} ,

$$\psi(\mathbf{x}_k) - \psi(\bar{\mathbf{x}}) = \nabla \psi(\bar{\mathbf{x}})^T (\mathbf{x}_k - \bar{\mathbf{x}}) + o(||\mathbf{x}_k - \bar{\mathbf{x}}||).$$

4. Then, we have

$$\nabla \psi(\bar{\boldsymbol{x}})^{\mathsf{T}} t_k(\boldsymbol{x}_k - \bar{\boldsymbol{x}}) \geq -\frac{o(||\boldsymbol{x}_k - \bar{\boldsymbol{x}}||)}{||\boldsymbol{x}_k - \bar{\boldsymbol{x}}||} t_k ||\boldsymbol{x}_k - \bar{\boldsymbol{x}}||.$$

5. Now let $k \to \infty$ and obtain

$$\nabla \psi(\bar{\boldsymbol{x}})^T \boldsymbol{d} \ge 0.$$

If don't know anything about \mathcal{F} , the condition $\boldsymbol{q} \in P^+(\mathcal{F}, \bar{\boldsymbol{x}})$ is difficult to check **computationally**.

Hence, we impose slightly more structure by considering the problem

 $\min_{\boldsymbol{x}\in\mathbb{R}^n} \psi(\boldsymbol{x}) \text{ s.t. } \boldsymbol{x}\in\mathbb{C}, \ \boldsymbol{a}(\boldsymbol{x})\in\mathcal{B},$

where now $\mathcal{F} = \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \in \mathcal{C}, \ \mathbf{a}(\mathbf{x}) \in \mathcal{B} \}$ and $\mathbf{a} : \mathbb{R}^n \to \mathbb{R}^m, \ \mathcal{B} \subset \mathbb{R}^m$.

The sets \mathcal{B} , \mathcal{C} are assumed to be **easy** enough to check membership in cones, e.g. by looking at signs of some vector entries.

Cones: $P(\mathcal{F}, \bar{\mathbf{x}}), P(\mathcal{B}, \mathbf{a}(\bar{\mathbf{x}}))$

MPCCs: We'll try to encode complementarities in \mathcal{B} , \mathcal{C} , $\boldsymbol{a}(\boldsymbol{x})$ in a moment.

Some more structure

Denote by

$$\mathcal{K} := \left\{ \boldsymbol{d} \in \mathbb{R}^n \, | \, \nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \in \mathcal{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))
ight\}$$

the cone of first order feasible directions at \bar{x} w.r.t. $a(\bar{x}) \in \mathcal{B}$, and denote by

$$H := \left\{ \boldsymbol{q} \in \mathbb{R}^n \mid \boldsymbol{q} = \nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}, \ \boldsymbol{\lambda} \in \boldsymbol{P}^-(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})) \right\}$$

the cone of first order optimal gradients at \bar{x} w.r.t. $a(\bar{x}) \in \mathcal{B}$.

Theorem (Guignard's KKT Theorem)

Let *H* be closed and let *G* be some closed convex cone such that $K \cap G = P(\mathcal{F}, \bar{x})$ and that $K^- + G^-$ is closed.

If $\bar{\mathbf{x}}$ minimizes $\psi(\mathbf{x})$ over \mathfrak{F} , there is $\lambda \in \mathbf{P}^+(\mathfrak{B}, \mathbf{a}(\bar{\mathbf{x}}))$ such that

 $-\nabla \psi(\bar{\pmb{x}}) + \nabla \pmb{a}(\bar{\pmb{x}})) \cdot \pmb{\lambda} \in \pmb{G}^{-}.$

1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathfrak{F}, \bar{\boldsymbol{x}}).$

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathcal{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathcal{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in \mathcal{K}^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in \mathcal{G}^-$.

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathfrak{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in K^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in G^-$.
- 4. Let $\boldsymbol{d} \in H^-$. Then $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^T \boldsymbol{d} \leqslant 0$ for all $\boldsymbol{\lambda} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$.

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathfrak{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in K^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in G^-$.
- 4. Let $\boldsymbol{d} \in H^-$. Then $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^T \boldsymbol{d} \leq 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$.
- 5. Suppose now that $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^k is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^m$ with

$$(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0 \geqslant \boldsymbol{\mu}^T \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$$

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathfrak{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in K^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in G^-$.
- 4. Let $\boldsymbol{d} \in H^-$. Then $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^T \boldsymbol{d} \leq 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$.
- 5. Suppose now that $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^k is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^m$ with

$$(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0 \geqslant \boldsymbol{\mu}^T \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$$

6. Therefore, $\boldsymbol{\mu} \in \boldsymbol{P}^{-}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in \boldsymbol{H}$.

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathfrak{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in K^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in G^-$.
- 4. Let $\boldsymbol{d} \in H^-$. Then $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^T \boldsymbol{d} \leq 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$.
- 5. Suppose now that $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^k is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^m$ with

$$(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0 \geqslant \boldsymbol{\mu}^T \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$$

- 6. Therefore, $\boldsymbol{\mu} \in \boldsymbol{P}^{-}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in \boldsymbol{H}$.
- 7. But this contradicts $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0$.

