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What to do with models 7

- Simulation

- Optimization (offline, human-in-the-loop)

- Embedded Optimization (online, without human interaction)

“Optimization friendly” models (differentiability,
convexity, ...) allow one to use reliable and fast
optimization algorithms
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Complex Sensor Actuator Systems

SENSORS ACTUATORS

« GPS | e flight lsurfaces
e acceleration e steering wheel
* radar How to connect ? » motor speeds
e Vision e forques
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Complex Sensor Actuator Systems

SENSORS ACTUATORS

« GPS | e flight _surfaces
 acceleration e steering wheel
e radar How to connect ? e motor speeds
e Vision Linear Filters ?  torques

. ... Deep Neural Networks ? |e...
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Complex Sensor Actuator Systems

SENSORS

e GPS

e acceleration
e radar

* VISION

—

EMBEDDED

ACTUATORS

e flight surfaces
e steering wheel
e motor speeds

e torques
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Complex Sensor Actuator Systems

SENSORS ACTUATORS
EMBEDDED

e GPS | —>OPT”Y|"!§T'ON L fhght_surfaces

e acceleration | eag LT * steering wheel

« radar AN » motor speeds

e vision 1 o e torques

Solve, in real-time and repeatedly, an optimization problem
that depends on the incoming stream of input data, to
generate a stream of output data.

Embedded Optimization: a CPU intensive map
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Embedded Optimization for Model Predictive Control (MPC)

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a
curve
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Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

€L | = '4ulated state trajectory  \N_ 000 eeeeees

y ¢ 4 y
A T

Ul | controls (unknowns / variables)

>

prediction horizon (length also unknown for time optimal MPC)
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Model Predictive Control of the Freiburg Race Cars

S ~ ) Z \N < <

acados coupled into ROS, optimizatioh every 10ms
[Kloeser et al., 2020]
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2nd MPC Example: Time-Optimal Point-To-Point Motions

Control aims:
e reach end point as fast as possible
» do not violate constraints
* no residual vibrations

|dea: formulate as embedded optimization problem
in form of Model Predictive Control (MPC)
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Time Optimal MPC of a Crane

W_

SENSORS MPC ACTUATOR

*|ine angle ® cart motor

® cart position

Hardware: xPC Target.  Software: gpOASES [Ferreau, D., Bock, 2008]
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Time Optimal MPC of a Crane

Univ. Leuven [Vandenbrouck, Swevers, D.]
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Optimal Solutions in gpOASES Varying in Time

Input
: : : : . : : :
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control horizon
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Time Optimal “drawing” by crane
Univ. Leuven [Wannes Van Loock et al,] (CasADi)

| KU LEUVEN
Department Of Mechanical Engineering (PMA)

M. Diehl 16



Conclusion

Nonlinear optimization can be very fast and reliable with optimisation-
friendly models (and good algorithms)
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Online Workshop SPP 2364

Nonlinear Optimization and Direct Optimal Control for Practitioners

Katrin Baumgartner, Florian Messerer, Prof. Dr. Moritz Diehl

General information

This online workshop consists of two parts:

e 26.06.2023, 12:00-13:30 — Part 1: Nonlinear Optimization
e (03.07.2023, 12:00-13:30 — Part 2: Direct Optimal Control and Model Predictive Control

The aim of this workshop is to give you some hands on experience on methods and in particular software
for optimal control. The workshop exercises are based on python, CasADi, and acados.
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é{) c a S A D i http://casadi.org

* A software framework for nonlinear optimization and optimal control

“Write an efficient optimal control solver in a few lines”

Implements automatic differentiation (AD) on sparse matrix-valued
computational graphs in C++11

Front-ends to Python, Matlab and Octave
Supports C code generation

Back-ends to SUNDIALS, CPLEX, Gurobi, gpOASES, IPOPT, KNITRO,
SNOPT, SuperSCS, OSQP, ...

Developed by Joel Andersson and Joris Gillis

[Andersson, Gillis, Horn, Rawlings, D., Math. Prog. Comp., 2019]
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Today’s Toy Problem for Nonlinear Optimization

10

y
N s

O
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Figure 1: Graphical depiction of a possible, but suboptimal solution with R = 1.

