
i
i

“main” — 2023/8/17 — 21:45 — page 1 — #1 i
i

i
i

i
i

Model predictive control for renewable energy systems
Lecture Notes at University of Freiburg

Lilli Frison, Jochem De Schutter and Moritz Diehl

Preliminary Version of
17 August 2023

i
i

“main” — 2023/8/17 — 21:45 — page 1 — #2 i
i

i
i

i
i

Contents

1 Introduction 3
1.1 A short primer on Model Predictive Control . 3
1.2 Why Model Predictive Control of Renewable Energy Systems? 5
1.3 Recommended Literature . 7

2 Dynamic Systems Modelling 8
2.1 Fundamentals of Dynamic Systems Modelling . 8

2.1.1 Introduction to Dynamic Systems . 8
2.1.2 Dynamic System Modelling with ODE . 10
2.1.3 Linear Time-Invariant Systems . 13

2.2 Modelling of renewable energy systems . 20
2.2.1 Modelling the thermal behavior of buildings . 20
2.2.2 Modelling of heat pumps . 24
2.2.3 Solar thermal collector model . 26
2.2.4 Modelling of thermal energy networks . 30
2.2.5 Wind energy systems modeling . 32

3 Background on Optimization 37
3.1 Definition of an Optimization Problem . 37
3.2 Classes of Optimization Problems . 38

3.2.1 Convex Optimization Problems . 38
3.2.2 Quadratic Programming (QP) . 40
3.2.3 Linear Programming (LP) . 41
3.2.4 Mixed-Integer Programming (MIP) . 42

3.3 Optimality Conditions . 43
3.3.1 First Order Optimality Conditions . 43
3.3.2 Second Order Optimality Conditions . 44

3.4 Optimization Algorithms . 47
3.4.1 Newton-Type methods for Equality Constrained Optimization 47
3.4.2 Interior Point Methods for Inequality Constrained Optimization* 48
3.4.3 Generating derivatives* . 50

4 Linear Model Predictive Control 52
4.1 MPC control idea . 52
4.2 Discrete-time linear state space models . 54

4.2.1 Discretization of LTI state-space models . 54
4.2.2 Solution of the state space ODE . 55
4.2.3 Controllability and observability . 56

4.3 Unconstrained linear MPC . 57
4.4 Constrained linear MPC . 60
4.5 Feasibility and stability . 63

4.5.1 Recursive feasibility . 64
4.5.2 Stability . 66

1

i
i

“main” — 2023/8/17 — 21:45 — page 2 — #3 i
i

i
i

i
i

5 Nonlinear Model Predictive Control 69
5.1 Introduction to NMPC . 69
5.2 Numerical Integration Methods . 71

5.2.1 Explicit Methods . 72
5.2.2 Stiff Systems and Implicit Integrators* . 74

5.3 Overview of Solution Methods for continuous-time OCP 75
5.4 Discretization of the OCP via Direct Shooting Methods 76

5.4.1 Direct Single Shooting . 77
5.4.2 Direct Multiple Shooting . 81

5.5 Practical aspects of MPC . 84
5.5.1 Soft Constraints . 84

6 Model predictive control of wind energy systems 87
6.1 Control task of wind turbines . 87

6.1.1 Control objectives . 87
6.2 MPC design of wind turbines . 87

6.2.1 LTV-MPC . 87
6.2.2 MPC sampling time and horizon . 89
6.2.3 Move blocking . 89
6.2.4 Weight scheduling . 90
6.2.5 State-of-the-art experimental results . 91

7 Online state estimation 92
7.1 Linear optimal state estimation (Kalman filter) . 92
7.2 Moving horizon estimation . 95

2

i
i

“main” — 2023/8/17 — 21:45 — page 3 — #4 i
i

i
i

i
i

Chapter 1

Introduction

1.1 A short primer on Model Predictive Control
If you split the term “Model Predictive Control” (MPC) into its meaningful parts, we obtain the following
two distinctive ingredients.

1. Model-based: As the name implies, MPC is based on a model of the process. This model can be
developed and represented in various forms suitable for control.

2. Predictive control: Using a simulation of its internal model, MPC computes a prediction of the future
values of the process outputs and the states from the current time.

The third distinct ingredient of MPC is optimization that is used to calculate the actuated values which
result in an optimal predicted state trajectory. The objective of the optimization problem can vary from
tracking a setpoint or executing a certain task in minimal time, to economic objectives where some more
general performance index is minimized. In MPC, the procedure of looking into the future using the process
model followed by the formulation and solution of an optimization problem is repeated at every sampling
time step, as new information on the state of the system becomes available. This creates a feedback action
and is commonly known as a sliding horizon strategy or receding horizon control, see Figure 1.1.

Figure 1.1: Working principle of MPC

3

i
i

“main” — 2023/8/17 — 21:45 — page 4 — #5 i
i

i
i

i
i

Controller System

Measurement value
y(t)

Disturbances

Actuated value
u(t)

Reference value
r(t) Output

Reference

Feedforward

Disturbances

System
Output

Figure 1.2: Feedback (top) and feedforward (bottom) control loop diagrams.

Feedback is a term that most people are familiar with. In the classical feedback control loop, the measured
output of the process (called sensor values) is compared with a reference signal. The error between both is
given to the controller which generates a manipulated variable (called actuator or actuated value) to control
the process. An example is the PID controller that applies a correction based on proportional, integral, and
derivative terms of the error value.
A common example is the thermostat in your home. It senses the air temperature in the room and increases
the heating input if this temperature drops. When the air reaches the desired room temperature, the heating
input goes back to zero. The room temperature sensor provides the feedback in this system and it allows
a thermostat to effectively regulate the temperature of our homes. However, the result is a system with a
very long control loop time, or in other words, it reacts with a lot of lag in case of disturbances.
A different approach is feedforward control, for which some kind of model describing the disturbance
is needed. Figure 1.2 show the flow charts of a feedforward and a feedback controller. For example,
if the thermostat detects a disturbance, such as a sensor showing a change in outside temperature or an
open window, the model might extend the duration the heater is running or increase its temperature to
compensate. This system is an example of a feedforward system and allows for very fast control loop times
because adjustments are made to the inputs of the system before a disturbance can affect the output. A
simple but commonly used example that reacts to changes in the outside temperature is a heating curve
controller.
Compared to classical control structures, in the MPC controller, the feedforward and feedback action are
combined in a single controller, as illustrated in Fig. 1.3. Typically, MPC is used as a state-feedback
controller, which means that the control action is based on the recent states of the system. These states are
necessary, as they are used for the prediction of the output values in the process model. Either the system
states are all measurable or, more commonly, a state observer has to be applied to estimate the system
states. MPC is particularly suitable for constrained systems and for control problems where the offline
computation of the control function is very difficult or even impossible. One of the great advantages of
MPC is its inherent ability to deal with the system constraints, which makes these methods very interesting
for industry. Due to its great flexibility, MPC is probably the method with the most practical applications
among modern control algorithms.
The following list summarizes the benefits associated with MPC:

1. System model for anticipatory control actions.
2. Integration of a disturbance model for disturbance rejection.
3. Ability to handle constraints and uncertainties.
4. Ability to handle time-varying dynamics.
5. Ability to cope with slow-moving processes with time delay.
6. Integration of energy conservation strategies in the controller formulation.

4

i
i

“main” — 2023/8/17 — 21:45 — page 5 — #6 i
i

i
i

i
i

Feedforward

Feedback
System

Measurement value
y(t)

Actuated value
u(t)

Reference value
r(t)

Figure 1.3: MPC can be interpreted as a combination of feedforward and feedback action in one single
controller.

7. Use of a cost function for achievement of multiple objectives.
8. Use of advanced optimization algorithms for computation of control vectors.

In this course, our goal is to learn in detail about model predictive control concepts and, in particular, to
apply it to the control of renewable energy systems.

1.2 Why Model Predictive Control of Renewable Energy Systems?
Along with the climate goals of the Paris Agreement, the national greenhouse gas strategies of industrial-
ized countries involve the total restructuring of their energy systems. It is generally agreed that only the
Net Zero Emissions by 2050 Scenario (NZE) can limit the global warming sufficiently. The NZE scenario
sets out a pathway for the global energy sector to achieve net zero CO2 emissions by 2050. It doesn’t rely
on emissions reductions from outside the energy sector to achieve its goals1. For the worldwide electric-
ity sector, the NZE scenario implies an enormous increase of the share of renewable forms of electricity
generation, made possible by a massive expansion in solar PV and wind capacity.

Figure 1.4: Global electricity sector outlook in the NZE scenario, figure from https://www.iea.
org/reports/net-zero-by-2050.

In Germany, the climate protection plan (Klimaschutzplan 2050) was developed in 2016 by the German
government to help reduce greenhouse gas emissions and combat climate change. It sets out a vision for a

1https://www.iea.org/reports/net-zero-by-2050

5

https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050
https://www.iea.org/reports/net-zero-by-2050

i
i

“main” — 2023/8/17 — 21:45 — page 6 — #7 i
i

i
i

i
i

low-carbon, climate-resilient economy by 2050 with the main goal of reducing Germany’s greenhouse gas
emissions by 80-95% below 1990 levels by 2050. With the amendment to the climate protection plan in
2021, the German government has tightened climate protection targets and anchored the goal of greenhouse
gas neutrality by 2045. Emissions are to be reduced by 65% by 2030 and 88% by 2040 (compared with
1990). To achieve this target, the widespread adoption of renewable energy sources such as wind, solar,
and hydropower, is necessary.
To date, an ever larger share of our energy needs is increasingly being met by renewable energies: in 2022,
around 46% of gross electricity consumption of which more than half can be attributed to wind energy, one
fourth to solar energy and the rest to hydro power, renewable waste and biomass, see Figure 1.5.

Year

E
ne

rg
y

(T
W

h)

Total net electricity generation in Germany

Energetically corrected values

Energy-Charts.info; Data Source: ENTSO-E, AG Energiebilanzen; Last Update: 19.02.2023, 11:48 MEZ

Nuclear Hydro Run-of-River Biomass Fossil brown coal / lignite Fossil coal-derived gas
Fossil hard coal Fossil oil Fossil gas Geothermal Hydro water reservoir
Others Other renewables Waste renewable Waste non-renewable Wind offshore
Wind onshore Solar

1990 1996 2002 2008 2014 2020
0

50

100

150

200

250

300

350

400

Figure 1.5: Annual total net power generation in Germany from 1990 to 2023 (partly) grouped by type of
energy source (nuclear, renewable, fossil).

By 2030, this figure is expected to rise to at least 80%.
With the widespread adoption of a high share of renewable energy sources, today’s and the future energy
system is faced with new challenges:

• Integration of Renewable energy sources: Renewable energy sources are volatile, how to integrate
them into out energy system? How can security of supply and grid stability be guaranteed?

• Energy storage: Another major challenge is the need for effective energy storage solutions to manage
the intermittency of renewable energy sources. Batteries and other storage technologies will be
crucial to balancing energy supply and demand.

• Energy Efficiency: Improving energy efficiency is a critical challenge, as reducing energy demand
can help to alleviate the strain on the energy system and reduce greenhouse gas emissions. This
requires the development and adoption of more efficient technologies, as well as changes in behavior
and lifestyle.

6

i
i

“main” — 2023/8/17 — 21:45 — page 7 — #8 i
i

i
i

i
i

Besides these technological challenges, the German energy transition faces other types of challenges, such
as resistance from some communities to the installation of wind turbines, and the need for upgrading the
country’s energy infrastructure to accommodate the fluctuating nature of renewable energy sources.
In addition to increasing the energy efficiency of the energy system, smart operation of the power and
heat generation and distribution systems and their components is very important. Classical controllers are
often based on heuristic rules or traditional PID controllers, which neither control the system optimally
nor consider all available data and predictions. At the same time, the objectives of the control problems
and the constraints to be met are becoming more and more complex - think of sector coupling and the
fluctuating production of renewable energies, heat recovery and waste heat recovery, very different user
requirements in the building sector, prosumer-based, decentralized and low-temperature heating networks.
Renewable-based energy system are highly diverse and complex multi-physics systems, often with compli-
cated characteristics such as a challenging structural requirements and a high nonlinearity (wind energy),
mixed-integer control variables (heating networks, operational constraints of heating plants) or combined
fast and slow dynamics (heating network with seasonal storage, PV plants with converters).
Model predictive control is an obvious candidate technology to handle the increasing complexity of energy
systems and technologies (such as e.g. heat pumps, PV/PVT, seasonal storages, airborne wind energy).

1.3 Recommended Literature
For additional readings, we recommend the following literature (free PDFs online).
Model Predictive Control:

• Rawlings and Diehl – Model Predictive Control: Theory and Design [10]

• Grüne and Pannek – Nonlinear Model Predictive Control [5]

• On Linear and Hybrid Systems: Borelli, Bemporad, Morari – Predictive Control for Linear and
Hybrid Systems [2]

• More a control perspective: Maciejowski – Predictive Control with Constraints [7].

Numerical optimization:

• Nocedal and Wright – Numerical Optimization [8].

Simulation methods:

• Chapra – Numerical Methods for Engineers [3].

7

i
i

“main” — 2023/8/17 — 21:45 — page 8 — #9 i
i

i
i

i
i

Chapter 2

Dynamic Systems Modelling

2.1 Fundamentals of Dynamic Systems Modelling

2.1.1 Introduction to Dynamic Systems
In this lecture, our major aim is to model dynamic systems, i.e. processes that are evolving with time.
These systems can be characterized by states x and sometimes parameters p that allow us to predict the
future behavior of the system. If the state and the parameters are not known, we first need to estimate them
based on the available measurement information. We consider controlled dynamic systems in continuous
or discrete time that depend on a parameter u that can change depending on the time and/or the state of
the system. This parameter can be understood either as a control variable that can be actively influenced
from the outside (e.g. acceleration in a vehicle) or as a disturbance that acts on the system but that cannot
be influenced (e.g. road bumps in a car, outside temperature change). The ultimate purpose of modelling
and system identification is to understand the system better and to be able to design and test good control
strategies.
From a generic point of view, a (controlled) dynamic system responds to an input signal u(t) with an output
signal y(t) as depicted in the following block diagram

u(t) y(t)F

This behavior could be regarded as a ‘mapping in time domain’ of a function u : t 7→ u(t) to a function
y : t 7→ y(t),

u 7→ y = F{u} (2.1)

Apart from controlled dynamic systems, there exist many systems that cannot be influenced at all, but that
only evolve according to their intrinsic laws of motion. These uncontrolled systems have an empty control
set, U = ∅. If a dynamic system is both uncontrolled and time-invariant it is also called an autonomous
system.
Any dynamic system evolves over time, but time can come in two variants: while the physical time is
continuous and forms the natural setting for most technical and biological systems, other dynamic systems
can best be modelled in discrete time, such as digitally controlled sampled-data systems, or games.
Continuous time systems can often be described by physical laws using ordinary differential equations
(ODE), but sometimes they are described by other forms of more complex differential equations such as
differential-algebraic equations (DAE), partial differential equations (PDE) or delay differential equations
(DDE). As a part of the course, only ODE systems are covered.
Let us give some examples of systems that can be described by an ODE and write down for each some of
the typically needed states.

• Race cars: states: position (x, y), orientation, velocity (ẋ, ẏ), angular velocity, control: gas pedal,
wheel.

8

i
i

“main” — 2023/8/17 — 21:45 — page 9 — #10 i
i

i
i

i
i

• Quadcopter: states: 3D position + orientation (6 states), 6 derivative, control: propeller rotation
speeds.

• Satellite: states: 3D position + 3 velocities, control: force in each of 3 dimensions

• Airplanes in free flight:3D position + orientation, derivatives (velocities) of all these 6.

