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Problem Class

min
x∈Rn

F(x)

s.t. C(x) = 0

D(x) ⩾ 0

0 ⩽ G(x) ⊥ H(x) ⩾ 0

G(x)
0

H(x)

feasible set F

Continuously differentiable F : Rn → R, G,H : Rn → Rc

Writing “0 ⩽ u ⊥ v ⩾ 0” means to ask that

for all 1 ⩽ i ⩽ c : 0 = ui OR 0 = vi holds.



Smooth-looking Multiplicative Formulations

Under the bounds u ⩾ 0, v ⩾ 0, several equivalent formulations exist:

uT v = 0 ∈ R
uT v ⩽ 0 ∈ R
u ◦ v = 0 ∈ Rc (Hadamard product)

u ◦ v ⩽ 0 ∈ Rc

ui · vi = 0 for all 1 ⩽ i ⩽ c

ui · vi ⩽ 0 for all 1 ⩽ i ⩽ c

The problem may also be stated with a non-smooth constraint:

min{u, v} = 0

min{ui , vi } = 0 for all 1 ⩽ i ⩽ c



Vertical Form

Any MPCC can be cast in the so-called vertical form, using only orthogonal
complementarities:

min
(x,u,v)∈Rn+2c

F(x)

s.t. G(x) − u = 0

H(x) − v = 0

0 ⩽ u ⊥ v ⩾ 0

When solving MPCCs numerically (later), the vertical form guarantees linear
feasibility and typically shows better convergence behavior.



Lifted Form

Any MPCC can be cast in a lifted form by
introducing

a slack w ∈ Rc ,

a penalty function p(w),

and a penalty parameter π > 0:

min
(x,u,v,w)∈Rn+2c

F(x) + π · p(w)

s.t. G(x) − u = 0

H(x) − v = 0

w ⩽ u ⊥ v ⩾ 0

Example: p(w) = ||w ||1

u
0

v

u
0

v

u = w
w



Math. Programs with Vanishing Constraints

MPCCs have a close relative, MPVCs:

min
x∈Rn

F(x)

s.t. G(x) ⩾ 0

G(x) ··· H(x)⩽⩽⩽ 0

Any MPVC can be cast as an MPCC by intro-
duction of a slack vector s:

min
x∈Rn,s∈Rc

F(x)

s.t. G(x) ⩾ 0

s − H(x) ⩾ 0

0 ⩽ G(x)⊥⊥⊥ s ⩾ 0

G(x)
0

H(x)

feasible set F

In a solution, the slack will be degenerate. A more detailed analysis shows
that MPVCs are slightly more regular than an MPCC plus a slack vector.



Equilibrium Constraints (MPECs)

min
x

F(x, y)

s.t. x ∈ X, y ∈ S(x)

wherein F : Rn × Rm → R is the objective and S : Rn ⇒ Rm is a set-valued
map, called the “equilibrium constraint”.

One example: Bi-level programs The set

S(x) = argmin
y

{
F(x, y)

∣∣ y ∈ Y
}

is, for a given vector x , the solution set of the inner problem

min
y

F(x, y) s.t. y ∈ Y(x)

Under assumptions, the inner problem may be replaced by its first order
necessary conditions. We obtain an MPCC if Y(x) contains inequality
constraints.



Game Theory

Stackelberg game: Asymmetric two-player game over turns k ⩾ 1.

Leader controls x and minimizes L(x, y) considering set S(x) of follower’s
responses:

(leader) min
x

L(x, y)

s.t. x ∈ X, y ∈ S(x)

⇕

(follower) min
y(k)

F(x, y(k), y(k−1))

s.t. y(k) ∈ Y(x, y(k−1))

Follower controls y(k) given the leader’s choice x and the follower’s response
y(k−1) in the previous turn.



Game Theory

For a given element x assume

Y(x, y(k−1)) =
{

y
∣∣ G(x, y) = 0, H(x, y) ⩾ 0

}
.

Under a suitable constraint qualification, an element

y ∈ S(x) = argmin
y

{
F(x, y)

∣∣ y ∈ Y(x, y(k−1))
}

necessarily satisfies

∇yF(x, y) +∇yG(x, y) · λ+∇yH(x, y) · µ = 0

G(x, y) = 0

0 ⩽ µ⊥⊥⊥ H(x, y) ⩾ 0

for some vectors λ, µ. Under assumptions, we may replace the constraint
y ∈ S(x) in the leader’s problem by these necessary conditions.