The problem can be formulated as a nonlinear program in CasADi and solved using IPOPT, where the
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Optimization: an Overview

Moritz Diehl
University of Freiburg

(some slide material was provided by W. Bangerth and K. Mombaur)



Overview of presentation

® Optimization: basic definitions and concepts

® Introduction to classes of optimization problems



What is optimization?

® Optimization = search for the best solution
® in mathematical terms:

minimization or maximization of an objective function f (x)

depending on variables x subject to constraints

Equivalence of maximization and minimization problems:
(from now on only minimization)

/™

[l

£(x) |

\

\/




Constrained optimization

® Often variable x shall satisfy certain constraints, e.g.:

e x=0
° X12+X22 :C

® General formulation:

min f(x)
subject to (s.t.)
gx) = 0
hix) = 0

f objective function / cost function

g equality constraints
h inequality constraints



Simple example: Ball hanging on a spring

To find position at rest,
minimize potential energy!

min x; + X, + mx,
L gy

spring gravity
l+x,+x, = 0

3-x,+x, = 0



Feasible set

Feasible set = collection of all
points that satisfy all constraints:

feasible set is intersection
_~ of grey and blue area

Example

2 ) :: e

RS N\ h(x) = x, =0
-

o — hz(x):= 1_x12_x2220

glx) =0, h(z) = 0}.

The “feasible set” Q is {x € R”



Local and global optima

Local Minimum

Local Minimum

Global Mini

The point z* € R" is a “local minimizer” iff * € ) and there exists a neighborhood A\ of z* (e.g.
an open ball around z*) so that V2 € QNN : f(z) > f(x*).




Derivatives

® First and second derivatives of the objective function or the
constraints play an important role in optimization

® The first order derivatives are called the gradient (of the resp. fct)

af 9f
Vf(z)=/( : s
0xr1’ 0o 0x,
® and the second order derivatives are called the Hessian matrix
o f o f
0x1? 0x10x>
o*f o f
‘72f(1ﬂ — 0x20x1 0x2?
o f o f
0xn0T1 O0xn, 0T

YT

0% f
0x10Tn
0% f
0x20Tn,

)




Optimality conditions (unconstrained)

min f(x) xER"

Assume that f is twice differentiable.
We want to test a point x™ for local optimality.

® necessary condition: /
V1(x*)=0 (stationarity)

/V

® sufficient condition:
x* stationary and V2f(x*) positive definite —




Types of stationary points

(a)-(c) x*is stationary: Vf(x*)=0

(a) (b) x*

2 * e FTE A P ‘ 2 * : HRL I
V2f(x*) positive definite: . “ V2f(x*) negative definite:
local minimum u U local maximum

X*
Minimum Maoximum
(c) ‘ o (

Saddle

V2f(x*) indefinite: saddle point



Ball on a spring without constraints

. 2 2
min x; + x, + mx,
X, XER

contour lines of f(x)

gradient vector

VI (x)=(2x,,2x, + m)

unconstrained minimum:

0=Vf(x") < (x,x,) = <0,—§)



Sometimes there are many local minima

e.g. potential energy
of macromolecule

Global optimization is a very hard issue - most algorithms find only
the next local minimum. But there is a favourable special case...



Convex functions

~

Convex: all connecting Non-convex. some connecting

lines are above graph lines are not above graph



Convex feasible sets

Convex: all connecting lines Non-convex:. some connecting
between feasible points are in line between two feasible points

the feasible set IS not in the feasible set



Convex problems

Convex problem if

f(x) is convex and the feasible set is convex

One can show: o
For convex problems, every local minimum is also a global minimum.
It is sufficient to find local minima!