• Wind turbine: states: rotor position and speed, control: pitch of rotor blades, generator torque.

• Building model: states: temperature of the zone(s), temperature of the wall(layers), control: power
of heating device.

Starting from the continuous-time system, all numerical simulation methods have to discretize the time
interval in some form or other and thus effectively generate discrete time systems that can be implemented
in digital devices like computers, microcontrollers and other forms of microprocessors. As we will see
later, this can be done exactly for linear systems. For nonlinear systems, numerical integration methods
which are subject to approximation errors have to be applied.

Modelling approaches There are many classifications of mathematical models. One is to divide mathe-
matical models into two categories, based on

- physical theory (also called first principles models, white-box models)
- empirical descriptions (also called empirical models, black box models, data-driven models).

First principles models are based on physical and chemical laws: conservation laws like mass balance,
momentum balance and energy balance, or chemical reaction kinetics. These models allow for a detailed
simulation of the processes involved, such as thermodynamics and aerodynamics, and lead to a continuous-
time state-space model.
In some cases, physics-based models are too complex to be used in a real-time optimization setting. In other
cases, the underlying physical equations are not known precisely. In these cases, and if measurements are
available, data-based black-box models can be used. A black-box model of a system is one that does not use
any particular prior knowledge of the character or physics of the relationships involved. It is therefore more
a question of a “curve-fitting” regression problem than “modeling”. The basis for these models consists of
input/output data derived from measurements. With these experimental data, a candidate model is chosen
that is usually given in a parametrized form. Through the use of the measured data set, the parameters are
estimated. Depending on the specific model type, black-box models can reproduce the system dynamics
with a model of low complexity. The drawback is that a large amount of measurement data is needed for
the calibration of the blackbox process model and that usually only a very limited extrapolation capability
is given. In addition, no state estimation of physically meaningful quantities is possible.
Examples of such models used in process control are input-output models and transfer function models. As
the name implies, with the input-output, the current output is dependent on the values of the past outputs
and/or the past inputs of the process. The notion or concept of states of a process are not used. These
model types can be derived from the state-space models or purely from measurement data. An example of
an input-output model is the Auto Regressive Model with Exogenous Inputs (ARX model) where the output
is a weighted sum of the past inputs and past outputs. Transfer function models describe the relationship
between the inputs and outputs of a system in the frequency domain using a ratio of polynomials and
are characterised by their poles and zeros. Most of these models are for linear single-input-single-output
(SISO) systems. It is much harder to derive nonlinear parameterized function models. In this case, models
from supervised machine learning such as artificial neural networks can be useful.
Another approach that is useful in modelling renewable energy systems is called grey-box modelling. In this
approach, simplified, low-complexity physics-based models or analogies are used, sometimes in addition
to sub-components that are modeled using black-box models.
In order to implement MPC, it is necessary to develop control-oriented models that accurately capture the
relevant dynamics of the system. The process model used has a significant impact on the control perfor-
mance, as the predictive capabilities of the model directly influence the quality of the control behavior.
However, the models must also be simple enough to enable real-time optimization. Therefore, it is impor-
tant to find a balance between model accuracy and simplicity, which is particularly crucial in renewable
energy systems where complex multi-physics processes must be modeled.

9

i
i

“main” — 2023/8/17 — 21:45 — page 10 — #11 i
i

i
i

i
i

Figure 2.1: Modelling approaches

2.1.2 Dynamic System Modelling with ODE
Most commonly in MPC, state-space models derived from ODE are used. The use of the state-space rep-
resentation offers several advantages compared to the other model representations. The states are used for
the prediction of the output values in the process model. Multiple-input multiple-output (MIMO) systems
can very naturally be handled and calculated. As the system states are explicitly given, the consideration
of system states, e.g. for constraint handling is straightforward.
If the system dynamics is given by ordinary differential equations (ODE), the system can be represented as
follows

Input

y(t) = g(x(t), u(t), t)

Output

u(t) ẋ(t) = f(x(t), u(t), t) y(t)

• x is the n-dimensional internal state of the system. It can be regarded as ‘memory’ of the system.

• The dynamics are given by the equations of motion in form of an ODE

ẋ(t) = f(x(t), u(t), t) (2.2)

called state equation (or system equation or dynamics). It determines the time evolution of the state
x(t) by an ODE.

• The second equation
y(t) = g(x(t), u(t), t) (2.3)

is called output equation and maps the state (and input) to the output vector y(t). Note that the
output, state and input vectors can have a different dimensions. In general, the outputs y are the
physically measurable quantities. In that context, it is important to remark that the states are not even
unique, because different state-space realizations of the same input-output behavior exist.

Here, the different elements of the ODE are vector valued and ẋ = dx
dt is the total derivative with regard to

time.
The function f is a map from states, controls, and time to the rate of change of the states, i.e.

f : Rnx × Rnu × [t0, tf] → Rnx .

In general, we have t0 = 0. Sometimes, we consider parameters p (constant in time) within the dynamics
so that ẋ(t) = f(x(t), u(t), p(t), t). These parameters can either be constant in time or time-varying. De-
pending on the modelling decision, they can also beconsidered as decision variables that can be optimized.

10

i
i

“main” — 2023/8/17 — 21:45 — page 11 — #12 i
i

i
i

i
i

However, it is of course possible to transform the parameters into control variables u, or if they are fixed,
consider them as part of the model equation f .
We discuss one interesting system model in more detail.

Example (Climate modelling). Typical weather models rely on a 3D-spatial discretization of the atmo-
sphere and can only be simulated on supercomputers. Weather models are used to forecast day-to-day
changes in weather, or more specifically, to predict what will happen at a specific place and point in time in
the near future, typically no more seven days in advance. Model-based weather forecasts are generally less
reliable beyond a week, because the atmosphere is an inherently chaotic system. Even minor variations in
observed conditions, which are fed to the model regularly, can result in entirely distinct weather forecasts
a week ahead, owing to the dynamic nature of the atmosphere.
Contrary to weather forecast models, the overall prediction accuracy of climate models seems much more
reliable. This can be seen for example by comparing climate predictions made in the 1980s with today’s
measurements. Climate models are used to determine how the average conditions will change. Thus, they
can be represented with an energy balance: how much power Pin does the earth receive from the sun in
form of short wavelength solar irradiation, and how much power Pout does it emit back in form of long
wavelength radiation? The latter is influenced by the greenhouse gas concentration, in particular by the
concentration of CO2 that we denote by cCO2

(t). One of the simplest possible models would have only
two states, namely the average surface temperature T (t) (in Kelvin) and the CO2-concentration cCO2

(t)
(in parts-per-million, or ppm). For the temperature evolution, one would need to know the heat capacity of
the relevant part of the earth surface, e.g. of the upper 100 meters of water and land plus the atmosphere,
that we describe by a total heat capacity Cheat. The resulting energy balance equation is as follows:

Ṫ =
Pin − Pout(cCO2 , T)

Cheat
.

Here, the total incoming solar power Pin would be a constant, while the outgoing power Pout(cCO2
, T) is

a function of both cCO2 and T and could e.g. be given by

Pout(cCO2
, T) = (C1 − C2cCO2

)T 4

with positive constants C1 and C2 (in suitable units) that describe how the CO2-concentration influences
the emissivity of the earth. The fourth power in the term T 4 comes from the Stefan-Boltzmann law.
The evolution of cCO2 would be in the simplest form be given by an accumulation of humanity’s yearly
CO2 emissions u(t) (in mol/year), that needs to be divided by the total amount of gas molecules in the
atmosphere M (in mol) in order to make it a molar concentration (like ppm), such that we obtain

ċCO2
=

u

M
.

Due to the slow time constants in the earth’s climate system, today’s climate predictions for the next
30 years are unfortunately not very strongly affected by humanity’s upcoming emissions – or emission
reductions – in the coming 30 years. Thus, a significant rise in the earth’s average temperature in 2050 is
nearly unavoidable. However, if humanity manages to reduce its emissions significantly today and in the
next decade, we can positively influence the climate in 2100, with a high chance that the earth’s temperature
achieves its maximum between 2050 and 2100 and the climate of the year 2100 becomes similar to the
climate in 2050.
More detailed, but still relatively simple climate models can e.g. be found on the following websites:
https://www.e-education.psu.edu/meteo469/node/137 and https://en.wikipedia.
org/wiki/Climate_model#cite_note-10.

Properties of continuous-time systems with ODE

Let us sketch some relevant properties of continuous-time ODE systems. We are first interested in the
question if the differential equation has a solution if the initial value x(t0) is fixed and also the controls u(t)
are fixed for all t ∈ [t0, tf]. In this context, the dependence of f on the fixed controls u(t) is equivalent to a
a further time-dependence of f , and we can redefine the ODE as ẋ = f̃(x, t) with f̃(x, t) := f(x, u(t), t).

11

https://www.e-education.psu.edu/meteo469/node/137
https://en.wikipedia.org/wiki/Climate_model#cite_note-10
https://en.wikipedia.org/wiki/Climate_model#cite_note-10

i
i

“main” — 2023/8/17 — 21:45 — page 12 — #13 i
i

i
i

i
i

Thus, let us first leave away the dependence of f on the controls, and just regard the time-dependent
uncontrolled ODE:

ẋ(t) = f(x(t), t), t ∈ [t0, tf]. (2.4)

An initial value problem (IVP) is given by (2.4) and the initial value constraint x(t0) = x0 with x0 fixed.
Existence of a solution to an IVP is guaranteed under continuity of f with respect to x and t according to
a theorem from Peano. But existence alone is of limited interest as the solutions might be non-unique.

Example (Non-Unique ODE Solution). The scalar ODE with f(x) =
√

|x(t)| can stay for an undeter-
mined duration in the point x = 0 before leaving it at an arbitrary time t0. It then follows a trajectory
x(t) = (t − t0)

2/4 that can be easily shown to satisfy the ODE (2.4). We note that the ODE function f
is continuous, and thus existence of the solution is guaranteed mathematically. However, at the origin, the
derivative of f approaches infinity. It turns out that this is the reason which causes the non-uniqueness of
the solution.

As we are only interested in systems with well-defined and deterministic solutions, we would like to for-
mulate only ODE with unique solutions. Here helps the following theorem by Picard and Lindelöf.

Theorem 1 (Existence and Uniqueness of IVP). Regard the initial value problem (2.4) with x(t0) = x0,
and assume that f : Rnx × [t0, tf] → Rnx is continuous with respect to x and t. Furthermore, assume that
f is Lipschitz continuous with respect to x, i.e., that there exists a constant L such that for all x, y ∈ Rnx

and all t ∈ [t0, tf]
∥f(x, t)− f(y, t)∥ ≤ L∥x− y∥. (2.5)

Then there exists a unique solution x : [t0, tf] → Rnx of the IVP.

Here, ∥∥ = ∥∥2 refers the Euclidean norm, also known as the 2-norm, which is used a measure of the
”length” or ”magnitude” of a vector in Rn. Lipschitz continuity is a strong form of continuity that quantifies
the rate at which a function can change between two points. Lipschitz continuity of f with respect to x is
not easy to check. It is much easier to verify if a function is differentiable. It is therefore a helpful fact that
every function f that is differentiable with respect to x is also locally Lipschitz continuous, and one can
prove the following corollary to the Theorem of Picard-Lindelöf.

Corollary 1 (Local Existence and Uniqueness). Regard the same initial value problem as in Theorem 1,
but instead of global Lipschitz continuity, assume that f is continuously differentiable with respect to x for
all t ∈ [t0, tf]. Then there exists a possibly shortened, but non-empty interval [t0, t′f] with t′f ∈ (t0, tf] on
which the IVP has a unique solution.

Note that for nonlinear continuous-time systems – in contrast to discrete time systems – it is very easily
possible to obtain an “explosion”, i.e., a solution that tends to infinity for finite times, even with innocently
looking and smooth functions f .

Example (Explosion of an ODE). Regard the scalar example f(x) = x2 with t0 = 0 and x0 = 1, and let
us regard the interval [t0, tf] with tf = 10. The IVP has the explicit solution x(t) = 1/(1 − t), which is
only defined on the half open interval [0, 1), because it tends to infinity for t → 1. Thus, we need to choose
some t′f < 1 in order to have a unique and finite solution to the IVP on the shortened interval [t0, t′f]. The
existence of this local solution is guaranteed by the above corollary. Note that the explosion in finite time
is due to the fact that the function f is not globally Lipschitz continuous, so Theorem 1 is not applicable.

Note (Discontinuities with Respect to Time): It is important to note that the above theorem and corollary
can be extended to the case that there are finitely many discontinuities of f with respect to t. In this case the
ODE solution can only be defined on each of the continuous time intervals separately, while the derivative
of x is not defined at the time points at which the discontinuities of f occur.But the transition from one
interval to the next can be determined by continuity of the state trajectory, i.e. we require that the end
state of one continuous initial value problem is the starting value of the next one. The fact that unique
solutions still exist in the case of discontinuities is important because many state and parameter estimation
problems are based on discontinuous control trajectories u(t). Fortunately, this does not cause difficulties
for existence and uniqueness of the IVPs.

12

i
i

“main” — 2023/8/17 — 21:45 — page 13 — #14 i
i

i
i

i
i

Discrete-time systems, Zero Order Hold and Solution Map

We call a system a discrete-time system whenever the time in which the system evolves only takes values
on a predefined time grid, usually assumed to be integers. In this case, we typically use the index variable
k ∈ N, and write xk or x(k) for the state at time point k. The general time-variant discrete-time system is
given by the following equation

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1 (2.6)

on a time horizon of length N , with N control input vectors u0, . . . , uN−1 ∈ Rnu and (N+1) state vectors
x0, . . . , xN ∈ Rnx .
If we know the initial state x0 and the controls u0, . . . , uN−1 we could recursively call the functions fk in
order to obtain all other states, x1, . . . , xN . We call this a forward simulation of the system dynamics, see
Figure 2.2.

Figure 2.2: Illustration of the forward simulation of a discrete-time system .

In the age of digital control, the inputs u are often generated by a computer and implemented at the physical
system as piecewise constant between two sampling instants. This approach is called zero order hold. The
grid size is typically constant, say of fixed length ∆t > 0, so that the sampling instants are given by
tk = k ·∆t. If our original model is a differentiable ODE model, but we have piecewise constant control
inputs with fixed values u(t) = uk with uk ∈ Rnu on each interval t ∈ [tk, tk+1], we might want to regard
the transition from the state x(tk) to the state x(tk+1) as a discrete time system. This is indeed possible, as
the ODE solution exists and is unique on the interval [tk, tk+1].

2.1.3 Linear Time-Invariant Systems
A special class of tremendous importance are linear time-invariant (LTI) systems. They are of principal
interest in the field of automatic control. First, we give a very generic definition of LTI systems.
A dynamical system F is called linear if the following conditions are fulfilled:

1. Superposition principle
F{u1 + u2} = F{u1}+ F{u2} (2.7)

which can be illustrated as follows

13

i
i

“main” — 2023/8/17 — 21:45 — page 14 — #15 i
i

i
i

i
i

F{}

F{}

u1(t)

u2(t)

y(t)
F{}

u1(t)

u2(t)

y(t)

=̂

2. Principle of amplification
F{cu} = cF{u} (2.8)

depicted as follows

y(t)u(t)
F{}c F{}

y(t)u(t)
c

Both properties together imply that the overall response of an LTI system to a weighted sum of signals is
the same as the weighted sum of the responses to each of the individual signals.

A dynamical system F is called time-invariant, if for any function u(t)

y
.
= F{u} (2.9)

the equation
y0 = F{u0} (2.10)

is valid for all T , where the function definitions u0 : t 7→ u0(t)
.
= u(t−T) and y0 : t 7→ y0(t)

.
= y(t−T)

are introduced. This can be illustrated by

u(t)
u(t− T)

T

LTI

T

y(t− T)

y(t)

Time invariance means that whether we apply an input to the system now or T seconds from now, the
output will be identical except for a time delay of T seconds.
Note: For time invariance, the initial (internal) states of the system have to be 0 (zero state).

