
Nonlinear Optimization and Direct Optimal 
Control for Practitioners

Moritz Diehl
Systems Control and Optimization Laboratory

Department of Microsystems Engineering and Department of Mathematics
University of Freiburg

joint work with Katrin Baumgärtner and Florian Messerer

SPP2364 Online Seminar, 
June 26, 2023



M. Diehl    

What to do with models ?

• Simulation

• Optimization (offline, human-in-the-loop)

• Embedded Optimization (online, without human interaction)

2

“Optimization friendly” models (differentiability, 
convexity, …) allow one to use reliable and fast 
optimization algorithms
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Complex Sensor Actuator Systems
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ACTUATORS

• flight surfaces
• steering wheel
• motor speeds
• torques
•...

SENSORS

• GPS
• acceleration
• radar
• vision
• …

How to connect ?
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Complex Sensor Actuator Systems
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ACTUATORS

• flight surfaces
• steering wheel
• motor speeds
• torques
•...

SENSORS

• GPS
• acceleration
• radar
• vision
• …

How to connect ?
Linear Filters ?

Deep Neural Networks ?
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ACTUATORS

• flight surfaces
• steering wheel
• motor speeds
• torques
•...

SENSORS

• GPS
• acceleration
• radar
• vision
• …

EMBEDDED 
OPTIMIZATION

Complex Sensor Actuator Systems
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ACTUATORS

• flight surfaces
• steering wheel
• motor speeds
• torques
•...

SENSORS

• GPS
• acceleration
• radar
• vision
• …

EMBEDDED 
OPTIMIZATION

Solve, in real-time and repeatedly, an optimization problem 
that depends on the incoming stream of input data, to 
generate a stream of output data.

Embedded Optimization: a CPU intensive map

Complex Sensor Actuator Systems
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Embedded Optimization for Model Predictive Control (MPC)
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Always look a bit into the future

Example: driver predicts and optimizes, 
and therefore slows down before a 
curve
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Optimal Control Problem in MPC
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For given system state x, which controls u lead to the best objective value 
without violation of constraints ? 

prediction horizon (length also unknown for time optimal MPC)

controls (unknowns / variables) 

simulated state trajectory
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For given system state x, which controls u lead to the best objective value 
without violation of constraints ? 

prediction horizon (length also unknown for time optimal MPC)

controls (unknowns / variables) 

simulated state trajectory
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Model Predictive Control of the Freiburg Race Cars

11

acados coupled into ROS, optimization every 10ms
[Kloeser et al., 2020]
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2nd MPC Example: Time-Optimal Point-To-Point Motions
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Fast oscillating systems (cranes, plotters, wafer steppers, …)
Control aims:

• reach end point as fast as possible
• do not violate constraints
• no residual vibrations

Idea: formulate as embedded optimization problem 
   in form of Model Predictive Control (MPC)
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Time Optimal MPC of a Crane
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Hardware: xPC Target.    Software: qpOASES [Ferreau, D., Bock, 2008]

SENSORS

•line angle
•cart position

ACTUATOR

•cart motor

MPC
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Time Optimal MPC of a Crane
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Univ. Leuven [Vandenbrouck, Swevers, D.]
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Optimal Solutions in qpOASES Varying in Time
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Time Optimal “drawing” by crane

16

Univ. Leuven [Wannes Van Loock et al.,] (CasADi)
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Conclusion

Nonlinear optimization can be very fast and reliable with optimisation-
friendly models (and good algorithms)

17
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Online Workshop SPP 2364

Nonlinear Optimization and Direct Optimal Control for Practitioners

Katrin Baumgärtner, Florian Messerer, Prof. Dr. Moritz Diehl

General information

This online workshop consists of two parts:

• 26.06.2023, 12:00-13:30 – Part 1: Nonlinear Optimization

• 03.07.2023, 12:00-13:30 – Part 2: Direct Optimal Control and Model Predictive Control

The aim of this workshop is to give you some hands on experience on methods and in particular software
for optimal control. The workshop exercises are based on python, CasADi, and acados.