Characteristics of optimization problems 1

® size / dimension of problem n ,
i.e. number of free variables

® continuous or discrete search space

® number of minima




Characteristics of optimization problems 2

® Properties of the objective function:
» type: linear, nonlinear, quadratic ...
* smoothness: continuity, differentiability

® EXxistence of constraints

® Properties of constraints:
« equalities / inequalities

» type: ,simple bounds®, linear, nonlinear,
dynamic equations (optimal control)

« smoothness




Overview of presentation

® Optimization: basic definitions and concepts

® Introduction to classes of optimization problems



Problem Class 1: Linear Programming (LP)

® Linear objective,
linear constraints: H}Ein 'z
Linear Optimization Problem s t Ar = b
(convex)
x>0

® Example: Logistics Problem

« shipment of quantities a4, a,, ... a,,
of a product from m locations

* to be received at n detinations in
quantities b4, b,, ... b, j>

» shipping costs c;
- determine amounts x;



Problem Class 2: Quadratic Programming (QP)

® Quadratic objective and linear !
. : T T
constraints: min - ¢ 2+ 57 Qr
Quadratic Optimization Problem s t. Az = b

(convex, if Q pos. def.)

® Example: Markovitz mean variance portfolio optimization

» quadratic objective: portfolio variance (sum of the variances and
covariances of individual securities)

 linear constraints specify a lower bound for portfolio return

® QPs play an important role as subproblems in nonlinear optimization



Problem Class 3: Nonlinear Programming (NLP)

® Nonlinear Optimization Problem
(in general nonconvex) T

® E.g. the famous nonlinear Rosenbrock
function

f(z) =100(zy — 22)? + (1 — z1)?




Problem Class 4: Non-smooth optimization

® objective function or constraints are
non-differentiable or not continuous e.g.

f(z) = ||

fl2) = max fi(z), i=1,.n

flz) = { cosz furz <

N N0

0 furz>
flx)=41 for 1<x<i+1,1=0,1,2,..




Problem Class 5: Integer Programming (IP)

® Some or all variables are integer :
. . min c T
(e.g. linear integer problems) T

® Special case: combinatorial optimization
problems -- feasible set is finite

® Example: traveling salesman problem

* determine fastest/shortest round
trip through n locations




Problem Class 6: Optimal Control

® Optimization problems
including dynamics in form of
differential equations
(infinite dimensional)
/ gt
f(t

variables  Z(t),u(t),p (partly w-dim.)

z(t ,p)dt

:L’(t) U(t),p)

min
Ly UsP

THIS COURSE'S MAIN TOPIC!




Summary: Optimization Overview

Optimization problems can be:

unconstrained or constrained

convex or non-convex

linear or non-linear

differentiable or non-smooth
continuous or integer or mixed-integer
finite or infinite dimensional



The great watershed

"The great watershed in optimization isn't
between linearity and nonlinearity,
but convexity and nonconvexity”

R. Tyrrell Rockafellar

« For convex optimization problems we can efficiently find global minima.
* For non-convex, but smooth problems we can efficiently find local minima.



® J. Nocedal, S. Wright: Numerical Optimization, Springer, 1999/2006

® P. E. Gill, W. Murray, M. H. Wright: Practical Optimization, Academic
Press, 1981

® R. Fletcher, Practical Methods of Optimization, Wiley, 1987

® D. E. Luenberger: Linear and Nonlinear Programming, Addison Wesley,
1984

® S. Boyd, L. Vandenberghe: Convex Optimization, Cambridge University
Press, 2004 (PDF freely available at:

http://web.stanford.edu/~boyd/cvxbook/



Newton Type Optimization
(Unconstrained)

Moritz Diehl

University of Freiburg
(some slide material was provided by W. Bangerth and K. Mombaur)



Aim of Newton type optimization algorithms

min f(x) (x&R")

® Find a local minimizer x* of f(x), i.e. a point satisfying

VA(x*)=0



Derivative based algorithms

® Fundamental underlying structure of most algorithms:

« choose start value x,

determine direction of search (descent) p

determine step length o
« New iterateé X ,1 = X;+ o P

* check convergence

® Optimization algorithms differ in the choice of p und a



Basic algorithm:

Search direction:
choose descent direction
(f should be decreased)

Step length: ——— ‘\

solve1-d minimization approximately, S e

satisfy Armijo condition P e, 0
£& \ )




Computation of step length

® Dream:
« exact line search: a* = argmin £(x* +ap)

® In practice:

inexact line search: ok ~ arg min f(xk +apk)
« ensure sufficient decrease, e.g. Armijg*condition

f(zg + agpr) < fzg) + 1oV [ pr




How to compute search direction?