Nonconvex Relaxations of Discrete Problems

MINLP with indicator constraints Gi(x) ⩾ 0 on indicators variables ωi :

min
x,ω

F(x,ω)

s.t. C(x) = 0, D(x) ⩾ 0

ωi · Gi(x) ⩾ 0

1Tω = 1, ωi ∈ {0, 1}, 1 ⩽ i ⩽ nω

The problem admits a non-convex relaxation, which is an MPVC:

min
x,α

F(x,α)

s.t. C(x) = 0, D(x) ⩾ 0

αi · Gi(x) ⩾ 0

1Tα = 1, αi ∈ [0, 1], 1 ⩽ i ⩽ nω

Not a magic bullet to combinatorial optimization. Stationary points of the relaxation sometimes

yield good initial guesses.



Abs-Normal Form: Structured Nonsmoothness

A non-smooth function ϕ(x) is in abs-normal form if

ϕ(x) = f (x, |z |)

z = F(x, |z |) ∂|z|F strictly lower triangular

such that z1 = F(x) and zk = F(x, |z1|, . . . , |zk−1|) for k > 1.

Abs-Normal forms are amenable to automatic differentiation, e.g. ADOL-C.

Abs-normal forms are identical to their counterpart complementarity problems
in vertical form:

ϕ(x) = f (x,u + v)

u − v = F(x,u + v)

0 ⩽ u ⊥ v ⩾ 0



Why MPCCs mean Trouble

Example: min
x∈R3

x1 + x2 − x3

s.t. − 4x1 + x3 ⩽ 0 | µ1

− 4x2 + x3 ⩽ 0 | µ2

0 ⩽ x1, 0 ⩽ x2, x1 · x2 = 0 | µ3,µ4, λ

Global Minimum: Observe x3 ⩽ 4min{x1, x2} = 0, hence x∗ = (0, 0, 0).



Why MPCCs mean Trouble

Example: min
x∈R3

x1 + x2 − x3

s.t. − 4x1 + x3 ⩽ 0 | µ1

− 4x2 + x3 ⩽ 0 | µ2

0 ⩽ x1, 0 ⩽ x2, x1 · x2 = 0 | µ3,µ4, λ

Global Minimum: Observe x3 ⩽ 4min{x1, x2} = 0, hence x∗ = (0, 0, 0).

Remember the KKT theorem and try to verify stationarity:−4 · −1 · ·
· −4 · −1 ·
1 1 · · ·

( µ1
µ2
µ3
µ4
λ

)
= −

 1
1
−1


Result: µ3 = 1 − 4µ1 ⩾ 0, µ4 = 1 − 4µ2 ⩾ 0,

µ1 + µ2 = 1, µ1 ⩾ 0, µ2 ⩾ 0.

This is impossible, so the global minimizer x∗ apparently is not a KKT point!



Why MPCCs are Trouble

Example: min
x∈R2

ψ(x) s.t. 0 ⩽ x1, 0 ⩽ x2, x1 · x2 = 0

Observation:

If x1 > 0, x2 = 0 then:
Gradients of active constraints (0, 1)T and (0, x1)

T linearly dependent

If x1 = 0, x2 > 0 then:
Gradients of active constraints (1, 0)T and (x2, 0)T linearly dependent

If x1 = 0, x2 = 0 then:
Gradients of active constraints (0, 1)T , (0, 1)T , (0, 0)T linearly dependent

=⇒ Lack of Linear Independence Constraint Qualification!

Indeed: Mangasarian-Fromovitz CQ and Abadie’s CQ also don’t hold.
Hence, the KKT theorem does not hold.



Basics on Cones

Cones:

C ⊆ Rn a cone if αx ∈ C for all x ∈ C and
all real α ⩾ 0

Given cone C ⊆ Rn,

C+ := {d | dT x ⩾ 0 ∀x ∈ C} is the dual
cone and

C− := {d | dT x ⩽ 0 ∀x ∈ C} is the polar
cone

C−
C+

C

0



Basics on Cones

Cones:

C ⊆ Rn a cone if αx ∈ C for all x ∈ C and
all real α ⩾ 0

Given cone C ⊆ Rn,

C+ := {d | dT x ⩾ 0 ∀x ∈ C} is the dual
cone and

C− := {d | dT x ⩽ 0 ∀x ∈ C} is the polar
cone

Identities:

C− = convC
−

and (C−)− = convC

(C1 ∩ C2)
− = C−

1 + C−
2

C−
C+

C

0

C−
1 + C−

2

0

C1 C1 ∩ C2

C2

C−
2

C−
1



Tangent Cone
Tangent:
d ∈ Rn is tangent to F at x̄ if there is a sequence {yk } ⊂ F with lim

k→∞ yk → x̄

and a sequence {tk } ⊂ R⩾0 with lim
k→∞ tk = 0 such that

lim
k→∞ tk(yk − x̄) = d.