About CasADi

The open-source tool CasADi implements algorithmic di↵erentiation on user-defined symbolic expressions
and provides standardized interfaces to a variety of numerical routines: simulation and optimization, and
solution of linear and nonlinear equations. A key feature of these interfaces is that every user-defined
CasADi function passed to a numerical solver automatically provides the necessary derivatives to this
solver, without any additional user input. Often, the result of the numerical solver itself can be interpreted
as a di↵erentiable CasADi function, such that derivatives up to any order can be generated without actually
di↵erentiating the source code of the solver. Thus, concatenated and recursive calls to numerical solvers
are possible and still result in di↵erentiable CasADi functions. CasADi is written in C++, but allows user
input to be provided from either C++, python, Octave or MATLAB. One particularly powerful optimization
solver interfaced to CasADi is IPOPT, which is automatically provided in the standard CasADi installation.

About acados

acados is a software package for the e�cient solution of optimal control and estimation problems. It
provides a collection of computationally e�cient building blocks tailored to optimal control and estimation
problems. Among others, it implements: modules for the integration of ordinary di↵erential equations
(ODE) and di↵erential-algebraic equations (DAE), interfaces to state-of-the-art QP solvers like HPIPM,
qpOASES, DAQP, qpDUNES and OSQP, condensing routines and nonlinear programming solvers based on the
real-time iteration framework. The back-end of acados uses the high-performance linear algebra package
BLASFEO, in order to boost computational e�ciency for small to medium scale matrices typical of embedded
optimization applications. MATLAB, Octave and python interfaces can be used to conveniently describe
optimal control problems and generate self-contained C code that can be readily deployed on embedded
platforms.

Prerequisites and installation instructions

In preparation of the workshop, please install python, CasADi and acados and make sure the minimal
examples run properly.

• CasADi: https://web.casadi.org/get/

• acados: https://docs.acados.org/installation/index.html

• acados python: In addition acados itself, which is written in c, the installation of the acados

python interface is required:
https://docs.acados.org/python_interface/index.html#installation

• In order to test whether the installation was successful, please run the minimal example in the
examples folder of the acados repository:
<acados root folder>/examples/acados_python/getting_started/minimal_example_ocp.py
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Diskretisiertes Optimalsteuerungsproblem (vereinfacht)
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Optimalsteuerungsproblem – diskretisiert

minimize
(pk,vk,nk,Mk)k=0,...,N

N�1X

k=0

P el(nk,Mk)�t (5a)

subject to p0 = 0, v0 = 0 (5b)

pN = pend, vN = 0 (5c)

and for k = 1, . . . , N :
1
�t (pk+1 � pk) = vk (5d)

1
�t (vk+1 � vk) =

Mk
mRi �

�vk·|vk|
m (5e)

nk = vk
Ri (5f)

�Mmax  Mk  Mmax (5g)

� nmax  nk  nmax (5h)

� Pmax  P el(nk,Mk)  Pmax (5i)

20/34

CasADi for Optimization Modelling

● A software framework for nonlinear optimization and optimal control

● “Write an efficient optimal control solver in a few lines”

● Implements automatic differentiation (AD) on sparse matrix-valued 
computational graphs in C++11

● Front-ends to Python, Matlab and Octave

● Supports C code generation

● Back-ends to SUNDIALS, CPLEX, Gurobi, qpOASES, IPOPT, KNITRO, 
SNOPT, SuperSCS, OSQP, …

● Developed by Joel Andersson and Joris Gillis

http://casadi.org

[Andersson, Gillis, Horn, Rawlings, D., Math. Prog. Comp., 2019]
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Today’s Toy Problem for Nonlinear Optimization
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Online Workshop SPP 2364