® \We discuss three algorithms:
» Steepest descent method
 Newton's method
* Newton type methods



Algorithm 1: Steepest descent method

® Based on first order Taylor series approximation of objective function

flzr +p) = flz) + VF(zr) pr + ...

\ J
Y

« maximum descent, if

Vi(zk) p

1P|
=pr = —Vf(zg)

min!

~N-




Steepest descent method

Choose steepest descent search direction, perform (exact) line search:
pk =_Vf(xk) xk+1 =xk _akvf(xk)

search direction is perpendicular to level sets of f(x)




Convergence of steepest descent method

steepest descent method has linear convergence

l.S. ka —X = CHXk - X L
v
. . P ;w-""ﬁﬁ S
® gain is a fixed factor C<1 S
® convergence can be very slow X+yl = C=0

if C close to 1

If f(x) = xTAx, A positive definite,
A eigenvalues of A, one can show that

}\‘max - }\‘min
}\‘max + 7\'rnin

= (=




Example - steepest descent method

1y2

1
X,¥)=4(x=9") +—+
S, y)=4/(x-y") 00 F 100

banana valley function,
global minimum at x=y=0

T T e 2.3 T T
B s, o 42.05
; AN
2
- j\ "l .
—— ,"
40 4 2 ¥
.\“::‘\k—-‘_ = - _1 H'Jf_‘__.,-/-’:' v iy sy
| H‘RH\_-R_ R - -2 s 1.95 . ]
Mm*ﬂ_—"—*—_- _‘_\_Rx____ 2 o g - 22 " =
L&_&— *ﬁﬁ—_‘_‘___ TR /’_’_,-— -
S - M — T .H—._‘._::__— Wk, 4 = -‘,” 1 9 " A - =
2 4 0 1 2 3 4 5 5 4 4,05 4.1 4,15 4,2 4,0155 4.01625



Example - steepest descent method

10

0,01

Convergence of steepest descent method:

® needs almost 35.000 iterations to come closer than 0.1 to the solution
® mean value of convergence constant C: 0.99995

® at (x=4,y=2), there holds

A =0.1A, =268 = ¢ =208=01 4 9993
268 +0.1




Algorithm 2: Newton‘s Method

® Based on second order Taylor series approximation of f(x)

Flon+ i) = F(zx) + V1 (@) s+ ok V2F (1) pr + -

\ 31/ U
Vi(zk) pr + =pp Vf(zk) pr — min!

2
& VPf(xk) pr = -V ()

,Newton-Direction* p, = —(V*f(z;)) "' Vf(zs)



Visualization of Newton‘s method

P, Minimizes quadratic approximation of the objective

0(p") = f(x*) + V(x")p" + %p"TVZf(x")p"

if quadratic model is
good, then take full R
step with a* =1 NN\ /4

\ N N N =
\ By e
' Newton.direction P

~ ‘\_




Convergence of Newton‘s method

Newton‘'s method has quadratic convergence

2

*

i.e. ka "

k-1
< CHx - X

This is very fast close to a solution:

Correct digits double in each iteration!



Example - Newton‘s method

1 ]
X,Y)=3(x~- )+ + ?
f(x,y)=4(x-y") 100 100y

banana valley function,
global minimum at x=y=0

'4 r v " L} (01
| \l
{[ I
3 ' (
|
[ :
2 b |‘ 0,08
\
2.1 ’ | ||
- ’ '1 0
1.9 ’ | || ]
. .‘ -'2 - | _ . V ‘: 1.8 * |‘ g -(:1‘?)5
. = ”/' |
T . = —q -3 [ f”""" 1% | ‘L |
2 | — g-v e i _4 A A . L 4 - 1 1,6 5 2 L l _0’1
9 4 0 1 2 3 4 5 6 3.7 3.8 3.9 4 4.1 4.2 43 4.4 45 T