Tangent Cone:
T (F, x̄) = {d ∈ Rn | d tangent to F at x̄} is the tangent cone.

P(F, x̄) = convT (F, x̄) = T (F, x̄)−− is the pseudotangent cone.

x̄

F y1

y2

y3

T (F, x̄)



1st Order Necessary Optimality Conditions

Consider the problem

min
x∈Rn

ψ(x) s.t. x ∈ F

with feasible set F ⊂ Rn.

Theorem (1st Order Necessary Optimality Condition)
Let x̄ minimize ψ over F. Then

∇ψ(x̄) ∈ P+(F, x̄) :=
{

q ∈ Rn
∣∣∣ qT d ⩾ 0 ∀d ∈ P(F, x̄)

}
holds, and P(F, x̄) = convT (F, x̄) denotes the pseudotangent cone of F at x̄ .

This theorem is great because we don’t have to impose particular structural
restrictions on the set F.



Proof (1st Order Necessary Optimality Condition)

Proof:

1. Let d ∈ T (F, x̄). Then by definition, there is {xk }k ⊂ F with lim
k→∞ xk = x̄

and {tk }k ⊂ R>0 with lim
k→∞ tk = 0 and lim

k→∞ tk(xk − x̄) = d .

2. As x̄ minimizes ψ over F, ψ(xk) −ψ(x̄) ⩾ 0 for all k ⩾ 0 holds.

3. By differentiability of ψ at x̄ ,

ψ(xk) −ψ(x̄) = ∇ψ(x̄)T (xk − x̄) + o(||xk − x̄ ||).

4. Then, we have

∇ψ(x̄)T tk(xk − x̄) ⩾ −
o(||xk − x̄ ||)
||xk − x̄ ||

tk ||xk − x̄ ||.

5. Now let k → ∞ and obtain

∇ψ(x̄)T d ⩾ 0.
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Some more structure

If don’t know anything about F, the condition q ∈ P+(F, x̄) is difficult to
check computationally.

Hence, we impose slightly more structure by considering the problem

min
x∈Rn

ψ(x) s.t. x ∈ C, a(x) ∈ B,

where now F = {x ∈ Rn | x ∈ C, a(x) ∈ B} and a : Rn → Rm, B ⊂ Rm.

The sets B, C are assumed to be easy enough to check membership in
cones, e.g. by looking at signs of some vector entries.

Cones: P(F, x̄), P(B, a(x̄))

MPCCs: We’ll try to encode complementarities in B, C, a(x) in a moment.



Some more structure

x1

x2

Rn

x 7→ a(x)

P(C, x̄)

x̄

C

P(B, a(x̄))

a1(x)

a2(x)

Rm

B

a(x̄)



Guignard’s KKT Theorem

Denote by
K :=

{
d ∈ Rn | ∇a(x̄)T d ∈ P(B, a(x̄))

}
the cone of first order feasible directions at x̄ w.r.t. a(x̄) ∈ B,
and denote by

H :=
{

q ∈ Rn | q = ∇a(x̄) · λ, λ ∈ P−(B, a(x̄))
}

the cone of first order optimal gradients at x̄ w.r.t. a(x̄) ∈ B.

Theorem (Guignard’s KKT Theorem)
Let H be closed and let G be some closed convex cone such that
K ∩ G = P(F, x̄) and that K− + G− is closed.

If x̄ minimizes ψ(x) over F, there is λ ∈ P+(B, a(x̄)) such that

−∇ψ(x̄) +∇a(x̄)) · λ ∈ G−.