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathfrak{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in K^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in G^-$.
- 4. Let $\boldsymbol{d} \in H^-$. Then $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^T \boldsymbol{d} \leq 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$.
- 5. Suppose now that $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^k is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^m$ with

$$(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0 \geqslant \boldsymbol{\mu}^T \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$$

- 6. Therefore, $\boldsymbol{\mu} \in \boldsymbol{P}^{-}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in \boldsymbol{H}$.
- 7. But this contradicts $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0$.
- 8. Hence $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathfrak{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in K^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in G^-$.
- 4. Let $\boldsymbol{d} \in H^-$. Then $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^T \boldsymbol{d} \leq 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$.
- 5. Suppose now that $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^k is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^m$ with

$$(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > \boldsymbol{0} \ge \boldsymbol{\mu}^T \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$$

- 6. Therefore, $\mu \in P^{-}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in H$.
- 7. But this contradicts $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0$.
- 8. Hence $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \in P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$
- 9. That is, $\boldsymbol{d} \in K$ holds for all $\boldsymbol{d} \in H^-$. In other words, $H^- \subseteq K$.

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathcal{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in K^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in G^-$.
- 4. Let $\boldsymbol{d} \in H^-$. Then $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^T \boldsymbol{d} \leq 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$.
- 5. Suppose now that $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^k is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^m$ with

$$(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > \boldsymbol{0} \geqslant \boldsymbol{\mu}^T \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$$

- 6. Therefore, $\boldsymbol{\mu} \in \boldsymbol{P}^{-}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in \boldsymbol{H}$.
- 7. But this contradicts $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0$.
- 8. Hence $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$
- 9. That is, $\mathbf{d} \in K$ holds for all $\mathbf{d} \in H^-$. In other words, $H^- \subseteq K$.
- 10. Because *H* and *K* are closed convex cones, $K^- \subseteq H$ follows.

- 1. By the previous theorem, $-\nabla \psi(\bar{\boldsymbol{x}}) \in \boldsymbol{P}^{-}(\mathfrak{F}, \bar{\boldsymbol{x}}).$
- 2. By assumption, $K^- + G^-$ is closed, hence $K^- + G^- = P^-(\mathcal{F}, \bar{\mathbf{x}})$.
- 3. Then, there is $\boldsymbol{q} \in K^+$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \boldsymbol{q} \in G^-$.
- 4. Let $\boldsymbol{d} \in H^-$. Then $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda})^T \boldsymbol{d} \leq 0$ for all $\boldsymbol{\lambda} \in P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$.
- 5. Suppose now that $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \notin P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$. Since $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ is a cone, separation (\mathbb{R}^k is a separable Banach space) yields existence of an element $\boldsymbol{\mu} \in \mathbb{R}^m$ with

$$(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0 \geqslant \boldsymbol{\mu}^T \boldsymbol{\lambda} \quad \forall \boldsymbol{\lambda} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$$

- 6. Therefore, $\mu \in P^{-}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}))$ and $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu} \in H$.
- 7. But this contradicts $(\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu})^T \boldsymbol{d} > 0$.
- 8. Hence $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}})^T \boldsymbol{d} \in \boldsymbol{P}(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})).$
- 9. That is, $\mathbf{d} \in K$ holds for all $\mathbf{d} \in H^-$. In other words, $H^- \subseteq K$.
- 10. Because *H* and *K* are closed convex cones, $K^- \subseteq H$ follows.
- 11. Then, there is $\lambda \in P^+(\mathcal{B}, \mathbf{a}(\bar{\mathbf{x}}))$ with $-\nabla \psi(\bar{\mathbf{x}}) + \nabla \mathbf{a}(\bar{\mathbf{x}}) \cdot \lambda \in G^-$. \Box

Application to NLPs

Let us reconcile this with the KKT theorem for NLPs you all know.

$$\min_{\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{s} \in \mathbb{R}^{c}} F(\boldsymbol{x})$$
s.t. $G(\boldsymbol{x}) = 0, \ H(\boldsymbol{x}) - \boldsymbol{s} = 0$
 $\boldsymbol{s} \ge \boldsymbol{0}$

In our setting $\mathfrak{F} = \{(\textbf{\textit{x}}, \textbf{\textit{s}}) \in \mathfrak{C} \mid \textbf{\textit{a}}(\textbf{\textit{x}}, \textbf{\textit{s}}) \in \mathfrak{B}\}$, we have

$$\boldsymbol{a}(\boldsymbol{x}) = (\boldsymbol{G}(\boldsymbol{x}), \ \boldsymbol{H}(\boldsymbol{x}) - \boldsymbol{s}), \ \boldsymbol{\mathcal{B}} = \{\boldsymbol{0}\}, \ \boldsymbol{\mathcal{C}} = \mathbb{R}^n imes \mathbb{R}^c_{\geqslant \boldsymbol{0}}.$$

Cones:

•
$$P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}}, \bar{\boldsymbol{s}})) = \{\boldsymbol{0}\}$$

• $K = \{(\boldsymbol{d}_{x}, \boldsymbol{d}_{s}) \mid \nabla G(\bar{\boldsymbol{x}})^{T} \boldsymbol{d}_{x} = \boldsymbol{0}, \ \nabla H(\bar{\boldsymbol{x}})^{T} \boldsymbol{d}_{x} - \boldsymbol{d}_{s} = \boldsymbol{0}\}$
• $H = \{(\boldsymbol{q}_{x}, \boldsymbol{q}_{s}) \mid \boldsymbol{q}_{x} = \nabla G(\bar{\boldsymbol{x}}) \cdot \lambda_{G} + \nabla H(\bar{\boldsymbol{x}}) \cdot \lambda_{H}, \ \boldsymbol{q}_{s} = -\lambda_{H}, \ (\lambda_{G}, \lambda_{H}) \in \mathbb{R}^{2c}$

Also, *K* and *H* are **closed convex cones**, as required.