If the dynamics are given by an ODE, the general LTI system in state-space is written as

ẋ(t) = Ax(t) +Bu(t) (2.11)
y(t) = Cx(t) +Du(t) (2.12)

with fixed matrices A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and D ∈ Rny×nu . This set of equations
including dimensions of vectors and matrices can be drawn in the following block diagram

14

i
i

“main” — 2023/8/17 — 21:45 — page 15 — #16 i
i

i
i

i
i

B
ẋ(t)

D

A

C
x(t) y(t)u(t)

Matrix
Multiplication

Integrator

nu

(ny × nu)

(nx × nx)

(ny × nx)
nynx(nx × nu)

Note: Linearity can be easily shown for all dynamical systems of the following form:

ẋ(t) = A(t)x(t) +B(t)u(t), t ∈ [t0, tf], x(t0) = x0.

We can even allow the matrices to depend on time t, so we have a time-dependent system; the linearity is
not destroyed by this.
An overview of linear and nonlinear and time-variant and time-invariant notation of the system dynamics
is given in Table 2.1.

Table 2.1: Notation for linear and nonlinear and time-variant (time-dependent) and time-invariant systems

time-invariant time-dependent/time-variant
linear ẋ = Ax+Bu ẋ = A(t)x+B(t)u

nonlinear ẋ = f(x, u) ẋ = f(t, x, u)

The LTI system (2.11) and (2.12) is an example of a Multiple-Input Multiple-Output (MIMO) system. As
a special case, we can consider a LTI system with only one input and one output, nu = 1 and ny = 1. This
kind of system is called Single-Input Single-Output (SISO) and it is formulated as

ẋ(t) = Ax(t) + bu(t) (2.13)

y(t) = c⊤x(t) + du(t) (2.14)

where A ∈ Rnx×nx , b ∈ Rnx , c ∈ Rnx and d ∈ R.
Why is linearity so important? First of all, many physical systems can be modelled very accurately by
linear differential equations. Examples are the main elements of electrical circuits - resistor, capacitor and
inductor, thermal models or the heat conduction in solid bodies.
Even if we have a nonlinear system, if we care about what happens near an equilibrium point, it often
suffices to approximate the nonlinear dynamics by their local linearization as we will see later in this
chapter.
Secondly, linear systems have several mathematical properties that make their solution, analysis and con-
trol synthesis simple. Simulating the system and solving the resulting optimization problem within the
MPC procedure is much harder for nonlinear systems. The superposition principle infers that the behavior
of the resulting system subjected to a complex input can be described as a sum of responses to simpler
inputs. In nonlinear systems, there is no such relation. For time-invariant systems this is the basis of the
impulse response or the frequency response methods (see LTI system theory), which describe a general
input function x(t) in terms of unit impulses or frequency components. Many important notions such as
controllability, stabilizability and observability, and concepts such as the impulse response or frequency
response function can be defined in terms of the matrices A,B,C and D alone.

15

i
i

“main” — 2023/8/17 — 21:45 — page 16 — #17 i
i

i
i

i
i

Solution of the State Space ODE

In the following, the equation
ẋ(t) = Ax(t) +Bu(t) (2.15)

with x(t0) = x0 as initial condition will be solved.
The homogeneous solution

x(t) = eA(t−t0)x0 (2.16)

is the solution for
ẋ(t) = Ax(t) (2.17)

which is the homogeneous part of (2.15). We used the matrix exponential function, which is defined by

eA(t−t0) .
=

∞∑
k=0

A(t− t0)
ν

ν!
(2.18)

The time derivative reads

d

dt
eA(t−t0) =

d

dt

∞∑
k=0

Ak(t− t0)
k

k!
=

∞∑
k=0

Akk(t− t0)
k−1

k!

= A

∞∑
k=1

Ak−1(t− t0)
k−1

(k − 1)!
= AeA(t−t0) (2.19)

Computing the time derivative of the solution (2.16) yields

ẋ(t) = AeA(t−t0)x0︸ ︷︷ ︸
x(t)

= Ax(t) (2.20)

and proves that the solution fulfills (2.17).

The general solution reads

x(t) = Φ(t, t0)x0 +

t∫
t0

Φ(t, τ)Bu(τ)dτ (2.21)

with
Φ(t, t0)

.
= eA(t−t0) (2.22)

Note that the first term is the homogeneous solution due to the initial condition x0 and the second term is a
convolution integral of input u(t). In order to show that (2.21) is a solution, we compute ẋ(t) by deriving
(2.21)

ẋ(t) = AΦ(t, t0)x0 +Φ(t, t)︸ ︷︷ ︸
=I

Bu(t) +

t∫
t0

d

dt
Φ(t, τ)︸ ︷︷ ︸

AΦ(t,τ)

Bu(τ) dτ

= A

Φ(t, t0)x0 +

t∫
t0

Φ(t, τ)Bu(τ) dτ


︸ ︷︷ ︸

= x(t), compare (2.21)

+Bu(t) = Ax(t) +Bu(t) (2.23)

□

The solution (2.21) can be computed if x0 and u(t) = uconst are fixed.
It is interesting to note that this map is well defined for all times t ∈ R, as linear systems cannot explode.
The function f(x, u) = Ax + Bu is Lipschitz continuous with respect to x with Lipschitz constant L =
∥A∥, so that the global solution to any initial value problem with a piecewise continuous control input can
be guaranteed.

16

i
i

“main” — 2023/8/17 — 21:45 — page 17 — #18 i
i

i
i

i
i

Example (Example system with one state). We want to solve the following scalar ODE:

ẋ(t) = ax(t) + bu(t)

where a ∈ R. We set the initial value as x0 = 0 and use the constant control input u(t) = 1 for all time
t ∈ [0,∞). The solution is given by

x(t) = eatx0 +

∫ t

0

ea(t−τ)bu(τ)dτ

= 0 +

∫ t

0

ea(t−τ)bdτ

= eat
∫ t

0

e−aτ bdτ

= eat
[

b

(−a)
e−aτ

]t
0

= eat
b

(−a)
(e−at − 1)

=
b

(−a)
(1− eat).

We will encounter systems of this type frequently. Note that the term eat approaches zero with increasing
time t for a < 0, indicating that the system is stable, while it grows unbounded for a > 0, indicating that
the system is unstable. The behavior of this system is illustrated in Figure 2.3.

Figure 2.3: Simulation of the step response of the system ẋ = ax+ bu with initial condition x(0) = 0 and
control u(t) = 3. Top: for a = − 1

T (and b = 1
T 2 with T = 3), the system is stable. Bottom: for a = 1

T
(and b = 1

T 2), the system is unstable.

Linearizations along Trajectories

Many real world problems lead to nonlinear ODE. In this case, linearization is a powerful tool, which can be
applied in many cases, because most nonlinear systems near an equilibrium position can be described very

17

i
i

“main” — 2023/8/17 — 21:45 — page 18 — #19 i
i

i
i

i
i

well by linear systems. The idea is to consider the behavior of a system around a reference or steady-state
point by linearization of the ODE.

Example. As example we consider trajectory control of a satellite on an orbit

reference trajectory
real trajectory

local coordinate system
on reference trajectory

In absence of disturbances and with zero steering input, the satellite would fly on the orbit, denoted as solid
trajectory. By introduction of a local coordinate system, we only consider deviations from this reference
trajectory. The state value x = 0 would then describe a satellite flying on the reference trajectory. As devi-
ations are expected to be small compared to the overall trajectory, linearization of the spherical coordinate
system is an adequate modelling approach.

Other examples can be found in engineering for mechanical systems, which can be regarded as nearly
linear due to the small deviations, e.g., the oscillations and resonances occurring in every mechanical
construction, be it in vibrating bridges or buildings, in vibrating airplanes, cars, or transformers, or in
oscillating piezoelectric elements. In almost all cases, the displacement is so small that a linear system
analysis can describe the system accurately.
A nonlinear system ẋ = f(x, u) can be linearized using a first order Taylor expansion if one assumes that
the system state x(t) and the control u(t) differ only little from a stationary state. Let us denote this rest
position, which is called steady state, with xss and uss. xss and uss being a stationary state means that
ẋ = 0 must hold, i.e. 0 = f(xss, uss).
We define the differences as

δx(t) = x(t)− xss and δu(t) = u(t)− uss.

Because we consider the system in the neighborhood of the steady state, δx(t) and δu(t) can be assumed
to be small. The linearization of f(x, u) is given by the first-order Taylor expansion

f(x, u) ≈ f(xss, uss)︸ ︷︷ ︸
=0

+
∂f

∂x
(xss, uss) δx+

∂f

∂u
(xss, uss) δu.

Furthermore, since
d(xss + δx(t))

dt
=

dxss

dt︸︷︷︸
=0

+
d(δx(t))

dt
= δẋ(t)

the linearization of ẋ(t) = f(x(t), u(t)) yields the linear time invariant differential equation

δẋ(t) =
∂f

∂x
(xss, uss)︸ ︷︷ ︸
.
=A

δx(t) +
∂f

∂u
(xss, uss)︸ ︷︷ ︸
.
=B

δu(t). (2.24)

This equation has exactly the form of the LTI ODE (2.11).

Example. The pendulum is a nonlinear system whose equilibrium is at the states x1 = x2 = 0 (angle,
angular velocity) and control u = 0 (torque). Thee system equation are given by

f(x, u) =

[
x2

−mgL
I sinx1 +

1
I u

]

18

i
i

“main” — 2023/8/17 — 21:45 — page 19 — #20 i
i

i
i

i
i

By linearizing around the point xss = [0, 0]⊤ and uss = 0, we obtain the linear system describing the linear
behavior in the neighborhood of this equilibrium point:

A =

[
0 1

−mgL
I 0

]
und B =

[
0
1
I

]
.

To summarize, the following procedure can be applied for controller design around a stationary state

1. Set up general ODE.
2. Linearize system around equilibrium point.
3. Design controller.
4. Validate control design with general (nonlinear) ODE in numerical simulations.

This procedure can be applied to any nonlinear system near an equilibrium position. In control engineering,
we very often have to deal with small deviations, thus a linearized system approach is often sufficient. The
linearization is essentially an approximation of the nonlinear dynamics around the desired operating point.
This operating point does not need to be an equilibrium point. In fact, the goal of the control is usually to
keep the system exactly or as close as possible in a stationary state, also called set-point or reference, so
that the better the control performance, the better the assumption of linear system models is fulfilled. In
this regard, we create systems with linear input/output response through the use of feedback.
Linear time-varying systems occur as a linearization of nonlinear systems along highly varying trajectories.
Examples are the control of robot arm movements or in periodic processes such as the revolutions of a diesel
engine. The following linearization procedure can be used to approximately take into account the transient
nonlinear system behavior:

1. Obtain a new measurement or estimation for x(k).
2. Build one linear model around the measured or estimated value x(k).
3. Use this model for an LTI prediction over the entire prediction horizon.
4. Repeat this procedure in every sampling step

In each step, the operating point changes. Therefore, the equation has the form of a linear time-variant
ODE with a non-zero affine term f(xop, uop):

δẋ(t) =
∂f

∂x
(xop(t), uop(t))︸ ︷︷ ︸

.
=A(t)

δx(t) +
∂f

∂u
(xop(t), uop(t))︸ ︷︷ ︸

.
=B(t)

δu(t) + f(xop(t), uop(t))︸ ︷︷ ︸
.
=c(t)

. (2.25)

The main difference between LTI and LTV systems lies in the fact that in the LTV case, the matrices
that capture the system dynamics change at each time step. Consequently, the matrices A and B require
recalculation in every time step, whereas in the LTI scenario, they remain constant. It’s worth noting that
when computing the MPC control law, this difference leads to a nonlinear control law in the unconstrained
LTV case, which is in contrast to the linear control law for LTI systems.

19

i
i

“main” — 2023/8/17 — 21:45 — page 20 — #21 i
i

i
i

i
i

2.2 Modelling of renewable energy systems
Every model is always only a simplification of reality and there are always phenomena that are not covered
by the model. Therefore, when building a model, it’s essential to ensure that the model accurately repre-
sents the behavior or phenomenon that you want to analyze or predict. At this point, our examination of
renewable energy systems such as solar and building energy systems is focused on a higher-level under-
standing, emphasizing the main modeling concepts without delving into excessive detail of the underlying
physical properties.

2.2.1 Modelling the thermal behavior of buildings
We want to create a mathematical model of a building to simulate the thermal behavior of the building
depending on the heat losses to the colder environment and heat gains from the heating operation. As a
simplification, we consider only one room. The building’s thermal behavior can be modelled using energy
balance equations. The energy change in the building is determined by the sum of the incoming energy
flows and, with negative signs, outgoing energy flows from the building. As shown in Figure 2.4, the
incoming energy flow is given by the heat flow from the heating operation and the outgoing heat flow is
due to the heat losses through the walls and windows, i.e., through the entire building envelope. Solar heat
gains (due to sunlight) and internal heat gains (due to occupant behavior and electrical appliances) also
heat up the building and are summarized by Q̇gains. The model equation can be formulated as follows:

Figure 2.4: A simple building model with incoming and outgoing heat flows

dTroom

dt
· Cbldg = Q̇heat − Q̇loss + Q̇gain (2.26)

For now, we assume that there are no solar and internal heat gains. The energy change is the temporal
change in room temperature Troom multiplied by the thermal capacity of the building Cbldg. The thermal
capacity C = Cbldg (in J/K = Ws/K) indicates how much heat the building envelope can store per
temperature change of 1K. The heat losses are proportional to the temperature difference between the
indoor and outdoor temperatures Tamb:

Q̇loss = U · (Troom − Tamb) (2.27)

U-values, also known as transmission heat transfer or transmission heat loss coefficient, and sometimes
denotes by H, indicate the insulation effectiveness of the components that make up a building’s structure.
These values determine the degree to which heat can pass through the building’s exterior and interior. The
lower the U-value, the slower the transmission of heat, resulting in improved insulation performance. A
building with lower U-values requires less energy to maintain comfortable indoor conditions. Given in
W/K, it determines the heat flow that passes through the building envelope at a temperature difference of
1 K. The U-value of the entire building envelope is determined by the specific U-values of all components
multiplied by their respective surface areas, e.g., windows and walls (composed of various component
layers). Specific U-values (based on the component surface area) are given in W/(m

2
K) and usually range

from 0.7 (triple thermal insulation glazing) to 5 (single glazing) for windows. The smaller the value, the

20

i
i

“main” — 2023/8/17 — 21:45 — page 21 — #22 i
i

i
i

i
i

electrical circuit thermal network
C[F]: el. capacitance C[J/K]: therm. capacitance

∆U [V]: voltage difference ∆T [K]: Temperature difference
R[Ω]: el. resistance R[K/W]: therm. Resistance
I[A]: el. current Q̇[W = J/s]: heat flux
el. current source heat flow from outside

Table 2.2: Analogy of thermal moel to electrical RC-circuit

better the insulation. Note that the term ’U-value’ may refer to both the specific U-value and the overall
U-value, depending on the context. In this instance, we are considering the first variant of the U-value.
The U-value can also be replaced by the thermal resistance R = 1/U (in K/W), which is simply the
reciprocal of the U-value. The formulated model equation has the form:

dTroom

dt
= −U

C
· Troom +

U

C
· Tamb +

1

C
· Q̇heat = − 1

RC
· Troom +

1

RC
· Tamb +

1

C
· Q̇heat (2.28)

With this new form we can make an analogy to an electrical RC circuit consisting of a capacitor and an
electrical resistor. The electrical capacitance of the capacitor is replaced by the thermal capacitance and
the electrical resistance is replaced by the thermal resistance. The temperature differences correspond to
the voltage differences and the thermal currents correspond to the electric currents.
The simple thermal model can be represented by a first-order RC circuit (abbreviated 1R1C) as shown in
Figure 2.5.