Proof (Guignard’s KKT Theorem)

1. By the previous theorem, −∇ψ(x̄) ∈ P−(F, x̄).

2. By assumption, K− + G− is closed, hence K− + G− = P−(F, x̄).

3. Then, there is q ∈ K+ such that −∇ψ(x̄) + q ∈ G−.

4. Let d ∈ H−. Then (∇a(x̄) · λ)T d ⩽ 0 for all λ ∈ P(B, a(x̄)).

5. Suppose now that ∇a(x̄)T d /∈ P(B, a(x̄)). Since P(B, a(x̄)) is a cone,
separation (Rk is a separable Banach space) yields existence of an
element µ ∈ Rm with

(∇a(x̄) · µ)T d > 0 ⩾ µTλ ∀λ ∈ P(B, a(x̄)).

6. Therefore, µ ∈ P−(B, a(x̄)) and ∇a(x̄) · µ ∈ H.

7. But this contradicts (∇a(x̄) · µ)T d > 0.

8. Hence ∇a(x̄)T d ∈ P(B, a(x̄)).

9. That is, d ∈ K holds for all d ∈ H−. In other words, H− ⊆ K .

10. Because H and K are closed convex cones, K− ⊆ H follows.

11. Then, there is λ ∈ P+(B, a(x̄)) with −∇ψ(x̄) +∇a(x̄) · λ ∈ G−.
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Application to NLPs

Let us reconcile this with the KKT theorem for NLPs you all know.

min
x∈Rn,s∈Rc

F(x)

s.t. G(x) = 0, H(x) − s = 0

s ⩾ 0

In our setting F = {(x, s) ∈ C | a(x, s) ∈ B}, we have

a(x) = (G(x), H(x) − s), B = {0}, C = Rn × Rc
⩾0.

Cones:

P(B, a(x̄, s̄)) = {0}

K = {(dx ,ds) | ∇G(x̄)T dx = 0, ∇H(x̄)T dx − ds = 0}

H = {(qx ,qs) | qx = ∇G(x̄)·λG+∇H(x̄)·λH , qs = −λH , (λG,λH) ∈ R2c}

Also, K and H are closed convex cones, as required.



Guignard’s Constraint Qualification (GCQ)

We’re supposed to choose a set G to satisfy the prerequisite. If we let

G = P(C, x̄, s̄) = {(dx ,ds) ∈ Rn+c | ds,i ⩾ 0 if s̄i = 0},

the prerequisite of the theorem K ∩ G
!
= P(F, x̄) reads

{(dx ,ds) | ∇G(x̄)T dx = 0, ∇H(x̄)T dx − ds = 0,ds,i ⩽ 0 if si = 0}
!
= P(F, x̄) = convT (F, x̄) = (convT (F, x̄))−−.

The left hand side is the linearized cone, and the prerequisite simplifies to

L(F, x̄)− = T (F, x̄)−,

“the dual of the linearized cone must equal the dual of the tangent cone”.

This is called Guignard’s Constraint Qualification (GCQ), and is the
weakest condition under which a variant of the KKT theorem can be
proven.



KKT Theorem under GCQ

The theorem’s statement now reads:

If x̄ minimizes ψ(x) over F and GCQ holds for F at x̄ , there are λG,λH

such that

−∇xψ(x̄) +∇G(x̄) · λG +∇H(x̄) · λH = 0

λH,i = 0 if si > 0

λH,i ⩽ 0 if si = 0

This is the usual form of the KKT theorem.

Notes:
P+(B, a(x̄)) = Rc

G−(F, x, s) = {0}n × {λH | λH,i = 0 if si > 0, λH,i ⩽ 0 if si = 0}



Application to MPCCs: First Attempt

Let’s now try to obtain an optimality condition for the most simple MPCC

minψ(u, v) s.t. 0 ⩽ u ⊥ v ⩾ 0.

Certainly, ψ can be chosen such that x∗ = (u∗, v∗) = (0, 0) is a minimizer.

Encode F: a(x) = u · v , B = {0}, C = R2
⩾0.

Cones:

K = R2 because ∇a(x̄) = 0, and P(B, a(x̄)) = {0}, P+(B, a(x̄)) = R2

P(F, x̄) = F, a cone but not convex; P−(F, x̄) = R2
⩽0

G = P(F, x̄) is the only (and trivial) choice that satisfies K ∩ G = P(F, x̄)

Then G− = R2
⩽0

Guignard’s KKT theorem now yields the following statement:

If x̄ minimizes ψ over F,
“there is λ ∈ R2 such that −∇ψ(x̄) +∇a(x̄) · λ ⩽ 0”.