Nonlinear Optimization and Direct Optimal Control for Practitioners

Part 1: Nonlinear Optimization

Katrin Baumgärtner, Florian Messerer, Prof. Dr. Moritz Diehl

Within a production process, five discs shall be cut out from a quadratic plate with egde size a = 10cm.
Three of those discs shall be of radius R and two of radius 2R. The objective is to maximize the radius R.
The center of each disc si can be expressed in Cartesian coordinates (xi, yi) with i = 1, . . . , 5, and are to
be optimized in addition to the radius R. The discs may not lie outside of the plate or overlap each other.
Thus, the minimum distance between the centers of all discs from each other as well as the edges of the
plate must be included in the optimization problem as additional inequality constraints.

A depiction of a possible but suboptimal solution with R = 1 is given in Figure 1.

Figure 1: Graphical depiction of a possible, but suboptimal solution with R = 1.

The problem can be formulated as a nonlinear program in CasADi and solved using IPOPT, where the
following sets of constraints must enter the optimization problem:

1. The radii of two of the discs must be twice as big as the radii of the three other discs, and must
therefore fulfill the condition

ri = R, i = 1, . . . , 3, (1)

rj = 2R, j = 4, 5. (2)

(3)

2. The minimum distance of a disc’s x-coordinate from the left egde and the right edge of the plate
must be greater or equal than its radius ri, the same must hold for the distance of the y-coordinate
from the top edge and bottom edge of the plate.

xi � ri � 0, i = 1, . . . , 5, (4)

xi + ri  a, i = 1, . . . , 5, (5)

yi � ri � 0, i = 1, . . . , 5, (6)

yi + ri  a, i = 1, . . . , 5, (7)

(8)

3. The distance of the centers of two discs must be greater or equal to the sum of the radii of these two
discs, which can be expressed simply by using the Pythagorean theorem as

(xi � xj)
2 + (yi � yj)

2 � (ri + rj)
2 � 0, i = 1, . . . , 4, j = i + 1, . . . , 5. (9)



Optimization: an Overview

Moritz Diehl 
University of Freiburg 

(some slide material was provided by W. Bangerth and K. Mombaur)



Overview of presentation

!Optimization: basic definitions and concepts  

! Introduction to classes of optimization problems



! Optimization = search for the best solution 
! in mathematical terms: 

minimization or maximization of an objective function f (x) 
depending on variables x subject to constraints

What is optimization?

Equivalence of maximization and minimization problems: 
(from now on only minimization)

x*   Minimum

x

-f(x)

x*   Maximum

f(x)

x



! Often variable x shall satisfy certain constraints, e.g.:  
• x    0 
• x1 2 + x2 2  = C 

! General formulation:

Constrained optimization

f objective function / cost function 
g equality constraints 
h inequality constraints

0)(
0)(

(s.t.) subject to
)(min

≥

=

xh
xg

xf

≥



 
Simple example: Ball hanging on a spring  

To find position at rest, 
minimize potential energy!

spring gravity

03
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min

21
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2
2
2

2
1
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≥++

++

xx
xx

mxxx



feasible set is intersection 
of grey and blue area

Feasible set = collection of all 
points that satisfy all constraints:

Example

02 ≥x

01 2
2

2
1 ≥−− xx

01:)(
0:)(

2
2

2
12

21

≥−−=

≥=

xxxh
xxh

Feasible set



Local and global optima

f(x)

x

Global Minimum:

Local Minimum

Local Minimum



Derivatives

! First and second derivatives of the objective function or the 
constraints play an important role in optimization  

! The first order derivatives are called the gradient  (of the resp. fct) 

! and the second order derivatives are called the Hessian matrix



! sufficient condition:  
x* stationary and ∇2f(x*) positive definite

! necessary condition:  
∇f(x*)=0 (stationarity)

Optimality conditions (unconstrained)

Assume that f is twice differentiable.  
We want to test a point x* for local optimality.