Figure 2.5: First-order thermal RC network (1R1C) of the building model

This type of modeling is common in building energy engineering and is especially useful when we want
to refine the model so that, for example, the heat transfer through the different wall layers is also con-
sidered. Such a refined third-order RC model with additional nodes for the internal and external surface
temperatures (Tw and Tw,a) of the building envelope is given in Figure 2.6.

Figure 2.6: More complex building models as thermal RC networks (4R3C and 7R5C)

LTI system behavior We will now move on to analyze the dynamic behavior of the building model.
1.) First, we want to find out how the room temperature Troom changes with time, by solving the differential
equation (2.28). We make the simplifying assumptions that the initial room temperature is equal to 20◦C,
the ambient temperature is constant 0◦C, and the heating is off. The assumptions are thus

- Q̇heat = 0W: no heat flow from the heat generator
- Troom,0 = 20◦C: initial room temperature
- Tamb = 0◦C: constant ambient temperature

21

i
i

“main” — 2023/8/17 — 21:45 — page 22 — #23 i
i

i
i

i
i

With the simplification, this now has the form

dTroom

dt
= − 1

RC
· Troom +

1

RC
· Tamb (2.29)

and corresponds to a linear time-invariant differential equation with state variables x(t) = Troom(t) and
external given influences u(t) = Tamb(t).

Note: If the external influence variable Tamb(t) is not defined as a kind of control variable u(t), then this
equation can also be conceived as a time-varying differential equation in which the model equation changes
with time due to a varying Tamb(t).
To be able to apply the solution formula for time-invariant, linear differential equations we stay with the
first form. The unique solution for a LTI differential equation

ẋ(t) = ax(t) + bu(t) (2.30)

with t0 = 0 and initial value x(0) = x0 is

x(t) = eatx0 +

∫ t

0

ea(t−τ)︸ ︷︷ ︸
eat − eaτ

·b u(τ)︸︷︷︸
uconst

dτ

= eatx0 + b · eat · uconst

∫ t

0

e−aτdτ︸ ︷︷ ︸
− 1

a e−aτ

∣∣t
0
=− 1

a e−at+ 1
a ·1

= eatx0 +
b

a
· uconst(e

at − 1).

(2.31)

Here we assumed that u(t) = uconst is constant over [0, tf]. Plugged into our original equation (with
a = − 1

RC and b = 1
RC) we get for room temperature the solution trajectory

Troom = e−
1

RC t · Troom,0 +
1

RC
· e− 1

RC t · Tamb,const[RC · e 1
RC t −RC]

= e−
1

RC t · Troom,0 + Tamb,const[1− e−
1

RC t].

(2.32)

With TUconst
= 0◦C and initial value Troom,0 = 20◦C we obtain

Troom(t) = e−
1

RC t · 20◦C. (2.33)

After a time of t = RC = T , the room temperature has cooled from 20◦C to about 7◦C:

Troom(T) = e−1 · 20◦C ≈ 1

2.7
· 20◦C ≈ 7◦C.

On the other hand, if the ambient temperature is TU = 5◦C instead of 0◦C, the room temperature will turn

Figure 2.7: Time response of building cooling to heating failure for Tamb = 0◦C and Tamb = 5◦C

out to be higher after a time of T :

Troom(T) = e−1 · 20◦C+ 5◦C · (1− e−1) ≈ 10◦C.

22

i
i

“main” — 2023/8/17 — 21:45 — page 23 — #24 i
i

i
i

i
i

The behavior is equal a 1st order delay element, also called PT1 element, or low-pass filter in electrical
circuit terms. Due to the thermal inertia of the building, the room temperature reacts with a delayed
temperature drop to a heating failure. The term T = RC is called the time constant of the system. The
time constant can be used to classify the thermal behavior of our simple building model, i.e., each building
has a specific time constant. For example, an energy efficient new building may have a long time constant
of T = 3 days, whereas an older existing building with thin walls and windows may only have a time
constant of T = 0.5 days.
2.) The next question we are interested in is how much heat must be added to the building to maintain a
desired set point temperature. For example, if we want to maintain a setpoint temperature of Tsetpoint =

20◦C, what is the heat input Q̇heat? To answer this question, we look for a steady state equilibrium
characterized by dTroom

dt = 0. Plugged into the equation (2.26), we get

dTroom

dt
· Cbldg = 0 = Q̇heat − Q̇loss

⇔ Q̇heat = Q̇loss =
1

R
· (Troom − Tamb).

(2.34)

This can be used to calculate how much heating energy must be supplied to the building to maintain a
constant temperature, i.e., to balance the losses. Let us consider a simple example of a poorly insulated
building with parameters R = 2.5 K

kW and C = 5kWh
K . The heating power required to maintain the room

temperature at 20◦C for a given ambient temperature of 0◦C is equivalent to

Q̇heating,stat =
1

2.5 K
kW

(20◦C− 0◦C) = 8kW.

3.) The same methods used in the previous section can be used to analyze the effect of a constant heating
power on the room temperature. For the building just considered, a constant heating power of 8kW is
needed to achieve (or nearly achieve) and maintain a costant room temperature of 20◦C at an ambient
temperature of 0◦C. The time constant for the building is T = RC = 12.5h. If the initial temperature from
the building is now equal to 0◦C, it will have reached a room temperature of 2.5K/kW ·8kW ·(1−e−1) ≈
14◦C after T = RC = 12.5h at a constant heating power of Q̇heat,stat = 8kW. The calculation is
analogous to the previous calculation.

Figure 2.8: Step response for heating process example building

Heat distribution system We distinguish between air- and water-based heat distribution systems. Air-
based heating systems such as air-to-air heat pumps (AA-HP), provide space heating by delivering heated
air using air handling units (AHU) within specific rooms, or around a home through a series of ducts. Water-
based heating systems auch as air-to-water heat pumps are paired with indoor central heating systems using
water as a heat-transfer medium and are usually coupled with equipment such as radiators and underfloor
heating. Water-based cooling may also be coupled with fan coils.
For water-based heating, we need to additionally model the hydronic system because the heat ist transfered
from the water via the radiant surface to the room, resulting in a lower return temperature to the heater.
In a water-based system, we also consider the return temperature through the radiator back to the heat pump
as a state. The resulting state vector is

x(t) = [Troom, Thp,ret]

23

i
i

“main” — 2023/8/17 — 21:45 — page 24 — #25 i
i

i
i

i
i

Figure 2.9: Building model illustration (states are zone temperature, wall temperature and heating water
temperature)

The following building attributes have to be set, see Table 2.3 for a definition: Hve,tr, Hrad,con, Cbldg, Cwater

The control variable is usually the supply temperature of the heat pump Thp,sup, but can also be heat pump
power or compressor frequency or something else. The resulting ODE system is as follows:

Ṫroom = 1/Cbldg · (Q̇gain +Hrad,con · (Thp,ret − Troom)−Hve,tr · (Troom − Tamb))

Ṫhp,ret = 1/Cwater · (ṁhp · cp,water · (Thp,sup − Thp,ret)−Hrad,con · (Thp,ret − Troom))

Heat transfer coefficients for ventilation and transmission [W/K] Hve,tr = Hve +Htr

Heat transfer coefficients for ventilation (indoors → ambient) [W/K] Hve

Heat transfer coefficients for transmission (indoors → ambient) [W/K] Htr

Heat transfer coefficients for radiation and convection (hvac → indoors) [W/K] Hrad,con

Heat capacity of entire building [J/K] Cbldg = Cwall + Czone

Heat capacity of wall [J/K] Cwall

Heat capacity of thermal zone [J/K] Czone = Cair + Cint

Heat capacity of indoor air [J/K] Cair

Heat capacity of the interior [J/K] Cint

Heat capacity of the water in the hvac system [J/K] Cwater

Table 2.3: Parameters for the building model (hvac refers to heating, cooling, air-conditioning and ventila-
tion)

Control task Different control tasks are:
- Reference tracking: Keep room temperature close to the set-point temperature despite disturbances

such as heat loss to the ambient and heat gains due to people behavior and solar irradiations. Predic-
tions about disturbances can used.

- Additionally minimize an ”economic” cost function (e.g., energy cost)
- Demand responsive heating and cooling operation (e.g., load shifting, peak shaving (load shedding)),

see Figure 2.10

2.2.2 Modelling of heat pumps
This section is based on the excellent dissertation of Wimmer about MPC for heat pumps (in German) [13].
A heat pump uses mechanical energy to transport heat energy from a lower to a higher temperature level.
This process can be idealized by a Carnot process (see left figure in Figure 2.11). From a fluid - the so-
called working fluid - the heat flow Q̇1 is absorbed at the temperature T1. An isentropic temperature change

24

i
i

“main” — 2023/8/17 — 21:45 — page 25 — #26 i
i

i
i

i
i

Figure 2.10: Building flexibility load curves. The grey curve represents an example baseline residential
building load and the colored curves show the resulting building load. Source: “Grid-interactive Effi-
cient Buildings: Overview of Research Challenges and Gaps,” US Department of Energy, December 2019,
https://www1.eere.energy.gov/buildings/pdfs/75470.pdf

Figure 2.11: Ideal carnot process (left) and real thermodynamic cycle of heat pump (right) [13]

heats the fluid to the temperature T2, at which the heat flow Q̇2 is released. Via a second isentropic change
of state, cooling down to the original temperature T1 takes place. The mechanical power for this process is
given by the circular integral from the circular integral

Pmech = −
∮

TdS. (2.35)

A schematic representation of a heat pump is shown in Figure 2.12. The ideal carnot process and the real
heat pump cycle process are shown in Figure 2.11.
In the evaporator, at evaporating temperature T1, heat flow Q̇1 flows from the heat source to the working
fluid (1� 2). As a result, the working fluid is evaporated. To avoid damage to the very high compression
compressor, the working fluid must be superheated so that it no longer contains liquid components (2
� 3). Compression in the compressor further heats the gaseous working fluid (3 � 4). Due to friction
losses and engine waste heat, the process is no longer isentropic. In the condenser, the gas is cooled to
condensation temperature T1 (4 � 5) and condenses releasing heat flow Q̇2 (5 � 6). In the expansion
valve, the fluid is expanded, the fluid is brought back to the initial temperature T1 (6� 1). For a heat pump
to work efficiently, it should use as little mechanical power as possible for the delivered thermal power Q̇2.
The ratio of Q̇2 to Pmech is called COP (coefficient of performance). For the reversible Carnot process a

25

https://www1.eere.energy.gov/buildings/pdfs/75470.pdf

i
i

“main” — 2023/8/17 — 21:45 — page 26 — #27 i
i

i
i

i
i

Figure 2.12: Schematic demonstration of a heat pump [13].

theoretical COP of

COPth =
Q̇2

Pmech
=

T2

T2 − T1
(2.36)

is possible. However, real heat pumps do not operate loss-free. The achievable COP of a heat pump is
therefore smaller than the theoretical value by the exergetic efficiency ηWP: COP = ηWPCOPth. Modern
air-to-water heat pumps achieve an efficiency of about 0.45. Often the dependence of the COP on the source
and sink temperature (T1, resp. T2 in Equation (2.36)) is approximated by a second-ordner polynomial.

Example. The COP of a heat pump depends on the source and sink temperature (T1, resp. T2 in Equation
(2.36)). Assuming a sink temperature of 308 K (35 ◦C) for T2 and an outside air temperature of 273 K (0
◦C) for T1, the maximum theoretical COP would be COPth = 308/35 = 8.8 and a realistic COP would be
COP = 0.45 · 8.8 ≈ 4. In a building with poor insulation, T2 = 328K (55 ◦C) might be needed, resulting
in a lower COPth ≈ 6 and COP = 2.7.

2.2.3 Solar thermal collector model
Solar thermal collectors (STC) absorb the radiation of sunlight, which leads to an increase in the internal
energy of the heat transfer fluid. Most commonly, they are used in buildings to generate hot water for space
heating or domestic hot water. In countries with a lot of sunlight, there exist also large solar power plants
generating electricity from the produced heat.
See Figure 2.13 for an illustration of a flat-plate collector, the most simple STC type. For ontrol purposes,
we will not consider a model of so much detail. The most important operating principle is that when
sunlight strikes the absorber plate, it heats up and transfers this thermal energy to a fluid (usually water or
a similar heat transfer fluid) that flows through the collector’s tubing. The heated fluid can then be used
directly for domestic hot water or space heating. For use within buildings, a hot water tank is often used to
store the produced hot water for use as needed.

26

i
i

“main” — 2023/8/17 — 21:45 — page 27 — #28 i
i

i
i

i
i

Figure 2.13: Typical flat plate collector

Figure 2.14: Hydraulic scheme of solar thermal collector consisting of collector-heat exchanger cycle (left)
and heat exchanger-storage cycle (right). An internal rule-based controller regulates the pumps.

Figure 2.14 shows the hydraulic scheme of solar thermal collector coupled to a hot water tank via a heat
exchanger. There are two circuits, which often contain different fluids: the collector circuit connected to
the solar thermal collector (water with anti-freeze solution, e.g. water-glycol mix) and the solar circuit
connected to the hot water tank (water).
The mass flow rates in both circuits are regulated by pumps controlled by low-level controllers. The pumps
adjust the mass flows such that the temperature in the collector cycle does not become too high (in order to
avoid evaporation) and the produced thermal heat is maximized.
The system model consists of two parts: the model of the STC and the model of the heat distribution system
connecting the collector to the hot water storage tank.

27

i
i

“main” — 2023/8/17 — 21:45 — page 28 — #29 i
i

i
i

i
i

Solar Collector Model

The steady-state behavior of a flat plate solar collector can be easily described using its efficiency, which
can be quite well expressed as a 2nd-order polynomial, as follows

η = α0 − α1
Tcol,out − Tamb

Gtot
− α2

(Tcol,out − Tamb)
2

Gtot
(2.37)

Here α0, α1, α2 denote parameters which are dependent on the optical performances as well as the heat
loss properties of the solar collector field. They can usually found on the manufacturer’s data sheets of the
STC. Gtot represents the total specific energy gain by radiation and can be calculated as a function of the
diffusive and the beam solar radiation. Tamb denotes the ambient temperature. The used parameters of the
flat plate collector are shown in Table 2.4.

α0 α1 [W/m2/K] α2 [W/m2/K2]
0.81 3.869 0.014

Table 2.4: Parameters for an example flat plate collector. Determined from tests according to DIN EN
12975.

By knowing the total aperture area Ac of the solar collector field and using the solar collector efficiency,
the total heat gain Q̇col of the heat transfer fluid along the solar collector field can be calculated according
to the following equation.

Q̇col = ηAcGtot (2.38)

In order to obtain the information about the transient behavior of the outlet temperature Tcol,in of the solar
collector panel which is the inlet temperature of the solar circuit of the heat exchanger, we apply the energy
balance at the level of the absorber plate:

d

dt
Tcol,out =

1

CSTC

(
Q̇col − ṁcolcw,g (Tcol,out − Tcol,in)

)
(2.39)

using CSTC as the lumped heat capacity of the solar collector panel. The specific heat capacities of the
heating mediums can be found in Table 2.5. Q̇col is taken from Equation 2.38 whereas the collector
efficiency is provided by Equation 2.37.
The heat flow produced by the solar collector and entering the storage tank is computed as follows:

Q̇sto(t) = ṁsto(t)cw(Tsto,in(t)− Tsto,out(t)). (2.40)

Heat Exchanger Model

The STC is usually connected to the storage tank via a heat exchanger (more precicely, a counter current
flow plate heat exchanger). Instead of modelling the precice heat transfer behavior with a PDE, we use a
lumped model with two discretization units resulting in a second order system for the heat exchanger dy-
namics. The heat exchanger model represents the dynamic behavior taking into account the nonlinearities
arising from the heat transfer due to the mass flow rates as well as the temperature states. The following
assumptions are made prior to the modeling of the system components:

• The medium considered for heating is incompressible.
• The medium density as well as its viscosity are considered constant.
• The thermal inertia of the medium in the pipes is neglected.
• There is no heat loss to the ambient.