Example - Newton‘s method

Convergence of Newton's method:
® less than 25 iterations for an accuracy of better than 10-7!
® convergence roughly linear for first 15-20 iterations since step

length a, =1

® convergence roughly quadratic for last iterations with step length

o, =1

0.1F

P B
- ————

-

S

5

10

15




Comparison of steepest descent and Newton

10 Gradient method —o
Newton's method — -i

-
|
o

0,1p

0,00 bt .
1 10 100 1000 10000 100000

For banana valley example:

® Newton’'s method much faster than steepest descent method (factor
1000)

® Newton's method superior due to higher order of convergence
® steepest descent method converges too slowly for practical applications



Algorithm 3: Newton type methods

In practice, evaluation of second derivatives
for the hessian can be difficult!

- approximate hessian matrix V2f(xk)
- often methods ensure that the approximation B, is positive definite

xk+1 _ xk —Bk_IVf(.xk)
B =V f(x")

methods are collectively known as Newton type methods



Newton type variants

Notation: 1 L
pk = Tpp — 2, = —B; 'V f(a")

® Steepest Descent:
Convergence rate: linear

® Newton Method:

Convergence rate: quadratic



Newton type variants (continued)

® BFGS update (Broyden, Fletcher, Goldfarb, Shanno)

By1 = argmin |B; ', — By iv.r
B4
st. Brripr = Vf(aqtl) —vVf(zF)
B 41 — BZ+1

Convergence rate: super-linear
® For Least-Squares Problems: Gauss-Newton Method

OF ()t
Ox

@) = SIF@? () =

By, = J(a™)T J(z)
Convergence rate: linear



Summary: Unconstrained Newton Type Optimization

® Aim: find local minima of smooth nonlinear problems: Vf(x*)=0

® Derivative based methods iterate x ;.4 = X+ o; p; with
« search direction p, and step length o, .
 start at initial guess Xx;,

® Four Newton type methods:
» steepest descent: intuitive, but slow linear convergence
« exact Newton's method: very fast quadratic convergence
« BFGS: fast superlinear convergence
« (Gauss-Newton (only for least-squares): fast linear convergence



® J. Nocedal, S. Wright: Numerical Optimization, Springer, 1999/2006

® P. E. Gill, W. Murray, M. H. Wright: Practical Optimization, Academic
Press, 1981

® R. Fletcher, Practical Methods of Optimization, Wiley, 1987

® D. E. Luenberger: Linear and Nonlinear Programming, Addison Wesley,
1984



Constrained Optimization

Moritz Diehl

(some slide material was provided by W. Bangerth, K. Mombaur)



Nonlinear Programming (Problem Class 3)

® General problem formulation:

min f(x) f: DCR"—R
st.g(x) = 0 g: DCR"—R
h(x) = 0 h: DCR"—R"

f objective function / cost function
g equality constraints
h inequality constraints

f,g,h shall be smooth (twice differentiable) functions



ball on a spring without constraints

. 2 2
min x; + x, + mx,
X5 XER

contour lines of f(x)

gradient vector

VI (x)=(2x,,2x, + m)

unconstrained minimum:

0=Vf(x") < (x,x,) = <0,—%)



Now: ball on a spring with constraints

min f(x)

h(x)=1+x+x, = 0
0

hy(x)=3-x+x, =

_~ gradient Vh, of active constraint

P inactive constraint h,

constrained minimum:
‘Vf(X*) =/}*1Vh1 (X*)‘

Lagrange multiplier




Ball on a spring with two active constraints

,equilibrium of forces”

V(D) = VA () + VA (D) w20

\\

,constraint forces”




Multipliers as ,,shadow prices*

old constraint: h(x)=0

new constraint: h(x) + & =0

What happens if we relax a constraint?
Feasible set becomes bigger,
so new minimum f(x,*) becomes smaller.

How much would we gain?