Guignard's Constraint Qualification (GCQ)

• We're supposed to choose a set G to satisfy the prerequisite. If we let

$$G = P(\mathcal{C}, \bar{\boldsymbol{x}}, \bar{\boldsymbol{s}}) = \{ (\boldsymbol{d}_{\boldsymbol{x}}, \boldsymbol{d}_{\boldsymbol{s}}) \in \mathbb{R}^{n+c} \mid \boldsymbol{d}_{\boldsymbol{s},i} \geq 0 \text{ if } \bar{\boldsymbol{s}}_i = 0 \},\$$

the prerequisite of the theorem $K \cap G \stackrel{!}{=} P(\mathcal{F}, \bar{x})$ reads

$$\{(\boldsymbol{d}_{x}, \boldsymbol{d}_{s}) \mid \nabla G(\bar{\boldsymbol{x}})^{T} \boldsymbol{d}_{x} = \boldsymbol{0}, \ \nabla H(\bar{\boldsymbol{x}})^{T} \boldsymbol{d}_{x} - \boldsymbol{d}_{s} = \boldsymbol{0}, \ \boldsymbol{d}_{s,i} \leq \boldsymbol{0} \text{ if } s_{i} = \boldsymbol{0} \}$$

$$\stackrel{!}{=} \boldsymbol{P}(\mathcal{F}, \bar{\boldsymbol{x}}) = \overline{\operatorname{conv} T(\mathcal{F}, \bar{\boldsymbol{x}})} = (\operatorname{conv} T(\mathcal{F}, \bar{\boldsymbol{x}}))^{--}.$$

The left hand side is the linearized cone, and the prerequisite simplifies to

$$L(\mathcal{F}, \bar{\mathbf{x}})^{-} = T(\mathcal{F}, \bar{\mathbf{x}})^{-},$$

"the dual of the linearized cone must equal the dual of the tangent cone".

 This is called Guignard's Constraint Qualification (GCQ), and is the weakest condition under which a variant of the KKT theorem can be proven. The theorem's statement now reads:

If \bar{x} minimizes $\psi(x)$ over \mathcal{F} and GCQ holds for \mathcal{F} at \bar{x} , there are λ_{G} , λ_{H} such that

$$end arrow -
abla_{\mathbf{x}}\psi(\mathbf{ar{x}}) +
abla G(\mathbf{ar{x}}) \cdot oldsymbol{\lambda}_G +
abla H(\mathbf{ar{x}}) \cdot oldsymbol{\lambda}_H = 0$$

 $\lambda_{H,i} = 0 ext{ if } oldsymbol{s}_i > 0$
 $\lambda_{H,i} \leqslant 0 ext{ if } oldsymbol{s}_i = 0$

This is the usual form of the KKT theorem.

Notes:

 $\begin{array}{l} P^+(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})) = \mathbb{R}^c \\ G^-(\mathcal{F}, \boldsymbol{x}, \boldsymbol{s}) = \{0\}^n \times \{\lambda_H \mid \lambda_{H,i} = 0 \text{ if } s_i > 0, \ \lambda_{H,i} \leqslant 0 \text{ if } s_i = 0 \} \end{array}$

Application to MPCCs: First Attempt

Let's now try to obtain an optimality condition for the most simple MPCC

 $\min \psi(u, v) \text{ s.t. } 0 \leqslant u \perp v \geqslant 0.$

Certainly, ψ can be chosen such that $\mathbf{x}^* = (u^*, v^*) = (0, 0)$ is a minimizer.

Encode \mathcal{F} : $\boldsymbol{a}(\boldsymbol{x}) = \boldsymbol{u} \cdot \boldsymbol{v}, \mathcal{B} = \{0\}, \mathcal{C} = \mathbb{R}^2_{\geq 0}.$

Cones:

- $K = \mathbb{R}^2$ because $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) = \boldsymbol{0}$, and $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})) = \{\boldsymbol{0}\}, P^+(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})) = \mathbb{R}^2$
- $P(\mathcal{F}, \bar{\mathbf{x}}) = \mathcal{F}$, a cone but not convex; $P^{-}(\mathcal{F}, \bar{\mathbf{x}}) = \mathbb{R}^{2}_{\leq 0}$
- $G = P(\mathcal{F}, \bar{\mathbf{x}})$ is the only (and trivial) choice that satisfies $K \cap G = \mathcal{P}(\mathcal{F}, \bar{\mathbf{x}})$
- Then $G^- = \mathbb{R}^2_{\leq 0}$

Guignard's KKT theorem now yields the following statement:

If $\bar{\boldsymbol{x}}$ minimizes ψ over \mathcal{F} , "there is $\boldsymbol{\lambda} \in \mathbb{R}^2$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda} \leqslant \boldsymbol{0}$ ". This is very weak. Clearly, our encoding is to blame. Here's a better idea:

Encode: $\mathbf{a}(\mathbf{x}) = (\mathbf{u}, \mathbf{v}), \ \mathcal{B} = (\mathbb{R}_{\geq 0} \times \{0\}) \cup (\{0\} \times \mathbb{R}_{\geq 0}), \ \mathcal{C} = \mathbb{R}^2.$

Cones:

- $K = \mathcal{B}$ because $\nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) = \boldsymbol{I}$, and $P(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})) = \mathcal{B}, P^+(\mathcal{B}, \boldsymbol{a}(\bar{\boldsymbol{x}})) = \mathbb{R}^2_{\geq 0}$
- $G = \mathbb{R}^2$ now satisfies $K \cap G = \mathcal{P}(\mathcal{F}, \bar{\mathbf{x}})$
- Then *G*⁻ = {**0**}

Guignard's theorem now yields the following, much improved statement:

If $\bar{\boldsymbol{x}}$ minimizes ψ over \mathcal{F} , "there is $\boldsymbol{\lambda} \in \mathbb{R}^2_{\geq 0}$ such that $-\nabla \psi(\bar{\boldsymbol{x}}) + \nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda} = \mathbf{0}$."