The heat exchanger dynamics can be described with the following equations representing the energy flow
inside the heat exchanger (energy balances):

28

i
i

“main” — 2023/8/17 — 21:45 — page 29 — #30 i
i

i
i

i
i

d

dt
Tcol,in =

1

mhx,colcw,g
(ṁcolcw,g (Tcol,out − Tcol,in) −UhxAhx∆Thx,mean)

d

dt
Tsto,in =

1

mhx,stocw
(−ṁstocw (Tsto,in − Tsto,out) +UhxAhx∆Thx,mean)

∆Tmean corresponds to the logarithmic mean

∆Thx,mean =
(Tcol,out − Tsto,in)− (Tcol,in − Tsto,out)

ln
Tcol,out−Tsto,in

Tcol,in−Tsto,out

and is approximates by the algebraic mean temperature difference in the heat exchanger (to avoid the
resulting nonlinearities)

∆Thx,mean =
1

2
(Tcol,out − Tsto,in) +

1

2
(Tcol,in − Tsto,out)

The last term in both equationd refers to the transfer of heat between the hot and the cold lumps.

Specific heat capacity water cw = 4.18kJ/kgK
Specific heat capacity water glycol (anti-freeze liquid) cw,g = 3.7kJ/kgK
Heat exchanger surface Ahx = 4m2

Specific heat transfer coefficient Uhx = 3150.0W/m2K
Mass heat exchanger material mhx,sto = 3.8kg
Mass heat exchanger material mhx,col = 3.8kg
Lumped heat capacity of the solar collectors including the contained medium CSTC = 2.6MJ/K

Table 2.5: Parameters for the heat exchanger

Total Solar Thermal System Model

For the subsequent controller design the overall model is given using state-space formulation:

ẋ = f(x, u)

y = g(x)

with the state vector x = [Tcol,in, Tcol,out, Tsto,in] and the output vector y = [Tcol,in, Tsto,in] as well as the
input u = [ṁcol, ṁsto] with the following model equations:

 d
dtTcol,in
d
dtTsto,in
d
dtTcol,out

 =


1

mhx,colcw,g
(ṁcolcw,g (Tcol,out − Tcol,in)− UhxAhx∆Thx,mean)

1
mhx,stocw

(−ṁstocw (Tsto,in − Tsto,out) + UhxAhx∆Thx,mean)
1

CSTC
(Ac (α0Gtot − α1 (Tcol,out − Tamb)

−α2 (Tcol,out − Tamb)
2
)
−ṁcolcw,g (Tcol,out − Tcol,in))

 .

p(t) = [Tamb, Gtot, Tsto,out] can be considered as external disturbances. Note that the system is nonlinear
but can be expressed as a control-affine system:

ẋ = f0(x) + f1(x)u

y = g(x)

This makes a linearization approach easier (e.g., around a reference point of Tcol,in and Tsto,in).
If the STC is integrated into a broader building energy system or heating network, as depicted in Fig-
ure 2.15, it may be justifiable to omit the heat exchanger dynamics from the model. In this context,
the complexities and interactions within the larger system may render the specific details of the heat ex-
changer less significant. Instead a rough estimation of the temperature offset can be used: Tsto,in =
Tcol,out −∆Thx,offset, Tcol,in = Tsto,out +∆Thx,offset.

29

i
i

“main” — 2023/8/17 — 21:45 — page 30 — #31 i
i

i
i

i
i

Central Plant

Household

Network

Storage

Heating

load

Figure 2.15: Prosumer-based heating network with building-level solar collectors connected to storage
tanks

Control task

Different control tasks are:
• Control ṁsto and ṁcol such that the heat exchanger outlet temperature Tcol,in and/or Tsto,in follow a

reference
• Control ṁsto and ṁcol such that the produced thermal energy is maximized (i.e. thermal losses are

minimized)
• Keep Tsto,in, the temperature entering the STC system low (better efficiency due to smaller thermal

losses)

2.2.4 Modelling of thermal energy networks
We now move from the building level to consider district heating networks, which supply a large number
of consumers with heat. A district heating network consisting of several heat consumers (e.g. buildings or
quarters consisting of several buildings) and one or more heat generators is given in Figure 2.16. Traditional
district heating networks contain one central heat provider (and possibly several peak load boilers). In this
case, each building independently controls its heat inflow and the central heat generator adjusts the heating
operation to the total heat consumption in the heat network.

Figure 2.16: Heat grid with two heat producers

With multiple generators, the control is more complicated and must be done by a higher level production
planning control algorithm taking into account various factors (energy prices, electricity prices, weather,...).
District Heating Networks typically comprise a network of pipes responsible for distributing heat in the
form of hot water or steam, from the source of generation to the end-users. The supply pipe delivers hot

30

i
i

“main” — 2023/8/17 — 21:45 — page 31 — #32 i
i

i
i

i
i

water to the users, while the return pipe transfers the cold return water back. The hydraulic modelling of
a heating network comprises pressure and mass flow rates in the pipes (or flow velocity), and the thermal
model comprises supply and return temperatures and heat power at supply and load nodes.
The temperature dynamics in the district heating grid can be modeled using a physical pipe model based
on advection transport (movement of fluid by velocity) with a one-dimensional partial differential equation
(1D-PDE). A delay differential equation approach describing the time delay of heated fluid is also possible.
However, the computational intensity of these models can be high and they are not suitable for control of the
complete district heating system. Therefore, we apply a steady state modelling approach. Each component
of the pipe (e.g. fluid, but also pipe, insulation, etc.) is assigned a mass whose temperature is equal to
the average temperature of that component over the length of the pipe. As a simplification we consider
only incoming and outgoing thermal power flows at the network nodes. Additionally, we neglect pressure
loss due to pipe friction or other resistances like valves, bends and joints. Otherwise a nonlinear equation
describing the pressure change would have to be considered.
By continuity of flow (analogues to network Kirchhoff’s current law in electrical networks) we obtain the
following rule: the power flow that enters into a node is equal to the power flow that leaves the node (which
includes also the power consumption at the node), i.e.(∑

Pin

)
−
(∑

Pout

)
= 0. (2.41)

Using a nodal-branch incidence matrix Ah where Pwv denotes the power flow of pipe w− v between node
w and v, Ps,i is the power flow injected from the heat sources and Pl,j is the power flow discharged to the
heat load, we obtain the following system description.

∑
w

AhPwv +
∑
s,i∈w

Ps,i −
∑
l,j∈w

Pl,j = 0 (2.42)

Figure 2.17: Simplified version of the district heating grid in Weil am Rhein with three heat producers and
two cumulated heat consumers (think of small residential areas). The network contains five nodes and a
loop.

Control tasks

Different control task arise in network production planning. For instance, if we consider a simplified
version of the district heating grid in Weil am Rhein, see 2.17, the question is how to optimally operate heat
producers (CHP vs. Biomass, auxiliary boilers) depending on environmental conditions (energy prices,
electricity self-coverage) while ensuring that also buildings at the network edges get enough heat? If
auxiliary boilers are needed, they may only be turned on once a day.

31

i
i

“main” — 2023/8/17 — 21:45 — page 32 — #33 i
i

i
i

i
i

Multi-energy systems

An extension, which we do not consider further, is to move from the heating network level to consider
so-called multi-energy systems, which supply a large number of consumers with electricity, heat and some-
times gas. Such a system involves the integration of an electrical system, a heat system, and sometime a
gas network, and coupling units. The three networks are interconnected through the use of combined heat
and power (CHP) units and electric boilers. These integrated networks are often found in the context of
small regional energy clusters and self-contained island networks. With coordinated planning and schedul-
ing, this multi-energy system can boost energy supply efficiency by leveraging the complementarity of
different energy sources.

2.2.5 Wind energy systems modeling
In this course, we consider modern, variable-speed, horizontal-axis wind turbines. These wind turbines are
large, heavy and flexible machines, with dynamics governed by intricate aero-elastic interactions between
the turbine rotor blades and the wind stream. Therefore, accurate models of wind turbine dynamics usually
require extensive aero-elastic simulations, which are computationally intensive. However, when we need
to construct control-oriented models, we aim to represent only the most critical and fundamental dynamic
behaviors to obtain a feasible model for computation, while disregarding unnecessary details.
Fig. 2.18 depicts a block diagram of a control-oriented wind turbine model that considers only the highest
level control inputs and controlled outputs. The control inputs are the torque TG applied to the generator
and the collective pitch rate θ̇ of the rotor blades. While many different types of measurements are available,
typically only two outputs are directly relevant for control. The first output is the electrical power output
Pel. The second output to be influenced is the acceleration of the turbine tower top ẍt. The tower top
motion is caused by the large aerodynamic thrust force exerted on the rotor, combined with the large lever
arm of the tower. Minimizing the tower oscillation amplitude is an important control goal in order to
reduce fatigue, and increase the life time of the turbine or reduce costs. Finally, the wind speed vw is an
uncontrolled input to the system, which is therefore modeled as a disturbance.

Wind Turbine
Pitch rate: θ̇

Generator torque: TG

Tower top acceleration: ẍt

Electrical power: Pel

Wind speed: vw

Figure 2.18: Block diagram of a control-oriented variable-speed wind turbine model with two inputs, two
outputs and one disturbance (the wind speed).

The wind turbine model consists of three submodels, as depicted in the schematic diagram in Fig. 2.19:

1. Aerodynamics: The aerodynamics model is needed to compute the aerodynamic thrust force FA

and torque TA generated on the rotor as a function of the pitch angle θ of the rotor blades, the
rotor angular speed ωR and the relative wind speed vrel. This relative wind speed is the wind speed
perceived by an observer fixed to the rotor. The rotor moves in the wind speed direction with the
tower top speed ẋt, so that vrel = vw− ẋt. The tower top speed is an output of the rotor-tower model,
and the rotor speed ωR is an output of the drive train model.

2. Drive train: The drive train dynamics model the transfer of mechanical power from the rotor blades
to the generator. This transfer does not occur instantaneously because of the elasticity of the rotor
blades which cannot be neglected. Thus, the drive train receives as inputs the aerodynamic torque
TA on the rotor side and the generator torque TG on the generator side. These inputs then determine
the rotor speed ωR and the electrical power output Pel.

3. Rotor-tower dynamics: The rotor-tower dynamics model the bending of the tower and the rotor
blades in the wind direction as a function of the aerodynamic thrust force FA. This bending results
in a displacement xt of the turbine tower top in the wind direction.

32

i
i

“main” — 2023/8/17 — 21:45 — page 33 — #34 i
i

i
i

i
i

Aerodynamics Rotor-tower

Drive train

θ̇

TG Pel

ẍt

−

vw

θ FA

TAωR

ẋt

vrel

Figure 2.19: Block diagram of the wind turbine model with the three submodels and mutual dependencies.

In the following paragraphs, we will discuss each of these submodels in detail.

Aerodynamics The aerodynamic force FA and torque TA are implicitly determined by a force equilib-
rium equation. One the one hand, there are the aerodynamic forces generated by the rotor blades as a
function of the pitch angle θ and the “tip-speed-ratio” (TSR) λ, which is defined as the ratio between the
tip speed of the rotor blades and the relative wind speed vrel:

λ =
ωRR

vrel
, (2.43)

with R the rotor radius. On the other hand, there is the change in wind speed, which is slowed down in
front of the rotor as a result of the aerodynamic forces pointing in its direction. This wind speed reduction
then again affects the aerodynamic forces that can be generated by the rotor blades.
This equilibrium can be modeled using momentum conservation equations, as done e.g. in Blade Element
Momentum (BEM) theory, which typically results in a nonlinear and implicit mapping between θ, ωR, vrel
and FA and TA. This means that instead of an explicit expression for FA and TA, an implicit system of
equations is formulated, that needs to be solved numerically for given values θ, ωR, vrel. This model is also
static, i.e. it has no internal states, since it assumes that the change in aerodynamic equilibrium happens at
a sufficiently fast time-scale.
The model can be summarized by

FA =
1

2
ρπR2v2relCF(θ, λ) (2.44)

PA =
1

2
ρπR2v3relCP(θ, λ) (2.45)

TA = PAω
−1
R , (2.46)

with ρ the air density and PA the aerodynamic power extracted from the wind by the rotor. Computing
the force and power coefficients CF(θ, λ) and CP(θ, λ) then requires the solution of a large set of implicit
equations.
Applying this implicit model for embedded optimization is impractical and computationally too expensive.
Therefore, the implicit model is solved offline for a grid of values of θ and λ within the relevant operational
range. The force and power coefficients CF(θ, λ) and CP(θ, λ) are then provided as differentiable functions
by means of polynomial approximations or by linear or splines-based interpolation of the computed data
points.

2Wintermeyer-Kallen, T. et al., Weight-scheduling for linear time-variant model predictive wind turbine control toward field
testing, Forschung im Ingenieurwesen, Vol. 85, pages 385-394 (2021)

33

i
i

“main” — 2023/8/17 — 21:45 — page 34 — #35 i
i

i
i

i
i

Figure 2.20: Example of a wind turbine power coefficient CP(θ, λ) (left) and thrust coefficient CF(θ, λ)
(right), evaluated on a θ-λ-grid2.

Fig. 2.20 shows an example of a power coefficient CP and thrust coefficient CF evaluated on a θ-λ-grid.
The power coefficient reaches a maximum value at the location (θ∗, λ∗), with CP,max = CP(θ

∗, λ∗) and
θ∗ = 0◦. The power coefficient can be interpreted as the fraction of the kinetic energy in the unperturbed
wind speed vrel that would flow through the entire rotor area, that is harvested by the rotor. It is important
to note that there is a theoretical limit to the maximum power coefficient value, known as “Betz’ limit”.
This limit states that a horizontal-axis rotor can harvest at most a factor 16/27 ≈ 59% of the kinetic energy
in the wind.
This can be understood intuitively by considering the purely hypothetical and unphysical case where 100%
of the kinetic energy is extracted from the wind by the rotor. In this case, the wind speed directly behind
the wind turbine would be zero, and no wind would pass through the rotor, so that no power is extracted at
all. Therefore, the maximum power coefficient is the result of a trade-off between extracting kinetic energy
from the wind, without slowing down the wind too much. Precisely this trade-off is modeled with the BEM
method used to produce the power coefficient data in Fig. 2.20.
To get a deeper understanding, it is instructive to examine a cross section of the power and force coefficient
in Fig. 2.20 for θ∗ = 0. For λ < λ∗, it holds that CF(θ

∗, λ) < CF(θ
∗, λ∗), meaning that the thrust force

is lower than at the optimal operating point. Thus, for these values of λ, the rotor could rotate faster and
apply more force to the wind to extract more energy and obtain a higher power coefficient. For λ > λ∗

on the other hand, it holds that CF(θ
∗, λ) > CF(θ

∗, λ∗). Thus, by rotating faster than the optimal speed,
a larger thrust force can be generated than in the optimal point. However, in this case, the corresponding
decrease in wind speed at the rotor results in an overall decrease in power coefficient.
The main function of the variable pitch angle θ of the rotor blades is to give control authority over the wind
turbine for wind speeds that do not allow for operation at the optimal TSR λ∗. To understand how and why
this occurs, we have to first identify the different operating regions of a wind turbine as a function of the
wind speed, as depicted in Fig. 2.21. We discern six different operating regions:

• Region I: (low wind/idle). For very low wind speeds, the turbine is idling with zero speed, which is
enforced by a brake.