x*

nRxxf ∈)(min



Types of stationary points

∇2f(x*) positive definite: 
local minimum

∇2f(x*) negative definite: 
local maximum

∇2f(x*) indefinite: saddle point

(a)-(c) x* is stationary: ∇f(x*)=0



contour lines of f(x)

gradient vector

unconstrained minimum: 

Ball on a spring without constraints

2
2
2

2
12

min mxxx
Rx

++
∈

)2,2()( 21 mxxxf +=∇

)
2

,0(),()(0 *
2

*
1

* m
xxxf −=⇔∇=



Sometimes there are  many local minima

e.g. potential energy  
of macromolecule

Global optimization is a very hard issue - most algorithms find only 
the next local minimum.   But there is a favourable special case...



Convex functions

Convex: all connecting 

lines are above graph

Non-convex: some connecting 

lines are not above graph



Convex feasible sets

Convex: all connecting lines 

between feasible points are in  

the feasible set

Non-convex: some connecting 

line between two feasible points 

is not in the feasible set



Convex problems  

Convex problem if  
 

 f(x) is convex and the feasible set is convex

One can show:  
For convex problems, every local minimum is also a global minimum.  

It is sufficient to find local minima!



Characteristics of optimization problems 1

! size / dimension of problem n , 
i.e. number of free variables 

! continuous or discrete search space 

! number of minima



Characteristics of optimization problems 2

! Properties of the objective function: 
• type: linear, nonlinear, quadratic ... 
• smoothness: continuity, differentiability 

! Existence of constraints 

! Properties of constraints: 
• equalities / inequalities 
• type: „simple bounds“, linear, nonlinear,  

dynamic equations (optimal control) 
• smoothness



Overview of presentation

!Optimization: basic definitions and concepts  

! Introduction to classes of optimization problems



Problem Class 1: Linear Programming (LP)

! Linear objective,  
 linear constraints:  
 Linear Optimization Problem 

(convex) 

! Example: Logistics Problem 
• shipment of quantities a1, a2, ... am  

of a product from m locations  
• to be received at n detinations in  

quantities b1, b2, ... bn 

• shipping costs cij 

• determine amounts xij

Origin of linear  
programming 
in 2nd world war



Problem Class 2: Quadratic Programming (QP) 

! Quadratic objective and linear  
 constraints: 
 Quadratic Optimization Problem 

(convex, if Q pos. def.) 

! Example: Markovitz mean variance portfolio optimization 
• quadratic objective: portfolio variance (sum of the variances and 

covariances of individual securities) 
• linear constraints specify a lower bound for portfolio return 

! QPs play an important role as subproblems in nonlinear optimization



Problem Class 3: Nonlinear Programming (NLP)  

! Nonlinear Optimization Problem 
(in general nonconvex) 

! E.g. the famous nonlinear Rosenbrock   
 function    



Problem Class 4: Non-smooth optimization

! objective function or constraints are  
non-differentiable or not continuous e.g.



! Some or all variables are integer 
(e.g. linear integer problems) 

! Special case: combinatorial optimization  
problems -- feasible set is finite 

! Example: traveling salesman problem 
• determine fastest/shortest round 

trip through n locations

Problem Class 5: Integer Programming (IP)



Problem Class 6: Optimal Control

! Optimization problems  
including dynamics in form of 
differential equations   
(infinite dimensional)  

Variables (partly ∞-dim.) 

THIS COURSE‘S MAIN TOPIC!