MPCC-Lagrangian Function

The second encoding **discourages** the notation $u \cdot v = 0$ and **motivates** the introduction of a pair of multiplier vectors for the complementarity constraint:

MPCC as NLP:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x})$$

s.t. $\mathbf{0} = G(\boldsymbol{x}) \cdot H(\boldsymbol{x})$
 $\mathbf{0} \leqslant G(\boldsymbol{x}), \mathbf{0} \leqslant H(\boldsymbol{x})$

NLP-Lagrangian:

$$\mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}_{GH}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}) \coloneqq F(\boldsymbol{x}) - \boldsymbol{\lambda}_{GH}^{T}(G(\boldsymbol{x}) \cdot \boldsymbol{H}(\boldsymbol{x})) - \boldsymbol{\mu}_{G}^{T}G(\boldsymbol{x}) - \boldsymbol{\mu}_{H}^{T}\boldsymbol{H}(\boldsymbol{x}).$$

MPCC:

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x})$$

s.t. $\boldsymbol{0} \leq G(\boldsymbol{x}) \perp H(\boldsymbol{x}) \geq \boldsymbol{0}$

MPCC-Lagrangian:

$$\mathcal{L}_{\mathsf{MPCC}}(\mathbf{\textit{x}}, \boldsymbol{\mu}_{\mathcal{G}}, \boldsymbol{\mu}_{\mathcal{H}}) := \boldsymbol{\textit{F}}(\mathbf{\textit{x}}) - \boldsymbol{\mu}_{\mathcal{G}}^{\mathsf{T}} \boldsymbol{\textit{G}}(\mathbf{\textit{x}}) - \boldsymbol{\mu}_{\mathcal{H}}^{\mathsf{T}} \boldsymbol{\textit{H}}(\mathbf{\textit{x}})$$

Active Sets

We say that **Lower-Level Strict Complementarity (LLSCC)** is satisfied at \bar{x} if $I_{00}(\bar{x}) = \emptyset$. Then, the constraint $\mathbf{0} = G(x) \cdot H(x)$ can locally be disposed of. The MPCC locally looks like an NLP satisfying constraint qualifications.

Assuming (LLSCC) is usually held for way too strong a restriction to be of practical interest.

Strong Stationarity (S)

Remember that GCQ had a chance of being satisfied by an MPCC.

Then, if \bar{x} minimizes ψ over \mathcal{F} , there is $\lambda \in \mathcal{P}^+(\mathcal{B}, \mathbf{a}(\bar{x}))$ such that

$$-\nabla \psi(\bar{\boldsymbol{x}}) + \nabla \boldsymbol{a}(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda} \in \boldsymbol{P}^{-}(\mathcal{F}, \bar{\boldsymbol{x}}).$$

Alphabet soup of stationarity conditions.

Strong or S-Stationarity: If $\bar{x} \in \mathcal{F}$ is a local minimizer of MPCC and GCQ holds at \bar{x} , there are multipliers λ_C , μ_D , μ_G , μ_H such that

$$\nabla \mathcal{L}_{MPCC}(\bar{\boldsymbol{x}}, \boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}) = \boldsymbol{0} \qquad \qquad \boldsymbol{\mu}_{D} \ge \boldsymbol{0}$$
$$\mu_{D,i} = 0 \text{ if } D_{i}(\bar{\boldsymbol{x}}) > 0$$
$$\mu_{G,i} \ge 0, \mu_{H,i} \ge 0 \text{ if } i \in I_{00}(\bar{\boldsymbol{x}})$$
$$\mu_{H,i} = 0 \text{ if } i \in I_{0+}(\bar{\boldsymbol{x}})$$
$$\mu_{G,i} = 0 \text{ if } i \in I_{+0}(\bar{\boldsymbol{x}})$$

S-Stationarity multiplier set

Optimal multiplier signs for $i \in I_{00}(\bar{x})$ under S-stationarity.

MPCC-Linear Independence CQ

We say that **MPCC-Linear Independence CQ (MPCC-LICQ)** holds at $\bar{x} \in \mathcal{F}$ if the gradients

$$\begin{pmatrix} \nabla C(\bar{\mathbf{x}}) & \nabla D_i(\bar{\mathbf{x}}) & \nabla G_i(\bar{\mathbf{x}}) & \nabla H_i(\bar{\mathbf{x}}) \end{pmatrix} \\ D_i(\bar{\mathbf{x}}) = 0 \quad i \in I_{0+}(\bar{\mathbf{x}}) \cup I_{00}(\bar{\mathbf{x}}) \quad i \in I_{+0}(\bar{\mathbf{x}}) \cup I_{00}(\bar{\mathbf{x}}) \end{cases}$$

are linearly independent.

 $\begin{array}{c} \mathsf{MPCC-LICQ} \text{ is LICQ for the tightened NLP at } \bar{\mathbf{x}} \colon & \lambda_{H,i} \\ \hline\\ & \underset{\mathbf{x} \in \mathbb{R}^n}{\min \ F(\mathbf{x})} \\ \text{ s.t. } C(\mathbf{x}) = \mathbf{0} \\ D(\mathbf{x}) \geq \mathbf{0} \\ G_i(\mathbf{x}) = \mathbf{0}, \ H_i(\mathbf{x}) \geq 0 \text{ if } i \in I_{0+}(\bar{\mathbf{x}}) \\ G_i(\mathbf{x}) \geq 0, \ H_i(\mathbf{x}) = 0 \text{ if } i \in I_{+0}(\bar{\mathbf{x}}) \\ G_i(\mathbf{x}) = \mathbf{0}, \ H_i(\mathbf{x}) = 0 \text{ if } i \in I_{00}(\bar{\mathbf{x}}) \end{array}$

Theorem

If MPCC-LICQ holds at $\bar{\mathbf{x}} \in \mathfrak{F}$, then GCQ holds at $\bar{\mathbf{x}}$.