• Region IIA: (minimum rotor speed). Above the so-called “cut-in” wind speed, the turbine starts to
operate. However, in order to avoid the low resonance frequencies of the tower construction, the
rotor must rotate at a certain minimal speed ωR,min. Therefore, directly above the cut-in wind speed,
the turbine is forced to rotate at a sub-optimal TSR λ =

ωR,minR
vw

> λ∗. Therefore, a fine pitch
θ > θ∗ is applied to maximize CP(θ, λ) for the imposed TSR λ.

• Region IIB: (subrated regime). At some point the wind speed vw reaches a value that yields the
optimal TSR λ∗ with the minimal rotor speed. From there on, the rotor speed ωR increases linearly

34

i
i

“main” — 2023/8/17 — 21:45 — page 35 — #36 i
i

i
i

i
i

θ
ωR

Pel

TG

Figure 2.21: Operating regions of a variable-speed wind turbine as a function of wind speed.

with the wind speed to maintain λ∗ and maximize CP and thus maximize energy capture. The pitch
angle is constant and set to θ∗ = 0◦.

• Region IIC: (maximum rotor speed). When the maximum rotor speed ωR,max is reached, the TSR

is again imposed by the wind speed, now to a value λ =
ωR,maxR

vw
< λ∗. However, in this region, the

generator torque can still be increased and therefore again a fine pitch angle θ is applied to maximize
CP for the imposed TSR.

• Region III: (rated regime) In this region, the generator is operating at maximum speed and torque.
However, the aerodynamic power captured by the turbine still grows ∼ v3w and hence needs to be
capped to satisfy these constraints. This is done by increasing the pitch angle of the rotor blades so
as to reduce the “angle-of-attack” of the blades, which results in lower thrust and power coefficients.

• Region IV: (shutdown) At very high wind speeds the structural integrity of the wind turbine cannot
be safeguarded anymore. Once the cut-off speed is reached, the turbine is shut down to zero rotor
speed. The pitch angle of the blade is chosen so as to minimize the aerodynamic forces on the
non-rotating rotor blades.

Drive train The drive train submodel takes into account the inertia and elasticity of the rotating blades
around the axis of rotation, as well as the combined inertia of all drive train components, including the
rotor hub, gear box and main generator shaft. This model accounts for the lowest eigenfrequency of drive
train oscillations. It is modeled as linear, two-mass torsional spring-damper system as shown in Fig. 2.22.

IR IG

kRG

cRG

TA TG

Figure 2.22: Two-mass torsional spring-damper system model of the wind turbine drive train dynamics.

35

i
i

“main” — 2023/8/17 — 21:45 — page 36 — #37 i
i

i
i

i
i

The dynamic equations are given by

IRω̇R = −cRG∆φ̇RG − kRG∆φRG + TA (2.47)
IGω̇G = cRG∆φ̇RG + kRG∆φRG + TG (2.48)
∆φ̇RG = ωR − ωG , (2.49)

with IR the moment of inertia of the rotor blades and IG the moment of inertia of the generator, gear box
and rotor hub. The angle ∆φRG is the angular displacement of the rotor blades relative to the rotor hub.
The generator angular speed is given by ωG. Note that the quantities ωG, TG, and thus also IG, are defined
on the “rotor side” of the gear box, so that the gear ratio of the gear box is taken into account implicitly.
The parameters kRG and cRG are the spring and damper coefficients respectively.
The drive train model thus has three states xdt := (ωR, ωG,∆φRG) and two inputs udt := (TA, TG) and is
summarized by the LTI dynamics

ẋdt = Adtxdt +Bdtudt . (2.50)

It is left as an exercise for the reader to formulate the system matrix Adt and control matrix Bdt.
The output of the drive train model is the electrical power Pel = TGωG.

Rotor-tower The rotor-tower dynamics are modeled as an LTI system

ẋrt = Artxrt +Brturt , (2.51)

with states xrt := (xt, ẋt, ϕb, ϕ̇b) and input ut := (FA). The variable ϕb represents the collective flap-
wise bending angle of the rotor blades. For a derivation of system matrices Art and Brt, we refer to [6].
Fig. 2.23 gives a schematic overview of the model.

Figure 2.23: Rotor-tower system [6].

Summary The overall system model can be summarized as a nonlinear ODE and an output equation:

ẋ(t) = f(x(t), u(t), w(t)) (2.52)
y(t) = g(x(t), u(t)) (2.53)

with the nonlinearity arising in the static aerodynamic model, which depends on the state variables of the
remaining sub-models. The state x ∈ R8, controls u ∈ R2, disturbance w ∈ R and outputs y ∈ R2 are
defined as

x := (θ, ωR, ωG,∆φRG, xt, ẋt, ϕb, ϕ̇b) (2.54)

u := (θ̇, TG) (2.55)
w := (vw) (2.56)
y := (ẍt, Pel) . (2.57)

36

i
i

“main” — 2023/8/17 — 21:45 — page 37 — #38 i
i

i
i

i
i

Chapter 3

Background on Optimization

The main principle behind MPC involves solving an optimization problem in real-time, tailored to reflect
the control algorithm’s objectives. This chapter covers various classifications of optimization problems
and introduces the concept of convexity. Moreover, it examines the optimality conditions for nonlinear
programs.

3.1 Definition of an Optimization Problem
Mathematical optimization refers to finding the best, or optimal solution among a set of possible decisions,
where optimality is defined with the help of an objective function. Some solution candidates are feasible,
others not, and it is assumed that feasibility of a solution candidate can be checked by evaluation of some
constraint functions that need for example be equal to zero.
The most universal formulation of an optimization problem is that of a nonlinear optimization problem.
They are also at the heart of nonlinear MPC. Traditionally, the field of nonlinear optimization is called
Nonlinear Programming (similar to linear programming, mixed-integer programming, ...) because they
were solved with the help of computer programs. The general form of a Nonlinear Programming Problem
(NLP) is given by

minimize
x ∈ Rn

f(x) (3.1a)

subject to g(x) = 0, (3.1b)
h(x) ≤ 0, (3.1c)

where f : Rn → R, g : Rn → Rng , h : Rn → Rnh , are assumed to be continuously differentiable at
least once, often twice and sometimes more. Differentiability of all problem functions allows us to use
algorithms that are based on derivatives, in particular the so called “Newton-type optimization methods”
which are the basis of many numerical optimization algorithms.

Example (A two dimensional example).

minimize
x ∈ R2

x2
1 + x2

2 (3.2)

subject to x2 − 1− x2
1 ≥ 0, (3.3)

x1 − 1 ≥ 0. (3.4)

Definitions
Let us start by making a few definitions to clarify the language.

37

i
i

“main” — 2023/8/17 — 21:45 — page 38 — #39 i
i

i
i

i
i

x1

x2

1

1

x2 ≥ x21 + 1

x1 > 1

Ω

Figure 3.1: Visualization of Example 3.1, Ω is defined in Definition 1

Definition 1. The “feasible set” Ω is defined to be the set Ω := {x ∈ Rn|g(x) = 0, h(x) ≤ 0}.

Definition 2. The point x∗ ∈ Rn is a “global minimizer” if and only if (iff) x∗ ∈ Ω and ∀x ∈ Ω : f(x) ≥
f(x∗).

Definition 3. The point x∗ ∈ Rn is a “local minimizer” iff x∗ ∈ Ω and there exists a neighborhood N of
x∗ (e.g. an open ball around x∗) so that ∀x ∈ Ω ∩N : f(x) ≥ f(x∗).

Definition 4 (Active/Inactive Constraint). An inequality constraint hi(x) ≤ 0 is called ”active” at x∗ ∈ Ω
iff hi(x

∗) = 0 and otherwise ”inactive”.

Definition 5 (Active Set). The index set A(x∗) ⊂ {1, . . . , nh} of active constraints is called the ”active
set”.

3.2 Classes of Optimization Problems
In order to choose the right algorithm for a practical problem, we should know how to classify it and which
mathematical structures can be exploited. Replacing an inadequate algorithm by a suitable one can make
solution times many orders of magnitude shorter. Many problems have more structure, which we should
recognize and exploit in order to solve problems faster. An important such structure is convexity which
allows us to to find global minima by searching for local minima only.

3.2.1 Convex Optimization Problems
“The great watershed in optimization is not between linearity and nonlinearity, but convexity and noncon-
vexity”
R. Tyrrell Rockafellar

What is convexity, and why is it so important for optimizers?

38

i
i

“main” — 2023/8/17 — 21:45 — page 39 — #40 i
i

i
i

i
i

Definition 6 (Convex Set). A set Ω ⊂ Rn is convex if

∀x, y ∈ Ω, t ∈ [0, 1] : x+ t(y − x) ∈ Ω. (3.5)

(“all connecting lines lie inside set”)

Figure 3.2: An example of a convex set Figure 3.3: An example of a non convex set

Definition 7 (Convex Function). A function f : Ω → R is convex, if Ω is convex and if

∀x, y ∈ Ω, t ∈ [0, 1] : f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (3.6)

(“all secants are above graph”).
A function f : Ω → R is strictly convex, if Ω is convex and if

∀x, y ∈ Ω, t ∈ [0, 1] : f(tx+ (1− t)y) < tf(x) + (1− t)f(y). (3.7)

(y, f(y))

(x, f(x))

Figure 3.4: For a convex function, the line segment between any two points on the graph (secants) lies
above the graph.

Definition 8 (Convex Optimization Problem). An optimization problem with convex feasible set Ω and
convex objective function f : Ω → R is called a “convex optimization problem”.

Note that the feasible set Ω of an optimization problem is convex if the function g is affine and the functions
hi are convex.
For a convex optimization problem, every local minimum is also a global one. Note that this property does
not imply uniqueness (nor existence). To guarantee a unique minimum, we must have a strictly convex
objective function.

How to detect convexity of functions? Convexity is related to the positive curvature of a function, which
can be determined by positive semi-definiteness of the Hessian (matrix of second-order partial derivatives).

Definition 9 (Generalized Inequality for Symmetric Matrices). We write for a symmetric matrix B = BT ,
B ∈ Rn×n that “B≽0” if and only if B is positive semi-definite i.e., if ∀z ∈ Rn : zTBz ≥ 0, or,
equivalently, if all (real) eigenvalues of the symmetric matrix B are non-negative:

B≽0 ⇐⇒ min eig (B) ≥ 0.

Similarly, we write B≻0 iff B is positive definite, i.e. if ∀z ∈ Rn \ {0} : zTBz > 0, or, equivalently, if all
eigenvalues of B are positive

B≻0 ⇐⇒ min eig(B) > 0.

39

i
i

“main” — 2023/8/17 — 21:45 — page 40 — #41 i
i

i
i

i
i

x

y

Figure 3.5: Every local minimum is also a global
one for a convex function

x

y

Figure 3.6: Not every local minimum is also a global one
for this nonconvex function

Theorem 2 (Convexity for C2 Functions). Assume that f : Ω → R is twice continuously differentiable
and Ω convex and open. Then holds that f is convex if and only if for all x ∈ Ω the Hessian is positive
semi-definite, i.e.

∀x ∈ Ω : ∇2f(x)≽0. (3.8)

Similarly, f is strictly convex if and only if for all x ∈ Ω the Hessian is positive definit, i.e.

∀x ∈ Ω : ∇2f(x)≻0. (3.9)

Example (Quadratic Function). The function f(x) = cTx+ 1
2x

TBx is convex if and only if B≽0, because
∀x ∈ Rn : ∇2f(x) = B.

3.2.2 Quadratic Programming (QP)
If in the general NLP formulation (3.1) the constraints g, h are affine, and the objective is a linear-quadratic
function, we call the resulting problem a Quadratic Programming Problem or Quadratic Program (QP).
Linear MPC relies heavily on solving QPs as the discretized form of the control problem takes the shape
of a QP. A general QP can be formulated as follows.

minimize
x ∈ Rn

cTx+
1

2
xTBx (3.10a)

subject to Ax− b = 0, (3.10b)
Cx− d ≤ 0. (3.10c)

Here, the problem data are c ∈ Rn, A ∈ Rng×n, b ∈ Rng , C ∈ Rnh×n, d ∈ Rnh , as well as the “Hessian
matrix” B ∈ Rn×n. Its name stems from the fact that ∇2f(x) = B for f(x) = cTx+ 1

2x
TBx. If B = 0

the QP simplifies to a linear program (LP).
The eigenvalues of B decide on convexity or non-convexity of a QP, i.e. the possibility to solve it in
polynomial time to global optimality, or not. If B≽0 we speak of a convex QP, and if B≻0 we speak of a
strictly convex QP. The latter class has the agreeable property that it always has unique minimizers.

Example (A non-convex QP).

minimize
x ∈ R2

[
0 2

]
x+

1

2
xT

[
5 0
0 −1

]
x (3.11)

subject to −1 ≤ x1 ≤ 1, (3.12)
−1 ≤ x2 ≤ 10. (3.13)

This problem has local minimizers at x∗
a = (0,−1)T and x∗

b = (0, 10)T , but only x∗
b is a global minimizer.

40

i
i

“main” — 2023/8/17 — 21:45 — page 41 — #42 i
i

i
i

i
i

Example (A strictly convex QP).

minimize
x ∈ R2

[
0 2

]
x+

1

2
xT

[
5 0
0 1

]
x (3.14)

subject to −1 ≤ x1 ≤ 1, (3.15)
−1 ≤ x2 ≤ 10. (3.16)

This problem has only one (strict) local minimizer at x∗ = (0,−1)T that is also global minimizer.

3.2.3 Linear Programming (LP)
When the functions f, g, h are affine in the general formulation (3.1), the general NLP gets something
easier to solve, namely a Linear Program (LP). Explicitly, an LP can be written as follows:

minimize
x ∈ Rn

cTx (3.17a)

subject to Ax− b = 0, (3.17b)
Cx− d ≤ 0. (3.17c)

Here, the problem data is given by c ∈ Rn, A ∈ Rp×n, b ∈ Rp, C ∈ Rq×n, and d ∈ Rq . Note that we
could also have a constant contribution to the objective, i.e. have f(x) = cTx+ c0, but that this would not
change the minimizers x∗.
LPs can be solved very efficiently since the 1940’s, when G. Dantzig invented the famous “simplex
method”, an “active set method”, which is still widely used, but got an equally efficient competitor in
the so called “interior point methods”. LPs can nowadays be solved even if they have millions of variables
and constraints. Every business student knows how to use them, and LPs arise in myriads of applications.
LP algorithms are not treated in detail in this lecture, but please recognize them if you encounter them in
practice and use the right software.

Example (LP resulting from oil shipment cost minimization). We regard a typical logistics problem that
an oil production and distribution company might encounter. We want to minimize the costs of transporting
oil from the oil producing countries to the oil consuming countries, as visualized in Figure 3.7.

Europe

Japan

US

China

Venezuela

Russia

Saudi Arabia

Figure 3.7: A traditional example of a LP problem: minimize the oil shipment costs while satisfying the
demands on the right and not exceeding the production capabilities on the left.

More specifically, given a set of n oil production facilities with production capacities pi with i = 1, . . . , n,
and given a set of m customer locations with oil demands dj with j = 1, . . . ,m, and given shipment costs
cij for all possible routes between each i and j, we want to decide how much oil should be transported
along each route. These quantities, which we call xij , are our decision variables, in total nm real valued
variables. The problem can be written as the following linear program.

