
i
i

“ex1” — 2023/9/12 — 17:00 — page 1 — #1 i
i

i
i

i
i

Summer School on Direct Methods for Optimal Control of Nonsmooth Systems
Albert-Ludwigs-Universität Freiburg – September 11 - September 15, 2023

Exercise 1: Introduction to CasADi and direct optimal control

Prof. Dr. Moritz Diehl, Armin Nurkanović, Jonathan Frey, Florian Messerer, Anton Pozharskiy

The goal of this exercise is to get familiar with the open-source tool CasADi and to solve a first
optimal control problem via direct collocation. Templates are available for Matlab and Python.

About CasADi

CasADi is an open-source tool for nonlinear optimization and algorithmic differentiation.
In preparation of the summer school, please install CasADi: https://web.casadi.org/get/
Make sure you can use it succesfully, running a small test:

% Matlab
import casadi.*
x = SX.sym('x')
disp(jacobian(sin(x),x))

Python
from casadi import *
x = SX.sym("x")
print(jacobian(sin(x),x))

If something is unclear, consult the CasADi documentation at https://web.casadi.org/docs/.
For Python users: The solution templates borrow some functionality from nosnoc, please clone
https://github.com/FreyJo/nosnoc_py/ and follow the installation instructions.

Pendulum on cart with friction

Consider a model of a pendulum on a cart with friction, with state x = (p, θ, v, ω), where p describes
the position of the cart, θ the angle of the pendulum mounted on the cart, v the velocity of the cart
and ω the angular velocity of the pendulum. The control action u is a force which accelerates the
cart.
The differential equations corresponding to this system can be derived using Lagrange mechanics,
where q = (p, θ) describe the generalized coordinates and q̇ = (v, ω) are its derivative. The system
has the following parameters, which are assumed to be fixed, the length of the pendulum l = 1,
the mass of the cart m1 = 1, the mass at the end of the pendulum m2 = 0.1 and the gravitational
constant g = 9.81.
The differential equations can be derived as follows. First, the derivatives of the generalized coordi-
nates are simply ṗ = v and θ̇ = ω. Second, the dynamics of the generalized velocities are

q̈ =

(
v̇
ω̇

)
= M(q)−1fall(q, q̇, u) (1)

where the inertia matrix M(·) of the system is given as

M(q) =

(
m1 +m2 m2l cos(θ)
m2l cos(θ) m2l

2

)
(2)

and fall(·) gathers the gravity, control, Coriolis and friction forces, as follows:

fall(·) =
(

0
−m2gl sin(θ)

)
+

(
u
0

)
−

(
0 −m2l cos(θ)
0 0

)
q̇ +

(
−FFrictionsign(v)

0

)
.

Here, FFriction is a fixed parameter which we will change in this exercise to use the model, with or
without friction. We will use values FFriction ∈ {0, 2}. For the following equations, we denote the
explicit ODE as ẋ = fODE(x, u).

1

https://web.casadi.org/get/
https://web.casadi.org/docs/
https://github.com/FreyJo/nosnoc_py/

i
i

“ex1” — 2023/9/12 — 17:00 — page 2 — #2 i
i

i
i

i
i

1. Modelling and simulation with CasADi The goal is to simulate the cart pole model with
different settings.

(a) Simulate the system without friction. Fill in the missing part in the CasADi model descrip-
tion.

(b) Extend the model to include a smoothed friction model, by replacing sign(z) with tanh(z
σ
).

Model the smoothing parameter σ as a CasADi parameter, and run the simulation with
σ = 1.0.

2. Optimal Control with Direct collocation
Collocation methods belong to the class of implicit Runge-Kutta methods for solving initial
value problems. To discretize an optimal control problem with direct collocation we replace the
continuous-time dynamics

ẋ(t) = fODE(x(t), u(t)),

by the discrete-time collocation equations. Thereby, we split the control horizon [0, T] into N
control intervals with a uniform time discretization grid tn = nh, n = 0, . . . , N , where h is
the step size and the corresponding state values are xn = x(tn). For the control discretization
we use u(t) = un, t ∈ [tn, tn+1], n = 1, . . . , N . On every control interval the state trajectory is
approximated by polynomials qn(t), n = 1, . . . , N . Note that in every control interval we may
have multiple integration steps, but for simplicity we take only one integration step per control
interval.