Sketch of proof: For sets $P \subseteq I_{00}(\bar{x})$ we have

$$T(\mathcal{F}, \bar{\mathbf{x}}) = \bigcup_{\mathbf{P} \subseteq I_{00}(\bar{\mathbf{x}})} T(\mathcal{F}(\mathbf{P}), \bar{\mathbf{x}}) \implies T(\mathcal{F}, \bar{\mathbf{x}})^{\circ} = \bigcap_{\mathbf{P} \subseteq I_{00}(\bar{\mathbf{x}})} T(\mathcal{F}(\mathbf{P}), \bar{\mathbf{x}})^{\circ}.$$

If a constraint qualification holds at \bar{x} for all sets $\mathcal{F}(P)$, we have

$$T(\mathcal{F}, \bar{\boldsymbol{x}})^{\circ} = \bigcap_{\boldsymbol{P} \subseteq I_{00}(\bar{\boldsymbol{x}})} L(\mathcal{F}(\boldsymbol{P}), \bar{\boldsymbol{x}})^{\circ}.$$

For GCQ to hold at \bar{x} , we now have to show $T(\mathcal{F}, \bar{x})^{\circ} \subseteq L(\mathcal{F}, \bar{x})^{\circ}$, as $T(\mathcal{F}, \bar{x})^{\circ} \supseteq L(\mathcal{F}, \bar{x})^{\circ}$ always holds.

Sketch of proof, continued: The cones $L(\mathcal{F}(P), \bar{x})^{\circ}$ have the explicit representations $L(\mathcal{F}(P), \bar{x}) =$

$$\left\{ \boldsymbol{w} \mid \begin{array}{l} \boldsymbol{w} = \nabla C(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\lambda}_{C} + \nabla D(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu}_{D} + \nabla G(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu}_{G} + \nabla H(\bar{\boldsymbol{x}}) \cdot \boldsymbol{\mu}_{H} \\ \mu_{D,i} = 0 \text{ if } D_{i}(\bar{\boldsymbol{x}}) > 0, \ \mu_{D,i} \ge 0 \text{ if } D_{i}(\bar{\boldsymbol{x}}) \ge 0 \\ \mu_{G,i} = 0 \text{ if } i \in I_{+0}(\bar{\boldsymbol{x}}), \ \mu_{G,i} \ge 0 \text{ if } i \in P^{C} \\ \mu_{H,i} = 0 \text{ if } i \in I_{0+}(\bar{\boldsymbol{x}}), \ \mu_{H,i} \ge 0 \text{ if } i \in P \end{array} \right\}$$

MPCC-LICQ implies a CQ for every $\mathcal{F}(P)$. Now for any element $\mathbf{w} \in T(\mathcal{F}(P), \bar{\mathbf{x}})^{\circ}$, use this to show that for every *P* there exist vectors λ_{C} , $\mu_{D}, \mu_{G}, \mu_{H}$ such that $\mathbf{w} \in L(\mathcal{F}(P), \bar{\mathbf{x}})^{\circ}$.

Finally, MPCC-LICQ for all $\mathcal{F}(P)$ implies uniqueness of the multipliers across all $P \subset I_{00}(\bar{x})$. Then $w \in T(\mathcal{F}, \bar{x})^{\circ}$ implies $w \in L(\mathcal{F}, \bar{x})^{\circ}$, which shows that GCQ holds. \Box

Summarizing, we have just proven the following:

Theorem (S-Stationarity is necessary under MPCC-LICQ)

If MPCC-LICQ holds at $\overline{\mathbf{x}} \in \mathcal{F}$, then GCQ holds at $\overline{\mathbf{x}}$. If $\overline{\mathbf{x}}$ is a local minimum of MPCC, and GCQ holds at $\overline{\mathbf{x}}$, then $\overline{\mathbf{x}}$ is an S-stationary point.

"Convex" MPCCs satisfy GCQ and permit to also prove the converse:

Theorem (S-Stationarity is sufficient under MPCC-convexity)

If F is convex, D is concave, and C, G, and H are affine linear, then every S-stationary point of MPCC is a local minimum.

On the other hand, we have already seen that GCQ may not hold. Hence, MPCC-LICQ is usually considered too restrictive to serve as a working basis.

An NCP function $\varphi:\mathbb{R}^2\to\mathbb{R}$ satisfies

$$\phi(u, v) = 0 \iff 0 \leqslant u \perp v \ge 0.$$

Example:

 $\phi(u, v) = \min\{u, v\}$

$$\min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) \\ \text{s.t. } \phi(G_i(\boldsymbol{x}), H_i(\boldsymbol{x})) = 0, \ 1 \leqslant i \leqslant c$$

Differentiable NCP-functions necessarily satisfy $\nabla \phi(0, 0) = (0, 0)^T$.

Useful NCP-functions are **nondifferentiable** in (0, 0).

Bouligand Subdifferential

Denote by D_{φ} the set

 $D_{\Phi} := \{ \boldsymbol{x} \mid \varphi \text{ is differentiable in } \boldsymbol{x} \}.$

The set

$$\partial^{\mathsf{B}} \phi(\bar{\boldsymbol{x}}) = \left\{ \boldsymbol{d} \mid \exists \{ \boldsymbol{x}_k \} \subseteq D_{\phi}, \lim_{k \to \infty} \boldsymbol{x}_k = \bar{\boldsymbol{x}} : \lim_{k \to \infty} \phi(\boldsymbol{x}_k) = \boldsymbol{d} \right\}$$

is called the **Bouligand Subdifferential** of ϕ at \bar{x} .