41

i
i

“main” — 2023/8/17 — 21:45 — page 42 — #43 i
i

i
i

i
i

minimize
x∈Rn×m

n∑
i=1

m∑
j=1

cijxij

subject to
m∑
j=1

xij ≤ pi, i = 1, . . . , n,

n∑
i=1

xij ≥ dj , j = 1, . . . ,m,

xij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m.

(3.18)

Software for solving LPs: Gurobi, CPLEX, MATLAB’s linprog, open-source: lp solve, Google OR-
Tools, Pyomo, PuLP (Python), SciPy’s optimize.linprog

3.2.4 Mixed-Integer Programming (MIP)
A Mixed-Integer Programming problem or Mixed-Integer Program (MIP) is a problem with both real and
integer decision variables. A MIP can be formulated as follows:

minimize
x∈Rn

z∈Zm

f(x, z) (3.19a)

subject to g(x, z) = 0, (3.19b)
h(x, z) ≤ 0. (3.19c)

z2

z1

Figure 3.8: Visualization of the feasible set of an integer problem with linear constraints.

We can use 0–1 (binary) variables to

- to model decisions (yes/no)
- to force disjunctions (either-or)
- Enforce Logical Implications (If-Then)
- to model plant dynamics: on-off, minimum on-time/off-time, number of on-times, minimum power,...
- to model discontinuous dynamics (to some extend): phase change material (PCM) storage, changing

flow direction

And, in the context of general modelling techniques:

- to model piecewise linear (continuous) functions
- to convexify/linearize nonlinear/nonconvex dynamics

Does a variable have the meaning of an indivisible physical size, it must be an integer: number of wind
turbines to be placed, to take or not to take an (expensive) measurement, ...

42

i
i

“main” — 2023/8/17 — 21:45 — page 43 — #44 i
i

i
i

i
i

Definition 10 (Mixed-Integer Linear Program (MILP)). If f , g, h are affine in both x and z we speak of a
Mixed-Integer Linear Program.

In optimal control, mixed integer problems arise because some states or some controls can be integer
valued, in which case the dynamic system is called a “hybrid system”. Generally speaking, hybrid optimal
control problems are more difficult to solve compared to problems with only continuous variables. One
exception is the case when dynamic programming can be applied to a problem with purely discrete state
and control spaces. Most of this lecture is concerned with continuous optimization.
These problems can be solved efficiently with commercial and open-source software.

Software for solving MILP: SCIP (open-source), BONMIN (Basic Open-source Nonlinear Mixed Inte-
ger Programming), CPLEX, Gurobi

Definition 11 (Mixed-Integer Nonlinear Program (MINLP)). If f , g, h are twice differentiable in x and z
we speak of a Mixed-Integer Nonlinear Program.

Generally speaking, these problems are very hard to solve, due to the combinatorial nature of the variables
z. However, if a relaxed problem, where the variables z are no longer restricted to the integers, but to the
real numbers, is convex, often very efficient solution algorithms exist. More specifically, we would require
that the following problem is convex:

minimize
x∈Rn

z∈Rm

f(x, z) (3.20a)

subject to g(x, z) = 0, (3.20b)
h(x, z) ≥ 0. (3.20c)

The efficient solution algorithms are often based on the technique of “branch-and-bound”, which uses
partially relaxed problems where some of the z are fixed to specific integer values and some of them are
relaxed. This technique then exploits the fact that the solution of the relaxed solutions can only be better
than the best integer solution. This way, the search through the combinatorial tree can be made more
efficient than pure enumeration.
Many of the aforementioned softwares for solving MILP can also solve convex MINLP.

3.3 Optimality Conditions

3.3.1 First Order Optimality Conditions
An important question in continuous optimization is if a feasible point x∗ ∈ Ω satisfies necessary first
order optimality conditions. If it does not satisfy these conditions, x∗ cannot be a local minimizer. If
it does satisfy these conditions, it is a hot candidate for a local minimizer. If the problem is convex,
these conditions are even sufficient to guarantee that it is a global optimizer. Thus, most algorithms for
nonlinear optimization search for such points. The first order condition can only be formulated if a technical
“constraint qualification” is satisfied, which in its simplest and numerically most attractive variant coms in
the following form.

Definition 12 (LICQ). The ”linear independence constraint qualification” (LICQ) holds at x∗ ∈ Ω iff all
vectors ∇gi(x

∗) for i ∈ {1, . . . , ng} & ∇hi(x
∗) for i ∈ A(x∗) are linearly independent.

To give further meaning to the LICQ condition, let us combine all active inequalities with all equalities in
a map g̃ defined by stacking all functions on top of each other in a colum vector as follows:

g̃(x) =

[
g(x)

hi(x)(i ∈ A(x∗))

]
. (3.21)

LICQ is then equivalent to full row rank of the Jacobian matrix ∂g̃
∂x (x

∗).
This condition allows us to formulate the famous Karush-Kuhn-Tucker (KKT) optimality conditions.

43

i
i

“main” — 2023/8/17 — 21:45 — page 44 — #45 i
i

i
i

i
i

Theorem 3 (KKT Conditions). If x∗ is a local minimizer of the NLP (3.1) and LICQ holds at x∗ then there
exist so called multiplier vectors λ∗ ∈ Rng and µ∗ ∈ Rnh with

∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0 (3.22a)
g(x∗) = 0 (3.22b)
h(x∗) ≤ 0 (3.22c)

µ∗ ≥ 0 (3.22d)
µ∗
i hi(x

∗) = 0, i = 1, . . . , nh. (3.22e)

We use the notation ∇g(x) = ∂g
∂x (x)

T ∈ Rn×ng where ∂g
∂x (x) ∈ Rng×n is the Jacobian matrix of g defined

by

∂g

∂x
(x) =


∂g1
∂x1

· · · ∂g1
∂xn

...
. . .

...
∂gng

∂x1
· · · ∂gng

∂xn

 .

Similarly, the Jacobian of h is defined.
Note: The KKT conditions are the first order necessary conditions for optimality (FONC) for constrained
optimization, and are thus the equivalent to ∇f(x∗) = 0 in unconstrained optimization. In the special case
of convex problems, the KKT conditions are not only necessary for a local minimizer, but even sufficient
for a global minimizer.

Theorem 4. Regard a convex NLP and a point x∗ at which LICQ holds. Then:

x∗ is a global minimizer ⇐⇒ ∃λ, µ so that the KKT conditions hold.

Definition 13 (Lagrangian Function). We define the so called “Lagrangian function” to be

L(x, λ, µ) = f(x) + λT g(x) + µTh(x). (3.23)

Here, we have used again the so called “Lagrange multipliers” or “dual variables” λ ∈ Rng and µ ∈ Rnh .
The Lagrangian function plays a crucial role in both convex and general nonlinear optimization, not only
as a practical shorthand within the KKT conditions: using the definition of the Lagrangian, we have (3.22a)
⇔ ∇xL(x∗, λ∗, µ∗) = 0.
The KKT conditions require the inequality multipliers µ to be positive, µ ≥ 0, while the sign of the equality
multipliers λ is arbitrary. See Figures 3.9 and 3.10 for a graphical interpretation of the KKt conditions for
equality and inequality constrained optimization problems. Figure 3.11 illustrates a failure of the LICQ
constraint qulification condition defined in Definition 12.
The last three KKT conditions (3.22c)-(3.22e) are called the complementarity conditions. For each index
i, they define an L-shaped set in the (hi, µi) space. This set is not a smooth manifold but has a non-
differentiability at the origin, i.e. if hi(x

∗) = 0 and also µ∗
i = 0. This case is called a weakly active

constraint. Often we want to exclude this case. On the other hand, an active constraint with µ∗
i > 0 is

called strictly active.

Definition 14. Regard a KKT point (x∗, λ∗, µ∗). We say that strict complementarity holds at this KKT
point iff all active constraints are strictly active.

Strict complementarity is a favourable condition because it also makes many theorems easier to formulate
and to prove, and is also required to prove convergence of some numerical methods.

3.3.2 Second Order Optimality Conditions
If LICQ holds and the KKT conditions are fulfilled at a point x∗, it can still be a point which is not a local
minimizer. For checking if the candidate x∗ is indeed a local minimizer, the SOSC can be examined which,
together with LICQ and the KKT conditions, is a sufficient condition for optimality.

44

i
i

“main” — 2023/8/17 — 21:45 — page 45 — #46 i
i

i
i

i
i

Figure 3.9: Illustration of the KKT conditions for an equality-constrained NLP. The contour lines (or level
sets) of the objective function f and the constraint g(x) = 0 are shown. The negative gradient of the
objective function −∇f(x) points into the direction of the minimizer x∗. At x∗ the sum of the gradients
of the cost function and of the constraints (weighted with the Lagrange multiplier) equal to 0.

Figure 3.10: Illustration of the KKT conditions for an inequality-constrained NLP. The ”slope” of the cost
function −∇f (x) pushes the solution towards its lowest point. The solution contained by the ”barrier”,
i.e. the inequality constraints h (x) ≤ 0 to remain within the feasible domain via the force −∇h (x)µ, but
is free to move along the barrier and towards the interior of the feasible domain. At the solution x∗, µ∗,
the forces exerted by the barrier and the cost function even out. If the solution is in contact with the barrier,
then the force is non-zero and pushes towards the interior of the feasible domain, i.e. h(x∗) = 0, µ > 0
(left graph). Otherwise, the barrier exerts no force on the solution, i.e. h(x∗) < 0, µ = 0 (right graph).

45

i
i

“main” — 2023/8/17 — 21:45 — page 46 — #47 i
i

i
i

i
i

Figure 3.11: Failure of the LICQ condition. The optimal solution is not a KKT point. In this case, the forces
exerted by the constraints h1(x) and h2(x) are collinear, and cannot balance the slope of the cost function
−∇f(x), even though the constraints prevent the solution from moving further toward the minimum of the
cost function.

In case of strict complementarity at a KKT point (x∗, λ∗, µ∗), the optimization problem can locally be
regarded to be a problem with equality constraints only, namely those within the function g̃ defined in
Equation (3.21). Though more complex second order conditions can be formulated that are applicable
even when strict complementarity does not hold, we restrict ourselves here to this special case. Second
order conditions for optimality check whether the curvature of L is positive in all feasible directions.

Theorem 5 (Second Order Optimality Conditions). Let us regard a point x∗ at which LICQ holds together
with multipliers λ∗, µ∗ so that the KKT conditions (3.22a)-(3.22e) are satisfied and let strict complemen-
tarity hold. The Second Order Sufficient Condition (SOSC) checks if the curvature is positive in all feasible
directions s, i.e., if

s⊤∇2
xxL (x∗, λ∗, µ∗) s > 0 (3.24)

holds for all feasible directions s such that

∇g̃⊤i (x∗) · s = 0,∀i ∈ i = 1, . . . , ng ∪ A (x∗) . (3.25)

The feasible directions s are given by the dot product in (3.25), i.e., the constraint tangent space (assuming
strict complementarity). The second order conditions can equally be defined if strict complementarity does
not hold. If a convex optimization problem is given, the FONC and the fulfillment of LICQ are necessary
and sufficient conditions, such that SOSC does not need to be checked.
The matrix ∇2

xL(x∗, λ∗, µ∗) plays an important role in optimization algorithms and is called the Hessian
of the Lagrangian.

Example (Quadratic Problems with Equality Constraints). To illustrate the above optimality conditions,
let us regard a QP with equality constraints only.

minimize
x ∈ Rn

cTx+
1

2
xTBx (3.26a)

subject to Ax+ b = 0. (3.26b)

We assume that A has full row rank i.e., LICQ holds. The Lagrangian is L(x, λ) = cTx + 1
2x

TBx +
λT (Ax+ b) and the KKT conditions have the explicit form

c + Bx + ATλ = 0 (3.27a)
b + Ax = 0. (3.27b)

46

i
i

“main” — 2023/8/17 — 21:45 — page 47 — #48 i
i

i
i

i
i

This is a linear equation system in the variable (x, λ) and can be solved if the so called KKT matrix[
B AT

A 0

]
is invertible.

3.4 Optimization Algorithms

3.4.1 Newton-Type methods for Equality Constrained Optimization
Let us first regard an optimization problem with only equality constraints,

minimize
x ∈ Rn

f(x) (3.28a)

subject to g(x) = 0 (3.28b)

where f : Rn → R and g : Rn → Rng are both two times continuously differentiable functions. The idea
of the Newton-type optimization methods is to apply a variant of Newton’s method to solve the nonlinear
KKT conditions

∇xL(x, λ) = 0 (3.29a)
g(x) = 0 (3.29b)

In order to simplify notation, we define

w :=

[
x
λ

]
and F (w) :=

[
∇xL(x, λ)

g(x)

]
(3.30)

with w ∈ Rn+ng , F : Rn+ng → Rn+ng , so that we can compactly formulate the above nonlinear root
finding problem as

F (w) = 0. (3.31)

Starting from an initial guess w0, Newton’s method generates a sequence of iterates {wk}∞k=0 by linearizing
the nonlinear equation at the current iterate and setting it to zero

F (wk) +
∂F

∂w
(wk)(wk+1 − wk) = 0 (3.32)

and obtaining the next iterate as its solution, i.e.

wk+1 = wk − ∂F

∂w
(wk)

−1F (wk) (3.33)

For equality constrained optimization, the linear system (3.32) has the specific form1[
∇xL(xk, λk)

g(xk)

]
+

[
∇2

xL(xk, λk) ∇g(xk)
∇g(xk)

T 0

]
︸ ︷︷ ︸

KKT-matrix

[
xk+1 − xk

λk+1 − λk

]
= 0 (3.34)

Using the definition

∇xL(xk, λk) = ∇f(xk) +∇g(xk)λk (3.35)

1In this script we use the convention ∇g(x) := ∂g
∂x

(x)T that is consistent with the definition of the gradient ∇f(x) of a scalar
function f being a column vector.

47

i
i

“main” — 2023/8/17 — 21:45 — page 48 — #49 i
i

i
i

i
i

we see that the contributions depending on the old multiplier λk cancel each other, so that the above system
is equivalent to [

∇f(xk)
g(xk)

]
+

[
∇2

xL(xk, λk) ∇g(xk)
∇g(xk)

T 0

] [
x− xk

λ

]
= 0. (3.36)

This formulation shows that the data of the linear system only depend on λk via the Hessian matrix. We
need not use the exact Hessian matrix, but can approximate it with different methods. This leads to the more
general class of Newton-type optimization methods. Using any such approximation Bk ≈ ∇2

xL(xk, λk),
we finally obtain the Newton-type iteration as[

xk+1

λk+1

]
=

[
xk

0

]
−
[

Bk ∇g(xk)
∇gT (xk) 0

]−1 [∇f(xk)
g(xk)

]
(3.37)

If we use Bk = ∇2
xL(xk, λk), we recover the exact Newton method. So-called Newton-type methods

choose different Hessian approximations Bk that may be easier to compute. The general Newton-type
method is summarized in Algorithm 1.