Next, on each control interval [tn, tn+1], we compute the coefficients of these polynomials to ensure
that the ODE is exactly satisfied at the collocation points tn,i = tn + hci, i = 1, . . . , ns, where,
ns is the number of stages. The choice of the points 0 = c0 < c1 < . . . < cns ≤ 1 determines
the accuracy and stability properties of the resulting method. Popular choices for ci are the
Radau IIA or Gauss-Legendre points. In the lecture, we found the interpolating polynomial q̇n(t)
through the state derivatives kn,1, . . . , kn,ns . Here, we implement a collocation method by finding
the interpolating polynomial qn(t) through the initial value xn and state values xn,1, . . . , xn,ns at
the stage points.

For the implementation, we make use of the Lagrangian polynomial basis. Using these time
points, we define a basis for our polynomials:

ℓi(τ) =
ns∏

j=0, i ̸=j

τ − cj
ci − cj

, i = 0, . . . , ns. (3)

Note that, in contrast to the lecture, the counter starts from i = 0, as we include the point
c0 = 0, since we interpolate through xn.

We approximate the state trajectory on [tn, tn+1] by a linear combination of the basis functions:

qn(t) =
ns∑
j=0

ℓj

(
t− tn
h

)
xn,j. (4)

By differentiation, we obtain an approximation of the time derivative at each collocation point:

q̇n(tn,i) =
1

h

ns∑
j=0

ℓ̇j(ci)xn,j :=
1

h

ns∑
j=0

Cj,i xn,j, i = 0, . . . , ns. (5)

The expression for the state at the end of an interval reads as:

xn+1 =
ns∑
i=0

ℓi(1)xn,i :=
ns∑
i=0

Di xk,i (6)

2

i
i

“ex1” — 2023/9/12 — 17:00 — page 3 — #3 i
i

i
i

i
i

Moreover, using the obtained approximation qn(t) we can integrate the stage cost∫ T

0

L(x(t), u(t))dt,

over every control interval and obtain a formula for quadratures :∫ tn+1

tn

ns∑
j=0

ℓj

(
t− tn
h

)
L(xn,j, un) dt = h

ns∑
j=0

∫ 1

0

ℓj(t) dt L(xn,j, un) := h
ns∑
j=0

Bj L(xn,j, un). (7)

Tasks:

(a) Using the derived formulae above, write down on paper the collocation equations for a single
integration interval.
Solution:

ns∑
j=0

Cj,ixn,j = h f(xn,i, un), i = 1, . . . , ns

xn+1 =
ns∑
i=0

Di xk,i.

(b) We want to solve the continuous time optimal control problem (OCP)

minimize
x(·), u(·)

∫ T

0

fq(x(·), u(·)) + fq,T (x(T))

subject to x(0) = x̄0,

ẋ(t) = fODE(x(t), u(t)), t ∈ [0, T),

lbu ≤ u(t) ≤ ubu, t ∈ [0, T],

lbx ≤ x(t) ≤ ubx, t ∈ [0, T]

where the initial state is x̄0 = [1, 0, 0, 0], the control bounds are lbx = −30, ubu = 30, the
state bounds are lbx = [−5,−∞,−∞,−∞], ubx = [5,∞,∞,∞] and the objective function
terms are:

fq(x, u) = (x− xref)
⊤Q(x− xref) + u⊤Ru

fq,T (x, u) = (x− xref)
⊤Qterminal(x− xref)

with Q = diag(10, 100, 1, 1), R = 1, Qterminal = diag(500, 100, 10, 10), and reference state
xref = (0, π, 0, 0) describing the unstable equilibrium point.

(c) Define the ingredients listed above to specify the OCP and solve it with direct collocation
in CasADi. Note: in Matlab, the OCP formulation is part of the model.
Complete the implementation of direct collocation to discretize the OCP problem. The
matrices B,C and D are already provided, use your solution from (a).

(d) Bonus: Form the Jacobian of the constraints and inspect the sparsity pattern using the
spy command. The following is a hint:

% MATLAB
J = jacobian(vertcat(g{:}), vertcat(w{:}));
spy(sparse(DM.ones(J.sparsity())));

Python
J = jacobian(vertcat(g), vertcat(w))
import matplotlib.pylab as plt
plt.spy(DM.ones(J.sparsity()).sparse())

Repeat the same for the Hessian of the Lagrangian function L(w, λ) = fobjective(w)+λT g(w).

3