Bouligand Subdifferential

Denote by D_{φ} the set

 $D_{\varphi} := \{ \boldsymbol{x} \mid \varphi \text{ is differentiable in } \boldsymbol{x} \}.$

The set

$$\partial^{\mathsf{B}} \phi(\bar{\boldsymbol{x}}) = \left\{ \boldsymbol{d} \mid \exists \{ \boldsymbol{x}_k \} \subseteq D_{\phi}, \lim_{k \to \infty} \boldsymbol{x}_k = \bar{\boldsymbol{x}} : \lim_{k \to \infty} \phi(\boldsymbol{x}_k) = \boldsymbol{d} \right\}$$

is called the **Bouligand Subdifferential** of ϕ at \bar{x} .

For MPCC with the NCP function $\phi_i(\bar{\boldsymbol{x}}) := \phi(G_i(\bar{\boldsymbol{x}}), H_i(\bar{\boldsymbol{x}}))$ we find:

•
$$i \in I_{0+}(\bar{\boldsymbol{x}})$$
: $\partial^{\mathsf{B}} \phi_i(\bar{\boldsymbol{x}}) = \left\{ (\nabla G_i(\bar{\boldsymbol{x}}), 0)^T \right\}$

•
$$i \in I_{+0}(\bar{\boldsymbol{x}})$$
: $\partial^{\mathsf{B}} \phi_i(\bar{\boldsymbol{x}}) = \left\{ (0, \nabla H_i(\bar{\boldsymbol{x}}))^T \right\}$

• $i \in I_{00}(\bar{\boldsymbol{x}})$: $\partial^{\mathsf{B}} \phi_i(\bar{\boldsymbol{x}}) = \left\{ (\nabla G_i(\bar{\boldsymbol{x}}), 0)^{\mathsf{T}}, (0, \nabla H_i(\bar{\boldsymbol{x}}))^{\mathsf{T}} \right\}$

We may pick an element of the Bouligand subdifferential by specifying a subset $P \subseteq I_{00}(\bar{x})$ and its complement $P^{C} := I_{00}(\bar{x}) \setminus P$ relative to $I_{00}(\bar{x})$.

Then define the **branch NLP** for *P* at \bar{x} :

 $(NLP(\bar{\boldsymbol{x}}, \boldsymbol{P}))$

$$\begin{array}{l} \min_{\boldsymbol{x} \in \mathbb{R}^n} F(\boldsymbol{x}) \\ \text{s.t. } C(\boldsymbol{x}) = \boldsymbol{0} \\ D(\boldsymbol{x}) \ge \boldsymbol{0} \\ G_i(\boldsymbol{x}) = 0, \ H_i(\boldsymbol{x}) \ge 0 \text{ if } i \in I_{0+}(\bar{\boldsymbol{x}}) \cup P \\ G_i(\boldsymbol{x}) \ge 0, \ H_i(\boldsymbol{x}) = 0 \text{ if } i \in I_{+0}(\bar{\boldsymbol{x}}) \cup P^{\mathsf{C}} \end{array}$$

There are $2^{|l_{00}(\bar{x})|}$ branch NLPs in a point $\bar{x} \in \mathcal{F}$. If LLSCC holds, there is only one. Then, in a small neighborhood of \bar{x} , MPCC looks like that branch NLP.

Bouligand Stationarity (B)

Bouligand- or B-Stationarity: A point $\bar{x} \in \mathcal{F}$ is called B-stationary if for every $P \subseteq I_{00}(\bar{x})$ there are multipliers λ_C , μ_D , μ_G , μ_H (possibly depending on *P*) such that

$$\nabla \mathcal{L}_{\text{MPCC}}(\bar{\boldsymbol{x}}, \boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}) = \boldsymbol{0} \qquad \boldsymbol{\mu}_{D} \ge \boldsymbol{0}$$

$$\boldsymbol{\mu}_{D,i} = 0 \text{ if } D_{i}(\bar{\boldsymbol{x}}) > 0$$

$$\boldsymbol{\mu}_{H,i} = 0 \text{ if } i \in I_{0+}(\bar{\boldsymbol{x}})$$

$$\boldsymbol{\mu}_{G,i} = 0 \text{ if } i \in I_{+0}(\bar{\boldsymbol{x}})$$

$$\boldsymbol{\mu}_{H,i} \ge 0 \text{ if } i \in P \subset I_{00}(\bar{\boldsymbol{x}})$$

$$\boldsymbol{\mu}_{G,i} \ge 0 \text{ if } i \in P^{C} \subset I_{00}(\bar{\boldsymbol{x}})$$

Theorem

A local minimizer $\bar{\mathbf{x}} \in \mathfrak{F}$ of MPCC is B-stationary.

A piece $P \subset I_{00}(\bar{x})$ with a non-optimal multiplier is a poly-size certificate for non-B-stationarity. The B-stationarity decision problem is in co-NP (in absence for further CQs) because there are $2^{|I_{00}(\bar{x})|}$ pieces *P* to check.

B-stationarity multiplier sets

$$c = 1$$
, $I_{00}(\bar{x}) = \{1\}$.