Application to MPCCs: Second Attempt

This is very weak. Clearly, our encoding is to blame. Here’s a better idea:

Encode: a(x) = (u, v), B = (R⩾0 × {0}) ∪ ({0}× R⩾0), C = R2.

Cones:

K = B because ∇a(x̄) = I , and P(B, a(x̄)) = B, P+(B, a(x̄)) = R2
⩾0

G = R2 now satisfies K ∩ G = P(F, x̄)

Then G− = {0}

Guignard’s theorem now yields the following, much improved statement:

If x̄ minimizes ψ over F,
“there is λ ∈ R2

⩾0 such that −∇ψ(x̄) +∇a(x̄) · λ = 0.”



MPCC-Lagrangian Function
The second encoding discourages the notation u · v = 0 and motivates the
introduction of a pair of multiplier vectors for the complementarity constraint:

MPCC as NLP:
min
x∈Rn

F(x)

s.t. 0 = G(x) · H(x)

0 ⩽ G(x), 0 ⩽ H(x)

NLP-Lagrangian:

L(x,λGH ,µG,µH) := F(x) − λT
GH(G(x) · H(x)) − µT

GG(x) − µT
HH(x).

MPCC:
min
x∈Rn

F(x)

s.t. 0 ⩽ G(x) ⊥ H(x) ⩾ 0

MPCC-Lagrangian:

LMPCC(x,µG,µH) := F(x) − µT
GG(x) − µT

HH(x)



Active Sets

Active sets of strict complementarities:
I+0(x̄) := {i | Gi(x̄) > 0, Hi(x̄) = 0}
I0+(x̄) := {i | Gi(x̄) = 0, Hi(x̄) > 0}

Active set of non-strict complementarity pairs
(biactive set):
I00(x̄) := {i | Gi(x̄) = 0, Hi(x̄) = 0}

Gi(x)

Hi(x)

I+0I00

I0+

We say that Lower-Level Strict Complementarity (LLSCC) is satisfied at x̄
if I00(x̄) = ∅. Then, the constraint 0 = G(x) · H(x) can locally be disposed of.
The MPCC locally looks like an NLP satisfying constraint qualifications.

Assuming (LLSCC) is usually held for way too strong a restriction to be of
practical interest.



Strong Stationarity (S)

Remember that GCQ had a chance of be-
ing satisfied by an MPCC.

Then, if x̄ minimizes ψ over F, there is
λ ∈ P+(B, a(x̄)) such that

−∇ψ(x̄) +∇a(x̄) · λ ∈ P−(F, x̄).

Alphabet soup of stationarity conditions.

Strong or S-Stationarity: If x̄ ∈ F is a local minimizer of MPCC and GCQ
holds at x̄ , there are multipliers λC, µD, µG, µH such that

∇LMPCC(x̄,λC,µD,µG,µH) = 0 µD ⩾ 0

µD,i = 0 if Di(x̄) > 0

µG,i ⩾ 0,µH,i ⩾ 0 if i ∈ I00(x̄)

µH,i = 0 if i ∈ I0+(x̄)

µG,i = 0 if i ∈ I+0(x̄)



S-Stationarity multiplier set

λG,i
0

λH,i

Optimal multiplier signs for i ∈ I00(x̄) under S-stationarity.



MPCC-Linear Independence CQ

We say that MPCC-Linear Independence CQ (MPCC-LICQ) holds at x̄ ∈ F

if the gradients(
∇C(x̄) ∇Di(x̄) ∇Gi(x̄) ∇Hi(x̄)

)
Di(x̄) = 0 i ∈ I0+(x̄) ∪ I00(x̄) i ∈ I+0(x̄) ∪ I00(x̄)

are linearly independent.

MPCC-LICQ is LICQ for the tightened NLP at x̄ :

min
x∈Rn

F(x)

s.t. C(x) = 0

D(x) ⩾ 0

Gi(x) = 0, Hi(x) ⩾ 0 if i ∈ I0+(x̄)

Gi(x) ⩾ 0, Hi(x) = 0 if i ∈ I+0(x̄)

Gi(x) === 0, Hi(x) === 0 if i ∈ I00(x̄)

λG,i
0

λH,i

Optimal multiplier signs for TNLP(x̄)
in I00(x̄).



MPCC-LICQ implies GCQ

Theorem
If MPCC-LICQ holds at x̄ ∈ F, then GCQ holds at x̄ .