() = f(x") - e

Muiltipliers show the hidden cost
of constraints.




The Lagrangian Function

For constrained problems, introduce modification of objective function:

Lo )= £ = Y g (1) = 3 wh (o)

® equality multipliers A; may have both signs in a solution

® inequality multipliers u; cannot be negative (cf. shadow prices)
e for inactive constraints, multipliers u; are zero



Optimality conditions (constrained)

Karush-Kuhn-Tucker necessary conditions (KKT-conditions):
® x feasible
® there exist ", u” such that

V.L(x",K,u") =0

(< "Equilibrium" Vf = Exivgi + EM,.Vh,. )
o M* > O hOIdS
® and it holds the complementarity condition

‘M*T}Z(X*) _ O‘

i.e. u;=0 or h;(x’)=0 foreach




Sequential Quadratic Programming (SQP)

Constrained problem:

min f(x)

g(x) = 0
h(ix) = 0

SQP Idea: Consider successively quadratic approximations of the problem:

min (VF) Ax + %AxTHkAx
g(x*) + Vg(x") Ax = 0

hx*) + VE(x*) Ax = 0




SQP method

® if we use the exact hessian of the Lagrangian

H=V’L(x,\h,1)
this leads to a newton-method for the optimality conditions and feasibility.
® with update-formulas for Hk, we obtain quasi-Newton SQP-methods.

® if we use appropriate update-formulas, we can have superlinear
convergence.

® global convergence can be achieved by using a stepsize strategy.



SQP algorithm

—

N

. Start with k=0, start value x° and HO=/
. Compute f(xk), g(xk), h(xk), VI(xk), Vg(xk), Vh(xk)
. If xxfeasible and

||VL(x,7\, M)” <€
then stop » convergence achieved

. Solve quadratic problem and get Axk

. Perform line search and get stepsize tk
. lterate

k+1 k k k
X =x"+1t"Ax

. Update hessian
. k=k+1, goto step 1



Conclusions

® Lagrangian function plays important role in constrained optimization

® |Lagrange multipliers of inequalities have positive sign
® KKT conditions are necessary optimality conditions

® Newton-type methods iteratively linearise the nonlinear functions and
solve simpler (convex) optimisation problems

® Sequential Quadratic Programming (SQP) is a Newton-type
method that iteratively solves quadratic programs (QP) to find a
local solution of the non convex problem

® Nonlinear Interior Point methods are another Newton-type method
e.g. implemented in IPOPT



é{) c a S A D i http://casadi.org

* A software framework for nonlinear optimization and optimal control

“Write an efficient optimal control solver in a few lines”

Implements automatic differentiation (AD) on sparse matrix-valued
computational graphs in C++11

Front-ends to Python, Matlab and Octave
Supports C code generation

Back-ends to SUNDIALS, CPLEX, Gurobi, gpOASES, IPOPT, KNITRO,
SNOPT, SuperSCS, OSQP, ...

Developed by Joel Andersson and Joris Gillis

[Andersson, Gillis, Horn, Rawlings, D., Math. Prog. Comp., 2019]
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CasADi Demo Solution by Katrin Baumgartner

M. Diehl 83



Appendix
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Professur fur Systemtheorie, Regelungstechnik und Optimierung

Forschung:

- Numerische Methoden flr die Optimale Steuerung

- Echtzeitoptimierung auf eingebetteten Systemen (embedded optimization)

- Modell-pradiktive Regelung (MPC), Methoden und Theorie

- Anwendungen: Windenergie, Leistungselektronik, Motorregelung, Solarthermie, ...

- Entwicklung Freier Software (ACADO, gpOASES, CasADi, BLASFEO, acados,
...)

Lehre in fUnf BSc/MSc Programmen: Embedded Systems Engineering, Mathematik,
Mikrosystemtechnik, Nachhaltige Technische Systeme, Informatik:

- Systemtheorie und Regelungstechnik
- Modelling and System Identification

- Numerical Optimization

Numerical Optimal Control

- Wind Energy Systems

- Race Car Laboratory

- Flight Control Laboratory
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