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Model Predictive Control for Renewable Energy Systems
University of Freiburg – Summer semester 2023

Exercise 3: Linear Model Predictive Control
Dr. Lilli Frison, Jochem De Schutter, Prof. Dr. Moritz Diehl

1. Discrete linear system models: Consider an inverted pendulum with nonlinear dynamics

ẋ = f(x, u) =

[
x2

sinx1 − cx2 + u cosx2

]
. (1)

with state vector x =
[
x1 x2

]>
=
[
θ θ̇

]> ∈ R2 and u ∈ R. The variables θ, θ̇ represent the angle deviation and speed
w.r.t. the top position, while the control variable u is a horizontal force applied at the tip of the pendulum.

(a) Linearize the system around xss =
[
0 0

]>
and uss = 0 to get the linearized system

ẋ(t) = Acx(t) +Bcu(t) (2)

What are the system matrices Ac and Bc? Assume a damping constant c = 0.1.

Ac =
∂f

∂x

∣∣∣∣
ss

=

[
0 1

cosx1 −c− u sinx2

]∣∣∣∣
ss

=

[
0 1
1 −c

]
=

[
0 1
1 −0.1

]
(3)

Bc =
∂f

∂u

∣∣∣∣
ss

=

[
0

cosx2

]∣∣∣∣
ss

=

[
0
1

]
(4)

(b) Now discretize the state space model with a sampling time Ts = 0.1s. What are the discrete-time system matrices A
and B? Use the analytic solution for continuous-time LTI systems based on the matrix exponential

eX =

∞∑
k=0

1

k!
Xk . (5)

To evaluate the matrix exponential, cut off the sum at k = 1. Terms proportional to T ks , k ≥ 2, can be neglected.

A = eAcTs =

1∑
k=0

1

k!
(AcTs)

k = I +AcTs =

[
1 Ts
Ts 1− 0.1Ts

]
=

[
1 0.1
0.1 0.99

]
(6)

(7)

B = A

∫ Ts

0

e−AcθdθBc = A

∫ Ts

0

(I −Acθ)dθBc = A
[
θI −Acθ

2/2
]Ts

0
Bc (8)

= (I +AcTs)(TsI −AcT
2
s /2)Bc ≈ TsBc =

[
0
0.1

]
(9)

(c) Is the resulting discrete-time system controllable?
The system is controllable if the controllability matrix

SC =
[
B AB

]
=

[
0 0.1
0.1 −0.01

]
(10)

is full rank. We compute det(SC) = −0.01 6= 0, so that we can conclude that the system is controllable.

2. Linear quadratic regulator: Let us now assume that the exact system dynamics are given by the discrete-time model

xk+1 =

[
1 0.1
0.1 0.99

]
xk +

[
0
0.1

]
uk (11)

We want to design an infinite-horizon LQR controller to control the system, using weight matrices Q = I , R = 1.

(a) Compute the infinite horizon cost-to-go weight matrix P∞ using the Ricatti recursion:

Pk+1 = A>PkA− (A>PkB)(R+B>PkB)−1(B>P∞A) +Q , (12)

with initialization P0 = Q. You can start with the Python template ex3 lmpc example.py.

P∞ =

[
12.25 1.80
1.80 1.88

]
(13)
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(b) Compute the LQR feedback matrix K∞.

K∞ = −(B>P∞B +R)−1B>P∞A =
[
−0.69 −0.71

]
(14)

(c) Compute the closed-loop system matrix ACL = A + BK∞. Simulate and plot the closed-loop response from the
initial condition x0 =

[
π
6 0

]>
for Nsim = 100 steps.

3. Linear model predictive control: We now introduce the input constraint −1 ≤ u ≤ 1.

(a) Formulate the linear MPC controller for the discretized system with horizon N = 10. Choose as terminal weight
matrix the infinite-horizon cost-to-go. We do not use a terminal region.
The optimal control problem reads as:

minimize
x0,...,xN
u0,...,uN−1

1

2
x>NP∞xN +

1

2

N−1∑
k=0

x>k Qxk + u>k Ruk

subject to x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . , N − 1,

uk ≤ 1, k = 0, . . . , N − 1,

−uk ≤ 1, k = 0, . . . , N − 1

(15)

(b) Implement the optimal control problem with help of the Opti class in CasADi.

(c) Compute the closed-loop response for the same scenario as in Task (2c) and compare to the LQR response.
The MPC response converges to the origin only slightly slower but respects the input constraints.
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