Sketch of proof: For sets P ⊆ I00(x̄) we have

T (F, x̄) =
⋃

P⊆I00(x̄)

T (F(P), x̄) =⇒ T (F, x̄)◦ =
⋂

P⊆I00(x̄)

T (F(P), x̄)◦.

If a constraint qualification holds at x̄ for all sets F(P), we have

T (F, x̄)◦ =
⋂

P⊆I00(x̄)

L(F(P), x̄)◦.

For GCQ to hold at x̄ , we now have to show T (F, x̄)◦ ⊆ L(F, x̄)◦, as
T (F, x̄)◦ ⊇ L(F, x̄)◦ always holds.



MPCC-LICQ implies GCQ

Sketch of proof, continued: The cones L(F(P), x̄)◦ have the explicit
representations L(F(P), x̄) =w

∣∣∣∣∣∣∣∣∣∣
w = ∇C(x̄) · λC +∇D(x̄) · µD +∇G(x̄) · µG +∇H(x̄) · µH

µD,i = 0 if Di(x̄) > 0, µD,i ⩾ 0 if Di(x̄) ⩾ 0

µG,i = 0 if i ∈ I+0(x̄), µG,i ⩾ 0 if i ∈ PC

µH,i = 0 if i ∈ I0+(x̄), µH,i ⩾ 0 if i ∈ P

 .

MPCC-LICQ implies a CQ for every F(P). Now for any element
w ∈ T (F(P), x̄)◦, use this to show that for every P there exist vectors λC,
µD, µG, µH such that w ∈ L(F(P), x̄)◦.

Finally, MPCC-LICQ for all F(P) implies uniqueness of the multipliers across
all P ⊂ I00(x̄). Then w ∈ T (F, x̄)◦ implies w ∈ L(F, x̄)◦, which shows that
GCQ holds.



S-Stationarity and Local Minimizers

Summarizing, we have just proven the following:

Theorem (S-Stationarity is necessary under MPCC-LICQ)
If MPCC-LICQ holds at x̄ ∈ F, then GCQ holds at x̄ . If x̄ is a local minimum
of MPCC, and GCQ holds at x̄ , then x̄ is an S-stationary point.

“Convex” MPCCs satisfy GCQ and permit to also prove the converse:

Theorem (S-Stationarity is sufficient under MPCC-convexity)
If F is convex, D is concave, and C, G, and H are affine linear, then every
S-stationary point of MPCC is a local minimum.

On the other hand, we have already seen that GCQ may not hold. Hence,
MPCC-LICQ is usually considered too restrictive to serve as a working basis.



Non-smooth minimization

An NCP function ϕ : R2 → R satisfies

ϕ(u, v) = 0 ⇐⇒ 0 ⩽ u ⊥ v ⩾ 0.

Example:
ϕ(u, v) = min{u, v}

min
x∈Rn

F(x)

s.t. ϕ(Gi(x),Hi(x)) = 0, 1 ⩽ i ⩽ c

Differentiable NCP-functions necessarily satisfy ∇ϕ(0, 0) = (0, 0)T .

Useful NCP-functions are nondifferentiable in (0, 0).



Bouligand Subdifferential

Denote by Dϕ the set

Dϕ := {x | ϕ is differentiable in x}.

The set

∂Bϕ(x̄) =
{

d
∣∣ ∃{xk } ⊆ Dϕ, lim

k→∞ xk = x̄ : lim
k→∞ϕ(xk) = d

}
is called the Bouligand Subdifferential of ϕ at x̄ .



Bouligand Subdifferential

Denote by Dϕ the set

Dϕ := {x | ϕ is differentiable in x}.

The set

∂Bϕ(x̄) =
{

d
∣∣ ∃{xk } ⊆ Dϕ, lim

k→∞ xk = x̄ : lim
k→∞ϕ(xk) = d

}
is called the Bouligand Subdifferential of ϕ at x̄ .

For MPCC with the NCP function ϕi(x̄) := ϕ(Gi(x̄),Hi(x̄)) we find:

i ∈ I0+(x̄): ∂Bϕi(x̄) =
{
(∇Gi(x̄), 0)T

}
i ∈ I+0(x̄): ∂Bϕi(x̄) =

{
(0,∇Hi(x̄))T

}
i ∈ I00(x̄): ∂Bϕi(x̄) =

{
(∇Gi(x̄), 0)T , (0,∇Hi(x̄))T

}



Branch or Piece NLPs

We may pick an element of the Bouligand subdifferential by specifying a
subset P ⊆ I00(x̄) and its complement PC := I00(x̄) \ P relative to I00(x̄).

