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Model Predictive Control for Renewable Energy Systems
University of Freiburg – Summer semester 2023

Exercise 1: Dynamic systems
Dr. Lilli Frison, Jochem De Schutter, Prof. Dr. Moritz Diehl

1. We model the amount of water m(t) (in kg) in a sink, into which water flows through a faucet at the mass flow rate u(t)
(in kg/s), which we can control. In addition to the inflow u(t) through the faucet, there is also an outflow because the plug
is open. The outflow has mass flow rate k

√
m(t), where k is a positive constant (with unit

√
kg/s) assumed to be known.

We assume that the capacity of the sink is infinite, and thus overflow can never occur.

(a) Sketch the sink with its inlet and outlet flows.

(b) Decide which state - or states - x(t) you need to describe the system completely. For this purpose, consider which
quantities you need besides the input signal and the dynamic equations to predict the system behavior.
The state of the system is completely described by the water quantity m(t). Additionally, the initial state is needed.

x(t) = m(t)

x(0) = x0

(c) Derive an ordinary differential equation (ODE) of the form ẋ(t) = f(x(t), u(t)) that describes the dynamic behavior
of the states x(t). Consider the inflow and outflow of water. Use the initial condition m(0) = m0, where m0 is a
positive constant assumed to be known.
The change in volume is determined by inflow and outflow: ṁ(t) = u(t)− k

√
m(t)

ẋ(t) = ṁ(t) = u(t)− k
√
m(t)

The initial condition m(0), how much water is in the basin at the beginning, provides:

m(0) = m0 = x(0)

The solution is therefore:

⇒ f (x (t) , u (t)) = u(t)− k
√
x(t)

x(0) = m0

2. Extend the setup from the previous task to include a catch basin that holds the entire volume of water that flows out of the
sink. In addition, evaporation is now to be taken into account as well. Let the evaporation rate of a volume of water m(t)
be v ·m(t), where v is a known constant with unit 1/s. Formulate the differential equations that describe the amount of
water in the two basins. Use m1(t) for the amount of water in the sink and m2(t) for the amount of water in the catch
basin. The known initial values are m1(0) = m01 and m2(0) = m02.

The state of the system is completely described by the amount of water m1(t) in the sink and the amount of water m2(t) in
the catch basin.

x(t) =

[
x1(t)
x2(t)

]
=

[
m1(t)
m2(t)

]
The change in the amount of water in the sink is equal to the rate of incoming water minus the rate of outgoing and
evaporating water:

ṁ1(t) = u(t)− k
√
m1(t)− v ·m1(t)

The initial condition provides:

m1(0) = m01

The change of the water volume in the catch basin results from the difference of the incoming water volume rate from the
wash basin and the evaporation rate of the already contained water:

ṁ2(t) = k
√
m1(t)− v ·m2(t)

m2(0) = m02
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The solution is therefore

f (x (t) , u (t)) =

[
u(t)− k

√
x1(t)− v · x1(t)

k
√
x1(t)− v · x2(t)

]
x(0) =

[
m01

m02

]
3. In this task, the nonlinear sink model (without catch basin) is to be linearized around a rest position. The sink with inflow
u(t) and water quantity x(t) is described by the ODE

ẋ(t) = u(t)− k
√
x(t) .

(a) Calculate the equilibrium state xss as a function of the constant flow rate uss.
In the equilibrium state: ẋss = f(xss, uss) = 0

0 = uss − k
√
xss

⇔
√
xss =

uss
k

⇒ xss =
u2ss
k2

(b) Linearize the system for small deviations (δx(t), δu(t))) from rest (xss, uss) to obtain an ODE of the following form:

δẋ(t) = A δx(t) +B δu(t).

The following applies to the linearization:

A =
δf

δx
(xss, uss)undB =

δf

δu
(xss, uss)mitf(x, u) = u(t)− k

√
x(t)

A =
−k

2
√
xss

=
−k2

2uss
, B = 1

δẋ(t) =
−k2

2uss
δx(t) + δu(t)

(c) Now assume k = 0.60
√
kg
s and uss = 2.4kg

s . Calculate xss, A, and B.

xss =
u2ss
k2

=

(
2.4 kg/s

0.60
√
kg/s

)2

=
(
4
√

kg
)2

= 16 kg

A =
−k2

2uss
=
−
(
0.60
√
kg/s

)2
2 · 2.4 kg/s

=
−0.36
4.8 s

= −0.0751
s

B = 1

(d) Now consider an extended sink that observes the water temperature x2(t) in addition to the water quantity x1(t).
Initially, there is a quantity of waterm0 of temperature T0 = Ta in the basin. The inflowing water has the temperature
Th. Since the water in the basin also releases heat to the environment, heat losses occur with a heat loss rate of
k2 ·C ·m(t) · (x2(t)−Ta), where k2 is a constant with unit 1/s, the constant C is the specific heat capacity of water
with unit J/(kg ·K), and Ta is the ambient temperature. This system is described by the ODE

ẋ(t) =

[
−k1

√
x1(t) + u(t)

−k2(x2(t)− Ta) + Th−x2(t)
x1(t)

u(t)

]
.

Carry out steps a) to c) again under the assumption that Th = 340K, Ta = 300K, k1 = 0.60
√
kg
s , k2 = 0.1 1

s and
uss = 2.4kg

s .
In the state of equilibrium it holds that: ẋss = f(xss, uss) = 0[

0
0

]
=

[
uss − k1

√
x1ss

−k2(x2ss − T0) + Th−x2ss

x1ss
uss

]
⇔ k2x2ss +

ussx2ss
x1ss

= k2T0 + Th
uss
x1ss

⇒ x2ss =
k2T0 + Th

uss

x1ss

k2 +
uss

x1ss
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The following applies to the linearization:

A =
δf

δx
(xss, uss)undB =

δf

δu
(xss, uss)mitf(x, u) =

[
u(t)− k1

√
x1(t)

−k2(x2(t)− T0) + Th−x2(t)
x1(t)

u(t)

]

A =

[
−k2

1

2uss
0

x2ss−Th

x2
1ss

uss −k2 − uss

x1ss

]
B =

[
1

Th−x2ss

x1ss

]

With Th = 340K, T0 = 300K and k2 = 0.1 1
s it follows:

x2ss =
0.1 1

s · 300K + 340K
2,4 kg

s

16 kg

0.1 1
s +

2.4 kg
s

16 kg

= 324K

A =

[
−0.075 1

s 0
−0.15 K

kg s −0.25 1
s

]
B =

[
1

1 K
kg

]
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