Summary: Optimization Overview

Optimization problems can be: 

! unconstrained or constrained 
! convex or non-convex 
! linear or non-linear 
! differentiable or non-smooth 
! continuous or integer or mixed-integer 
! finite or infinite dimensional 
! …



The great watershed

"The great watershed in optimization isn't  
between linearity and nonlinearity,  
but convexity and nonconvexity”  

R. Tyrrell Rockafellar  

• For convex optimization problems we can efficiently find global minima. 
• For non-convex, but smooth problems we can efficiently find local minima.
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Newton Type Optimization 
(Unconstrained)

Moritz Diehl 
University of Freiburg 

(some slide material was provided by W. Bangerth and K. Mombaur)



Aim of Newton type optimization algorithms

! Find a local minimizer x* of  f(x), i.e. a point satisfying 

    ∇f(x*)=0 

)()(min nRxxf ∈



! Fundamental underlying structure of most algorithms: 

• choose start value x0 

• for i=1, ......: 

• determine direction of search (descent) p 

• determine step length α  

• new iterate x i+1 = xi + α p 

• check convergence 

! Optimization algorithms differ in the choice of p und α

Derivative based algorithms



Basic algorithm: 

Search direction: 
choose descent direction 
(f should be decreased)

Step length:  
solve1-d minimization approximately, 
satisfy Armijo condition



Computation of step length

! Dream:  
• exact line search: 

! In practice:  
• inexact line search:  
• ensure sufficient decrease, e.g. Armijo condition

)(minarg kkk pxf αα
α

+=

)(minarg kkk pxf αα
α

+≈



How to compute search direction?

! We discuss three algorithms: 
• Steepest descent method 
• Newton‘s method 
• Newton type methods



Algorithm 1: Steepest descent method

! Based on first order Taylor series approximation of objective function 

• maximum descent, if 

 



Choose steepest descent search direction, perform (exact) line search: 

search direction is perpendicular to level sets of f(x) 
 

 

Steepest descent method

)( kk xfp −∇= )(1 kkkk xfxx ∇−=+ α

Gradient direction



Convergence of steepest descent method

steepest descent method has linear convergence

*1* xxCxx kk −≤− −

! gain is a fixed factor C<1 
! convergence can be very slow 

if C close to 1

If f(x) = xTAx, A positive definite,  
λ eigenvalues of A, one can show that

minmax

minmax

λλ

λλ

+

−
≈⇒ C   

i.e.



Example - steepest descent method

24 22

100
1

100
1)(),( yyxyxf ++−=

banana valley function, 
global minimum at x=y=0



Example - steepest descent method

Convergence of steepest descent method: 
! needs almost 35.000 iterations to come closer than 0.1 to the solution 
! mean value of convergence constant C: 0.99995 
! at (x=4,y=2), there holds

9993.0
1.0268
1.0268268,1.0 21 ≈

+

−
≈⇒== Cλλ

*xxk −



Algorithm 2: Newton‘s Method

! Based on second order Taylor series approximation of f(x) 

 „Newton-Direction“



pk minimizes quadratic approximation of the objective

Visualization of Newton‘s method

kkTkkkkk pxfppxfxfpQ )(
2
1    )(    )(    )( 2∇+∇+=

Gradient direction

Newton direction

if quadratic model is 
good, then take full  
step with αk =1 



Convergence of Newton‘s method

Newton‘s method has quadratic convergence 

This is very fast close to a solution:  

   Correct digits double in each iteration!

i.e. 2*1* xxCxx kk −≤− − 



Example - Newton‘s method

banana valley function, 
global minimum at x=y=0

24 22

100
1

100
1)(),( yyxyxf ++−=



Example - Newton‘s method

Convergence of Newton‘s method: 
! less than 25 iterations for an accuracy of better than 10-7! 
! convergence roughly linear for first 15-20 iterations since step 

length 
! convergence roughly quadratic for last iterations with step length

1≠kα

1=kα

*xxk −



Comparison of steepest descent and Newton

For banana valley example: 
! Newton‘s method much faster than steepest descent method (factor 

1000) 
! Newton‘s method superior due to higher order of convergence 
! steepest descent method converges too slowly for practical applications

*xxk −



Algorithm 3: Newton type methods

In practice, evaluation of second derivatives 
for the hessian can be difficult!