The set

$$\partial^{\mathsf{C}} \varphi(\bar{\boldsymbol{x}}) := \mathsf{conv} \ \partial^{\mathsf{B}} \varphi(\bar{\boldsymbol{x}})$$

is called the **Clarke Subdifferential** of ϕ at \bar{x} . For MPCC with the NCP function $\phi_i(\bar{x}) := \phi(G_i(\bar{x}), H_i(\bar{x}))$ we find:

•
$$i \in I_{0+}(\bar{\boldsymbol{x}})$$
: $\partial^{\mathsf{C}} \phi_i(\bar{\boldsymbol{x}}) = \partial^{\mathsf{B}} \phi_i(\bar{\boldsymbol{x}})$

- $i \in I_{+0}(\bar{\boldsymbol{x}})$: $\partial^{\mathsf{C}} \phi_i(\bar{\boldsymbol{x}}) = \partial^{\mathsf{B}} \phi_i(\bar{\boldsymbol{x}})$
- $i \in I_{00}(\bar{\boldsymbol{x}})$: $\partial^{\mathsf{C}} \phi_i(\bar{\boldsymbol{x}}) = \operatorname{conv}\left\{ (\nabla G_i(\bar{\boldsymbol{x}}), 0)^T, (0, \nabla H_i(\bar{\boldsymbol{x}}))^T \right\}$

Chain Rule for ∂^C :

$$\partial^{\mathsf{C}}(F_1 \circ F_2)(\bar{\boldsymbol{x}}) \cdot \boldsymbol{d} \subseteq \operatorname{conv}(\partial^{\mathsf{C}}F_1(F_2(\bar{\boldsymbol{x}})) \cdot \partial^{\mathsf{C}}F_2(\bar{\boldsymbol{x}})) \cdot \boldsymbol{d}$$

and equality holds if either F_1 is \mathcal{C}^1 around $F_2(\bar{x})$ or F_2 is \mathcal{C}^1 around \bar{x} .

Using the Clarke subdifferential in KKT

Applying this chain rule to the NCP function $\phi_i(\bar{\boldsymbol{x}}) = \min(G_i(\bar{\boldsymbol{x}}), H_i(\bar{\boldsymbol{x}}))$ yields the estimate

$$\begin{aligned} \partial^{\mathsf{C}} \phi_i(\bar{\boldsymbol{x}}) &\subseteq \mathsf{conv} \{ \nabla G_i(\bar{\boldsymbol{x}}), \nabla H_i(\bar{\boldsymbol{x}}) \} \\ &= \left\{ (\xi_i \nabla G_i(\bar{\boldsymbol{x}}), (1-\xi_i) \nabla H_i(\bar{\boldsymbol{x}})) \mid \mathbf{0} \leqslant \xi_i \leqslant \mathbf{1} \right\} \end{aligned}$$

and equality can be shown by a refined argument.

Using the Clarke subdifferential in KKT

Applying this chain rule to the NCP function $\phi_i(\bar{\boldsymbol{x}}) = \min(G_i(\bar{\boldsymbol{x}}), H_i(\bar{\boldsymbol{x}}))$ yields the estimate

$$\begin{aligned} \partial^{\mathsf{C}} \phi_i(\bar{\boldsymbol{x}}) &\subseteq \mathsf{conv}\{\nabla G_i(\bar{\boldsymbol{x}}), \nabla H_i(\bar{\boldsymbol{x}})\} \\ &= \left\{ (\xi_i \nabla G_i(\bar{\boldsymbol{x}}), (1-\xi_i) \nabla H_i(\bar{\boldsymbol{x}})) \mid \mathbf{0} \leqslant \xi_i \leqslant \mathbf{1} \right\} \end{aligned}$$

and equality can be shown by a refined argument.

Inserting any particular element from $\partial^{C} \varphi_{i}(\bar{x})$ (given by a $\xi \in [0, 1]^{c}$) into the KKT conditions yields

$$\nabla F(\bar{\boldsymbol{x}}) \in \sum_{i \in I_{0+}(\bar{\boldsymbol{x}})} \nabla G_i(\bar{\boldsymbol{x}}) \cdot \delta_i + \sum_{i \in I_{+0}(\bar{\boldsymbol{x}})} \nabla H_i(\bar{\boldsymbol{x}}) \cdot \delta_i + \sum_{i \in I_{00}(\bar{\boldsymbol{x}})} \operatorname{conv} \{\nabla G_i(\bar{\boldsymbol{x}}), \nabla H_i(\bar{\boldsymbol{x}})\} \cdot \delta_i$$

with MPCC multipliers

$$\lambda_{G,i} = \begin{cases} \delta_i & \text{if } i \in I_{0+}(\bar{\boldsymbol{x}}) \\ \xi_i \delta_i & \text{if } i \in I_{00}(\bar{\boldsymbol{x}}) \\ 0 & \text{if } i \in I_{+0}(\bar{\boldsymbol{x}}) \end{cases} \text{ and } \lambda_{H,i} = \begin{cases} 0 & \text{if } i \in I_{0+}(\bar{\boldsymbol{x}}) \\ (1-\xi_i)\delta_i & \text{if } i \in I_{00}(\bar{\boldsymbol{x}}) \\ \delta_i & \text{if } i \in I_{+0}(\bar{\boldsymbol{x}}). \end{cases}$$

We may simplify the conditions on λ_G and λ_H for the biactive set to

$$\lambda_{G,i} \cdot \lambda_{H,i} = \xi_i (1 - \xi_i) \delta_i^2 \ge 0, \ i \in I_{00}(\bar{\boldsymbol{x}}).$$

A point $x \in \mathcal{F}$ is called **Clarke-** or **C-stationarity** if there are multipliers λ_C , μ_D , μ_G , μ_H such that

$$\nabla \mathcal{L}_{\mathsf{MPCC}}(\bar{\boldsymbol{x}}, \boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}) = \boldsymbol{0} \qquad \qquad \boldsymbol{\mu}_{D} \ge \boldsymbol{0}$$
$$\mu_{D,i} = 0 \text{ if } D_{i}(\bar{\boldsymbol{x}}) > 0$$
$$\mu_{G,i} \cdot \mu_{H,i} \ge \boldsymbol{0} \text{ if } i \in I_{00}(\bar{\boldsymbol{x}})$$
$$\mu_{H,i} = 0 \text{ if } i \in I_{0+}(\bar{\boldsymbol{x}})$$
$$\mu_{G,i} = 0 \text{ if } i \in I_{+0}(\bar{\boldsymbol{x}})$$

C-stationarity multiplier set

C-stationarity ignores trivial descent directions. Algorithmically, it is an unsatisfying concept for MPCCs.