Then define the branch NLP for P at x̄ :

(NLP(x̄,P))

min
x∈Rn

F(x)

s.t. C(x) = 0

D(x) ⩾ 0

Gi(x) = 0, Hi(x) ⩾ 0 if i ∈ I0+(x̄) ∪ P

Gi(x) ⩾ 0, Hi(x) = 0 if i ∈ I+0(x̄) ∪ PC

There are 2|I00(x̄)| branch NLPs in a point x̄ ∈ F. If LLSCC holds, there is only
one. Then, in a small neighborhood of x̄ , MPCC looks like that branch NLP.



Bouligand Stationarity (B)

Bouligand- or B-Stationarity: A point x̄ ∈ F is called B-stationary if for
every P ⊆ I00(x̄) there are multipliers λC, µD, µG, µH (possibly depending
on P) such that

∇LMPCC(x̄,λC,µD,µG,µH) = 0 µD ⩾ 0

µD,i = 0 if Di(x̄) > 0

µH,i = 0 if i ∈ I0+(x̄)

µG,i = 0 if i ∈ I+0(x̄)

µH,i ⩾⩾⩾ 0 if i ∈ P ⊂ I00(x̄)

µG,i ⩾⩾⩾ 0 if i ∈ PC ⊂ I00(x̄)

Theorem
A local minimizer x̄ ∈ F of MPCC is B-stationary.

A piece P ⊂ I00(x̄) with a non-optimal multiplier is a poly-size certificate for
non-B-stationarity. The B-stationarity decision problem is in co-NP (in
absence for further CQs) because there are 2|I00(x̄)| pieces P to check.



B-stationarity multiplier sets

c = 1, I00(x̄) = {1}.

λG,i
0

λH,i

Optimal multiplier signs for piece
P = ∅.

λG,i
0

λH,i

Optimal multiplier signs for piece
P = {1}.



Clarke subdifferential

The set
∂Cϕ(x̄) := conv ∂Bϕ(x̄)

is called the Clarke Subdifferential of ϕ at x̄ . For MPCC with the NCP
function ϕi(x̄) := ϕ(Gi(x̄),Hi(x̄)) we find:

i ∈ I0+(x̄): ∂Cϕi(x̄) = ∂Bϕi(x̄)

i ∈ I+0(x̄): ∂Cϕi(x̄) = ∂Bϕi(x̄)

i ∈ I00(x̄): ∂Cϕi(x̄) = conv
{
(∇Gi(x̄), 0)T , (0,∇Hi(x̄))T

}
Chain Rule for ∂C :

∂C(F1 ◦ F2)(x̄) · d ⊆⊆⊆ conv(∂CF1(F2(x̄)) · ∂CF2(x̄)) · d

and equality holds if either F1 is C1 around F2(x̄) or F2 is C1 around x̄ .



Using the Clarke subdifferential in KKT

Applying this chain rule to the NCP function ϕi(x̄) = min(Gi(x̄),Hi(x̄)) yields
the estimate

∂Cϕi(x̄) ⊆ conv {∇Gi(x̄),∇Hi(x̄)}

=
{
(ξi∇Gi(x̄), (1 − ξi)∇Hi(x̄))

∣∣ 0 ⩽ ξi ⩽ 1
}

and equality can be shown by a refined argument.



Using the Clarke subdifferential in KKT

Applying this chain rule to the NCP function ϕi(x̄) = min(Gi(x̄),Hi(x̄)) yields
the estimate

∂Cϕi(x̄) ⊆ conv {∇Gi(x̄),∇Hi(x̄)}

=
{
(ξi∇Gi(x̄), (1 − ξi)∇Hi(x̄))

∣∣ 0 ⩽ ξi ⩽ 1
}

and equality can be shown by a refined argument.