)(
)(

2

11

k
k

k
k

kk

xfB

xfBxx

∇≈

∇−= −+

methods are collectively known as Newton type methods

➔ approximate hessian matrix ∇2f(xk)  
➔ often methods ensure that the approximation  Bk is positive definite



Notation:  
   

! Steepest Descent: 

Convergence rate: linear 

! Newton Method: 

Convergence rate: quadratic

Newton type variants



Newton type variants (continued)

! BFGS update (Broyden, Fletcher, Goldfarb, Shanno) 

Convergence rate: super-linear 

! For Least-Squares Problems:   Gauss-Newton Method 

Convergence rate: linear



Summary: Unconstrained Newton Type Optimization

! Aim: find local minima of smooth nonlinear problems: ∇f(x*)=0   

! Derivative based methods iterate x i+1 = xi + αi pi with  
• search direction pi and step length αi . 
• start at initial guess x0 ,  

! Four Newton type methods: 
• steepest descent: intuitive, but slow linear convergence 
• exact Newton‘s method: very fast quadratic convergence 
• BFGS: fast superlinear convergence 
• Gauss-Newton (only for least-squares): fast linear convergence



Literature
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! P. E. Gill, W. Murray, M. H. Wright: Practical Optimization, Academic 
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Constrained Optimization

Moritz Diehl 
(some slide material was provided by W. Bangerth, K. Mombaur)



Nonlinear Programming (Problem Class 3)

f objective function / cost function 
g equality constraints 
h inequality constraints 

f,g,h shall be smooth (twice differentiable) functions

kn

ln

n

RRDh
RRDg
RRDf

xh
xg

xf
ts

→⊂

→⊂

→⊂

≥

=

:
:
:

0)(
0)(
)(min

..

!General problem formulation:



contour lines of f(x)

gradient vector

unconstrained minimum: 

Recall: ball on a spring without constraints
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Now: ball on a spring with constraints

constrained minimum: 

Lagrange multiplier

inactive constraint h2

03:)(
01:)(

)(min

212

211

≥+−=

≥++=

xxxh
xxxh
xf

)()( *
11

* xhxf ∇=∇ µ

gradient  ∇h1 of active constraint



Ball on a spring with two active constraints

„equilibrium of forces“

„constraint forces“

0,)()()( 21
*

22
*

11
* ≥∇+∇=∇ µµµµ xhxhxf

03:)(
01:)(

)(min

212

211

≥+−=
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Multipliers as „shadow prices“

What happens if we relax a constraint? 
Feasible set becomes bigger, 
so new minimum f(xε*) becomes smaller. 
How much would we gain? 

old constraint:  h(x) ≥ 0 

new constraint: h(x) + ε  ≥ 0 
Multipliers show the hidden cost 
of constraints.

µεε −≈ )()( ** xfxf



The Lagrangian Function

! equality multipliers λi may have both signs in a solution 
! inequality multipliers µi cannot be negative (cf. shadow prices) 
! for inactive constraints, multipliers µi  are zero  

For constrained problems, introduce modification of objective function:

∑ ∑−−= )()()(:),,( * xhxgxfxL iiii µλµλ



Karush-Kuhn-Tucker necessary conditions (KKT-conditions): 
! x* feasible 
! there exist λ*, µ* such that 
 
 
 

!                      holds 
! and it holds the complementarity condition 
 
 
 
i.e. µi*= 0  or  hi (x*)= 0  for each i 

Optimality conditions (constrained)

0),,( *** =∇ µλxLx

0)( ** =xh
T

µ

)           m"Equilibriu" ( ∑∑ ∇+∇=∇⇔ iiii hgf µλ

0* ≥µ



Sequential Quadratic Programming (SQP)

Constrained problem:

0)(
0)(

2
1)(min

        
        

      

≥Δ∇+

=Δ∇+

ΔΔ+Δ∇
Δ

xxh)h(x

xxg)g(x

xHxxf

Tkk

Tkk

kTTk

x

0)(
0)(
)(min

≥

=

xh
xg

xf

SQP Idea: Consider successively quadratic approximations of the problem: 



SQP method

! if we use the exact hessian of the Lagrangian 
 
 
this leads to a newton-method for the optimality conditions and feasibility.  