Clarke stationarity (C)

MPCC-Mangasarian-Fromovitz CQ holds at $\bar{x} \in \mathcal{F}$ if the gradients $\nabla C(\bar{x})$ and $\nabla D_i(\bar{x})$ for $D_i(\bar{x}) = 0$, $\nabla G_i(\bar{x})$ for $i \in I_{0+}(\bar{x}) \cup I_{00}(\bar{x})$, and $\nabla H_i(\bar{x})$ for $i \in I_{+0}(\bar{x}) \cup I_{00}(\bar{x})$ are positively linearly independent.

This means that there are nontrivial multipliers λ_G , $\mu_D \ge 0$, $\mu_G \ge 0$, and $\mu_H \ge 0$ such that

$$\mathbf{0} = \nabla C(\bar{\mathbf{x}}) \cdot \mathbf{\lambda} + \sum_{i: \ D_i \geqslant \mathbf{0}} \nabla D_i(\bar{\mathbf{x}}) \cdot \mu_{D,i} + \sum_{I_0 + \cup I_{00}} \nabla G_i(\bar{\mathbf{x}}) \cdot \mu_{G,i} + \sum_{I_{+0} \cup I_{00}} \nabla H_i(\bar{\mathbf{x}}) \cdot \mu_{H,i}.$$

MPCC-LICQ at \bar{x} implies MPCC-MFCQ at \bar{x} .

Theorem

Let \bar{x} be a local minimum of MPCC and let MPCC-MFCQ hold at \bar{x} . Then \bar{x} is C-stationary.

Unforunately, many feasible points with descent directions turn out to be C-stationary as well, so the criterion is considered a very weak one.

MPCC-Abadie CQ and MPCC-Guignard CQ

The MPCC-linearized cone is

$$L_{\mathsf{MPCC}}(\mathcal{F}, \bar{\boldsymbol{x}}) = L(\mathcal{F}, \bar{\boldsymbol{x}}) \cap \left\{ \boldsymbol{d} \mid (\nabla G_i(\bar{\boldsymbol{x}})^T \boldsymbol{d}) \cdot (\nabla H_i(\bar{\boldsymbol{x}})^T \boldsymbol{d}) = 0, \ i \in I_{00}(\bar{\boldsymbol{x}}) \right\}$$

and satisfies

$$T(\mathcal{F}, \bar{\mathbf{x}}) \subseteq L_{\mathsf{MPCC}}(\mathcal{F}, \bar{\mathbf{x}}) \subseteq L(\mathcal{F}, \bar{\mathbf{x}}).$$

This motivates the definitions: **MPCC-ACQ** holds at $\bar{x} \in \mathcal{F}$ if

$$T(\mathcal{F}, \bar{\mathbf{x}}) = L_{\text{MPCC}}(\mathcal{F}, \bar{\mathbf{x}}).$$

MPCC-GCQ holds at $\bar{x} \in \mathcal{F}$ if

$$T(\mathcal{F}, \bar{\boldsymbol{x}})^{\circ} = L_{\mathsf{MPCC}}(\mathcal{F}, \bar{\boldsymbol{x}})^{\circ}.$$

A point $x \in \mathcal{F}$ is called **Mordukhovich-** or **M-stationarity** if there are multipliers λ_C , μ_D , μ_G , μ_H such that

$$\nabla \mathcal{L}_{\mathsf{MPCC}}(\bar{\boldsymbol{x}}, \boldsymbol{\lambda}_{C}, \boldsymbol{\mu}_{D}, \boldsymbol{\mu}_{G}, \boldsymbol{\mu}_{H}) = \boldsymbol{0} \qquad \boldsymbol{\mu}_{D} \ge \boldsymbol{0}$$
$$\boldsymbol{\mu}_{D,i} = 0 \text{ if } D_{i}(\bar{\boldsymbol{x}}) > 0$$
$$\boldsymbol{\mu}_{G,i} \cdot \boldsymbol{\mu}_{H,i} = \boldsymbol{0} \text{ or } \boldsymbol{\mu}_{G,i} \ge \boldsymbol{0}, \quad \boldsymbol{\mu}_{H,i} \ge \boldsymbol{0} \text{ if } i \in I_{00}(\bar{\boldsymbol{x}})$$
$$\boldsymbol{\mu}_{H,i} = 0 \text{ if } i \in I_{0+}(\bar{\boldsymbol{x}})$$
$$\boldsymbol{\mu}_{G,i} = \boldsymbol{0} \text{ if } i \in I_{0+}(\bar{\boldsymbol{x}})$$

Theorem

If $\bar{\mathbf{x}}$ is a local minimum of MPCC, and MPCC-GCQ holds at $\bar{\mathbf{x}}$, then $\bar{\mathbf{x}}$ is an M-stationary point.

M-stationarity multiplier set

Summary of Implication Chains

I haven't talked about A-, L-, T-, and W-stationarity ...