Inserting any particular element from ∂Cϕi(x̄) (given by a ξ ∈ [0, 1]c) into the
KKT conditions yields

∇F(x̄) ∈
∑

i∈I0+(x̄)

∇Gi(x̄) · δi +
∑

i∈I+0(x̄)

∇Hi(x̄) · δi +
∑

i∈I00(x̄)

conv{∇Gi(x̄),∇Hi(x̄)} · δi

with MPCC multipliers

λG,i =

 δi if i ∈ I0+(x̄)
ξiδi if i ∈ I00(x̄)
0 if i ∈ I+0(x̄)

and λH,i =

 0 if i ∈ I0+(x̄)
(1 − ξi)δi if i ∈ I00(x̄)
δi if i ∈ I+0(x̄).



Clarke stationarity (C)

We may simplify the conditions on λG and λH for the biactive set to

λG,i · λH,i = ξi(1 − ξi)δ
2
i ⩾ 0, i ∈ I00(x̄).

A point x ∈ F is called Clarke- or C-stationarity if there are multipliers λC,
µD, µG, µH such that

∇LMPCC(x̄,λC,µD,µG,µH) = 0 µD ⩾ 0

µD,i = 0 if Di(x̄) > 0

µG,i · µH,i⩾ 0 if i ∈ I00(x̄)

µH,i = 0 if i ∈ I0+(x̄)

µG,i = 0 if i ∈ I+0(x̄)



C-stationarity multiplier set

λG,i
0

λH,i

Optimal multiplier signs for C-
stationarity.

C-stationarity ignores trivial descent directions. Algorithmically, it is an
unsatisfying concept for MPCCs.



Clarke stationarity (C)

MPCC-Mangasarian-Fromovitz CQ holds at x̄ ∈ F if the gradients ∇C(x̄)
and ∇Di(x̄) for Di(x̄) = 0, ∇Gi(x̄) for i ∈ I0+(x̄) ∪ I00(x̄), and ∇Hi(x̄) for
i ∈ I+0(x̄) ∪ I00(x̄) are positively linearly independent.

This means that there are nontrivial multipliers λG, µD ⩾ 0, µG ⩾ 0, and
µH ⩾ 0 such that

0 = ∇C(x̄) · λ+
∑

i: Di⩾0

∇Di(x̄) · µD,i +
∑

I0+∪I00

∇Gi(x̄) · µG,i +
∑

I+0∪I00

∇Hi(x̄) · µH,i .

MPCC-LICQ at x̄ implies MPCC-MFCQ at x̄ .

Theorem
Let x̄ be a local minimum of MPCC and let MPCC-MFCQ hold at x̄ . Then x̄
is C-stationary.

Unforunately, many feasible points with descent directions turn out to be
C-stationary as well, so the criterion is considered a very weak one.



MPCC-Abadie CQ and MPCC-Guignard CQ

The MPCC-linearized cone is

LMPCC(F, x̄) = L(F, x̄) ∩
{

d
∣∣ (∇Gi(x̄)

T d) · (∇Hi(x̄)
T d) = 0, i ∈ I00(x̄)

}
and satisfies

T (F, x̄) ⊆ LMPCC(F, x̄) ⊆ L(F, x̄).

This motivates the definitions:
MPCC-ACQ holds at x̄ ∈ F if

T (F, x̄) = LMPCC(F, x̄).

MPCC-GCQ holds at x̄ ∈ F if

T (F, x̄)◦ = LMPCC(F, x̄)
◦.



Mordukhovich stationarity (M)

A point x ∈ F is called Mordukhovich- or M-stationarity if there are
multipliers λC, µD, µG, µH such that

∇LMPCC(x̄,λC,µD,µG,µH) = 0 µD ⩾ 0

µD,i = 0 if Di(x̄) > 0

µG,i · µH,i = 0 or µG,i ⩾ 0, µH,i ⩾ 0 if i ∈ I00(x̄)

µH,i = 0 if i ∈ I0+(x̄)

µG,i = 0 if i ∈ I+0(x̄)

Theorem
If x̄ is a local minimum of MPCC, and MPCC-GCQ holds at x̄ , then x̄ is an
M-stationary point.



M-stationarity multiplier set

λG,i
0

λH,i

Optimal multiplier signs for M-
stationarity.



Summary of Implication Chains

KKT

LICQ

MFCQ

ACQ

GCQ

(always)

MPCC-LICQ

MPCC-MFCQ

MPCC-ACQ

MPCC-GCQ

B-stationarity

S-stationarity

M-stationarity

C-stationarity

“implies”

“is a necessary optimality condition”

I haven’t talked about A-, L-, T-, and W-stationarity ...