! with update-formulas for Hk, we obtain quasi-Newton SQP-methods.  
! if we use appropriate update-formulas, we can have superlinear 

convergence. 
! global convergence can be achieved by using a stepsize strategy.

),,(2 µλxLH ∇=



SQP algorithm

0. Start with k=0, start value x0 and H0=I 
1. Compute f(xk), g(xk), h(xk), ∇f(xk), ∇g(xk), ∇h(xk) 
2. If xk feasible and 
 
 
then stop ➨  convergence achieved 

3. Solve quadratic problem and get Δxk

4. Perform line search and get stepsize tk 

5. Iterate  
 

6. Update hessian 
7. k=k+1, goto step 1

εµλ <∇ ),,(xL

kkkk xtxx Δ+=+1



Conclusions

! Lagrangian function plays important role in constrained optimization 

! Lagrange multipliers of inequalities have positive sign 

! KKT conditions are necessary optimality conditions 

! Newton-type methods iteratively linearise the nonlinear functions and 
solve simpler (convex) optimisation problems 

! Sequential Quadratic Programming (SQP) is a Newton-type 
method that iteratively solves quadratic programs (QP) to find a 
local solution of the non convex problem 

! Nonlinear Interior Point methods are another Newton-type method 
e.g. implemented in IPOPT
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Diskretisiertes Optimalsteuerungsproblem (vereinfacht)
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Optimalsteuerungsproblem – diskretisiert

minimize
(pk,vk,nk,Mk)k=0,...,N

N�1X

k=0

P el(nk,Mk)�t (5a)

subject to p0 = 0, v0 = 0 (5b)

pN = pend, vN = 0 (5c)

and for k = 1, . . . , N :
1
�t (pk+1 � pk) = vk (5d)

1
�t (vk+1 � vk) =

Mk
mRi �

�vk·|vk|
m (5e)

nk = vk
Ri (5f)

�Mmax  Mk  Mmax (5g)

� nmax  nk  nmax (5h)

� Pmax  P el(nk,Mk)  Pmax (5i)

20/34

CasADi for Optimization Modelling

● A software framework for nonlinear optimization and optimal control

● “Write an efficient optimal control solver in a few lines”

● Implements automatic differentiation (AD) on sparse matrix-valued 
computational graphs in C++11

● Front-ends to Python, Matlab and Octave

● Supports C code generation

● Back-ends to SUNDIALS, CPLEX, Gurobi, qpOASES, IPOPT, KNITRO, 
SNOPT, SuperSCS, OSQP, …

● Developed by Joel Andersson and Joris Gillis

http://casadi.org

[Andersson, Gillis, Horn, Rawlings, D., Math. Prog. Comp., 2019]
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CasADi Demo Solution by Katrin Baumgärtner
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Appendix 
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Professur für Systemtheorie, Regelungstechnik und Optimierung 

Forschung: 
• Numerische Methoden für die Optimale Steuerung
• Echtzeitoptimierung auf eingebetteten Systemen (embedded optimization)
• Modell-prädiktive Regelung (MPC), Methoden und Theorie
• Anwendungen: Windenergie, Leistungselektronik, Motorregelung, Solarthermie, …
• Entwicklung Freier Software (ACADO, qpOASES, CasADi, BLASFEO, acados, 

…)

Lehre in fünf BSc/MSc Programmen: Embedded Systems Engineering, Mathematik, 
Mikrosystemtechnik, Nachhaltige Technische Systeme, Informatik:

• Systemtheorie und Regelungstechnik
• Modelling and System Identification
• Numerical Optimization
• Numerical Optimal Control 
• Wind Energy Systems
• Race Car Laboratory
• Flight Control Laboratory
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