Algorithm 1 Equality constrained full step Newton-type method

Choose: initial guesses x0, λ0, and a tolerance ϵ
Set: k = 0

while ∥∇L(xk, λk)∥ ≥ ϵ or ∥g(xk)∥ ≥ ϵ do
obtain a Hessian approximation Bk

get xk+1, λk+1 from (3.37)
k = k + 1

end while

In the exact Newton method, we set
Bk := ∇2

xL(xk, λk)

But how can this matrix be computed? Many different ways for computing this second derivative exist.
The most straightforward way is a finite difference approximation where we perturb the evaluation of ∇L
in the direction of all unit vectors {ei}ni=1 by a small quantity δ > 0. This yields each time one column of
the Hessian matrix, as

∇2
xL(xk, λk)ei =

∇xL(xk + δei, λk)−∇xL(xk, λk)

δ
+O(δ) (3.38)

Unfortunately, the evaluation of the numerator of this quotient suffers from numerical cancellation, so that
δ cannot be chosen arbitrarily small, and the maximum attainable accuracy for the derivative is

√
ϵ if ϵ is

the accuracy with which the gradient ∇xL can be obtained. Thus, we loose half the valid digits. If ∇xL
was itself already approximated by finite differences, this means that we have lost three quarters of the
originally valid digits. More accurate and also faster ways to obtain derivatives of arbitrary order will be
presented in the chapter on algorithmic differentiation.
Local convergence rate: The exact Newton method has a quadratic convergence rate, i.e. ∥wk+1−w∗∥ ≤
c∥wk −w∗∥2. This means that the number of accurate digits doubles in each iteration. As a rule of thumb,
once a Newton method is in its area of quadratic convergence, it needs at maximum 6 iterations to reach
the highest possible precision.

3.4.2 Interior Point Methods for Inequality Constrained Optimization*
When a nonlinear optimization problem with inequality constraints shall be solved, two big families of
methods exist, first, nonlinear interior point (IP), and second, sequential quadratic programming (SQP)
methods. Both aim at solving the KKT conditions (3.22) which include the non-smooth complementarity

48

i
i

“main” — 2023/8/17 — 21:45 — page 49 — #50 i
i

i
i

i
i

Figure 3.12: Relaxation of the complementarity slackness condition. We display here the manifold
µihi (x) + τ = 0 for various values of τ . The original non-smooth manifold µihi (x) = 0 arising in
the KKT conditions is displayed as the thick lines.

conditions, but have different ways to deal with this non-smoothness. We will only cover the interior point
method.
The basic idea of an interior point method is to replace the non-smooth L-shaped set resulting from the
complementarity conditions with a smooth approximation, typically a hyberbola. Thus, a smoothing con-
stant τ > 0 is introduced and the KKT conditions are replaced by the smooth equation system

∇f(x∗) +∇g(x∗)λ∗ +∇h(x∗)µ∗ = 0 (3.39a)
g(x∗) = 0 (3.39b)

µ∗
i hi(x

∗) + τ = 0, i = 1, . . . , nh. (3.39c)

Note that the last equation ensures that −hi(x
∗) and µ∗

i are both strictly positive and on a hyperbola.2

For τ very small, the L-shaped set is very closely approximated by the hyperbola, but the nonlinearity
is increased. Within an interior point method, we usually start with a large value of τ and solve the
resulting nonlinear equation system by a Newton method, and then iteratively decrease τ , always using the
previously obtained solution as initialization for the next one.
One way to interpret the above smoothened KKT-conditions is to use the last condition to eliminate
µ∗
i = − τ

hi(x∗) and to insert this expression into the first equation, and to note that ∇x (log(−hi(x))) =
1

hi(x)
∇hi(x)). Thus, the above smooth form of the KKT conditions is nothing else than the optimality

conditions of a barrier problem

minimize
x ∈ Rn

f(x)− τ

nh∑
i=1

log (−hi(x)) (3.40a)

subject to g(x) = 0. (3.40b)

Note that the objective function of this problem tends to infinity when hi(x) → 0. Thus, even for very
small τ > 0, the barrier term in the objective function will prevent the inequalities to be violated. The
primal barrier method just solves the above barrier problem with a Newton-type optimization method for
equality constrained optimization for each value of τ . Though easy to implement and to interpret, it is
not necessarily the best for numerical treatment, among other because its KKT matrices become very ill-
conditioned for small τ . This is not the case for the primal-dual IP method that solves the full nonlinear
equation system (3.39) including the dual variables µ.

2In the numerical solution algorithms for this system, we have to ensure that the iterates do not jump to a second hyperbola of
infeasible shadow solutions, by shortening steps if necessary to keep the iterates in the correct quadrant.

49

i
i

“main” — 2023/8/17 — 21:45 — page 50 — #51 i
i

i
i

i
i

Figure 3.13: Illustration of the primal barrier method presented in (3.40). The left graph displays an
illustrative cost function f(x) (thick curve), and simple bounds 0 ≤ x ≤ 1. The various objective functions
with barrier f(x) − τ

∑nh

i=1 log (−hi(x)) are displayed for various values of τ , alongside their respective
minima xτ . The right graph displays the error between the actual solution to the problem x∗, and the
solutions xτ obtained from the barrier problem (3.40) for various values of τ .

For convex problems, very strong complexity results exist that are based on self-concordance of the barrier
functions and give upper bounds on the total number of Newton iterations that are needed in order to
obtain a numerical approximation of the global solution with a given precision. When an IP method is
applied to a general NLP that might be non-convex, we can of course only expect to find a local solution,
but convergence to KKT points can still be proven, and these nonlinear IP methods perform very well in
practice.

Software: A very widespread and successful implementation of the nonlinear IP method is the open-
source code IPOPT [12, 11]. Though IPOPT can be applied to convex problems and will yield the global
solution, dedicated IP methods for different classes of convex optimization problems can exploit more
problem structure and will solve these problems faster and more reliably. Most commercial LP and QP
solution packages such as CPLEX or MOSEK make use of IP methods, as well as many open-source
implementations such as the sparsity exploiting QP solver OOQP.

3.4.3 Generating derivatives*
“Progress is measured by the degree of differentiation within a society.”

Herbert Read

Derivatives of computer coded functions are needed everywhere in optimization. In order to just check
optimality of a point, we need already to compute the gradient of the Lagrangian function. Within Newton-
type optimization methods, we need the full Jacobian of the constraint functions. If we want to use an exact
Hessian method, we even need second order derivatives of the Lagrangian.
There are many ways to compute derivatives: Doing it by hand is error prone and nearly impossible for
longer evaluation codes. Computer algebra packages like Mathematica or Maple can help us, but require
that the function is formulated in their specific language. More annoyingly, the resulting derivative code
can become extremely long and slow to evaluate.
On the other hand, finite differences can always be applied, even if the functions are only available as
black-box codes. They are easy to implement and relatively fast, but they necessarily lead to a loss of
precision of half the valid digits, as they have to balance the numerical errors that originate from Taylor

50

i
i

“main” — 2023/8/17 — 21:45 — page 51 — #52 i
i

i
i

i
i

series truncation and from finite precision arithmetic. Second derivatives obtained by recursive application
of finite differences are even more inaccurate. The best perturbation sizes are difficult to find in practice.
Note that the computational cost to compute the gradient ∇f(x) of a scalar function f : Rn → R is (n+1)
times the cost of one function evaluation.
A more efficient and more accurate way to evaluate the gradient of a scalar function is algorithmic (or
automatic) differentiation (AD). It requires in principle nothing more than that the function is available in
the form of source code in a standard programming language such as Python, C, C++ or FORTRAN.
Algorithmic differentiation uses the fact that each differentiable function is composed of several elementary
operations, like multiplication, division, addition, subtraction, sine-functions, exp-functions, etc., whose
derivatives we know. This is exploited by AD to calculate first and higher derivatives of functions efficiently
and precisely. For example, we can calculate the gradient of f at only three times the cost of evaluating f
itself, cost(∇f) ≈ 3 cost(f). Many AD tools exist, e.g. CasADi [1].

51

i
i

“main” — 2023/8/17 — 21:45 — page 52 — #53 i
i

i
i

i
i

Chapter 4

Linear Model Predictive Control

This chapter introduces the important field of linear model predictive control (LMPC), i.e., model predictive
control (MPC) for linear systems. LMPC is widely used in industry because of the relatively low associated
computational effort and since it typically results in convex optimization problems which can be reliably
solved. In this chapter, we will discusses the general idea of MPC-based control and the discretization of
continuous-time linear systems, before moving on to unconstrained and constrained LMPC formulations
and solution strategies.

4.1 MPC control idea
Classical control loop Let us first consider the classical control structure for a discrete-time system
given in Fig. 4.1. Classical control is typically based on two basic elements: (1) a measurement ŷk of the
controllable output yk and (2) a fixed linear controller design C. The working principle of the control loop
at time step k can then be summarized by the following steps:

1. Obtain output measurement ŷk.

2. Compute error w.r.t. reference signal: ek = rk − ŷk.

3. Compute control input uk as a function of (past and present values of) ek.

4. Apply uk and repeat at time k + 1.

This control paradigm is very successful because of its simplicity (model-free, low computational com-
plexity) and its effectiveness for disturbance rejection. However, the classical control loop concept is a
powerful technique mainly for linear, single-input, single-output (SISO) systems without constraints. As
soon as any of these aspects (nonlinearity, multiple inputs, constraints) needs to be considered, the control
loop becomes quite complex and unmanageable very quickly.
For example, most actuator systems have physical limitations that are relevant during operation. These
limitations need to be accounted for in the control loop, which is typically solved using ad-hoc solutions
such as e.g. anti-windup. Also, in order to avoid these limitations, systems are often operated at a setpoint
that is far away from constraints, even though this leads to suboptimal operation.

MPC control loop MPC addresses precisely this issue. By reformulating the control problem as an
optimization problem, it is inherently capable of dealing with multiple-input, multiple-output (MIMO)
systems, nonlinearity, and different sorts of constraints. Moreover, it allows one to directly optimize a
certain performance index, as opposed to the indirect way of controller parameter-tuning. And finally, if
future knowledge on the reference signal or on incoming disturbances is available, it can be taken directly
into account to create anticipatory behavior.

52

i
i

“main” — 2023/8/17 — 21:45 — page 53 — #54 i
i

i
i

i
i

C System

Measurement value
ŷk

Actuated value
uk

Reference value
rk ek Output yk

MPC

State Estimator

System
ukrk yk

ŷk
x̂k

Figure 4.1: Classical (top) and MPC (bottom) control loop structures.

Fig. 4.1 shows the MPC control loop. Let us first consider what happens in the MPC controller block. In
this block, the following optimal control problem is solved.

minimize
control inputs
state prediction

total cost over time horizon

subject to start at current state,

state space model,

constraints

(4.1)

An optimal control problem is a “dynamic” optimization problem, i.e. an optimization problem that op-
timizes a state trajectory which is constrained by some system dynamics. In this case the optimization
variables are the control and state trajectories over a certain prediction horizon. The state trajectory is
constrained twofold: it must start at the current state of system, and it must satisfy the dynamics described
by a given state space model. In this sense, the “real” degrees of freedom for the optimizer are only the
control inputs. The objective of the optimization problem is a function of the state and control trajectory
and is a quantification of the overall control objective, such as e.g. the deviation from a given setpoint rk.
All physical system have constraints. Typical constraints are: physical constraints (e.g. actuator limits),
safety constraints (e.g. temperature/pressure limits) and performance constraints (e.g. maximal overshoot).
Such constraints can be elegantly integrated in the optimal control problem as optimization constraints.
This powerful formulation however comes with a complication: in order to compute a meaningful state
prediction, the current system state needs to be known. In some cases, all of the system states can be
directly measured. If this is not the case, an additional component needs to be added to the control loop:
a state estimator. The state estimator also uses an internal state space model to compute an estimate of
the state x̂k based on the applied controls uk and measurement values ŷk. This state estimate is then fed
to the MPC block. In order to obtain good closed-loop performance, the estimator dynamics should be
significantly faster than the controlled system dynamics. A highly popular estimator in many applications
is the Kalman Filter, which we will not discuss further in this lecture. For now, we will assume that the
state can be fully measured.
The control loop creates a feedback action via the so-called receding horizon strategy, illustrated by
Fig. 4.2:

1. Estimate current state x̂k.

2. Solve optimal control problem (4.1).

3. Apply only the very first part of the computed optimal control trajectory.

53

i
i

“main” — 2023/8/17 — 21:45 — page 54 — #55 i
i

i
i

i
i

k k + 1 k + 2 k + 3 · · ·

Do Plan

Do Plan

Do Plan

Figure 4.2: Receding horizon strategy introduces feedback in an MPC-based control loop.

4. Wait until new measurement becomes available at time k + 1 and repeat.

Thus, to summarize, the MPC controller comes with many advantages, but, in comparison with the classical
control loop, needs three additional elements: (1) an accurate state space model, (2) a state estimator and
(3) an efficient optimization solver that solves the optimal control problem in real-time.

4.2 Discrete-time linear state space models
Linear MPC is a variant of MPC which only uses linear models in the optimal control problem. In this
chapter, we will consider only linear time-invariant (LTI) systems. These systems can be described by the
continuous-time state space model

ẋ(t) = Acx(t) +Bcu(t) (4.2)
y(t) = Ccx(t) +Dcu(t) (4.3)

with fixed matrices Ac ∈ Rnx×nx and Bc ∈ Rnx×nu . The subscript c denotes “continuous-time”.
However, in order to obtain a numerically tractable optimal control problem, it is required that the state
trajectory is given in discrete form. Therefore, we first show how continuous-time LTI systems can be
transformed into discrete-time LTI systems.

4.2.1 Discretization of LTI state-space models
A state space representation in discrete time is derived from a state space representation in continuous time
by means of simulation (that is, integration over time). However, in case of LTI systems, it is even possible
to derive an analytic expression for the state space system in discrete time, without having to resort to
numerical integration.
First, we define a discrete time grid t0 < t1 < . . . < tk < . . . < tN by choosing a horizon length N
and constant sampling time Ts. The time grid points are then given by tk = kTs with an integer k ∈ Z.
Second, the control input trajectory u(t) must be re-written as function of a finite number of variables. The
most common parameterization for MPC is “zero-order hold” (ZOH), where the control input is piecewise
constant over the sampling intervals:

u(t) =



u0 if t ∈ [0, Ts)
...

...
uk if t ∈ [kTs, (k + 1)Ts)
...

...
uN−1 if t ∈ [(N − 1)Ts, NTs)

, (4.4)

54

i
i

“main” — 2023/8/17 — 21:45 — page 55 — #56 i
i

i
i

i
i

so that the control trajectory is defined by the parameters u0, u1, . . . , uN−1 ∈ Rnu .
Consider now the continuous-time LTI system given by (4.3). Thanks to the time-invariance property,
the system representation is the same at all times. Therefore can we can consider the state evolution for
arbitrary k at points (xk, tk) and (xk+1, tk+1) to obtain

xk+1 = x((k + 1)Ts) = eAc(tk+1−tk)xk +

∫ tk+1

tk

eAc(tk+1−τ)Bcu(τ)dτ

= eAcTsxk + eAcTs

∫ Ts

0

e−ActdtBcuk = Axk +Buk ,

(4.5)

where the fact that u(t) is piecewise constant in between sampling instants has been exploited to move uk

outside the integral, and the change of variable t = τ − tk is performed in the integrator. The discrete
output equation (4.7) is simply obtained by evaluating equation (4.3) at the time t = kTs.
In summary, the state space representation of the discretized LTI system is given by

xk+1 = Axk +Buk , (4.6)
yk = Cxk +Duk , (4.7)

with the constant matrices

A = eAcTs , (4.8)

B = eAcTs

∫ Ts

0

e−ActdtBc , (4.9)

C = Cc , (4.10)
D = Dc . (4.11)

4.2.2 Solution of the state space ODE
The homogeneous response with zero input and initial state x0 can be found by successive substitutions

x1 = Ax0

x2 = Ax1 = A2x0

· · · = · · ·
xk = Axk−1 = Akx0

Note that it is computed using only the matrix A.
The forced response with generic non-zero input is computed by induction. The expression for two con-
secutive substitutions

xk+2 = Axk+1 +Buk+1

= A(Axk +Buk) +Buk+1

= A2xk +ABuk +Buk+1

can be generalized as

xk = Akx0 +

k−1∑
m=0

Ak−m−1Bum (4.12)

for k ≤ 0.
The system output response is computed by substitution of (4.12) into the equation yk = Cxk + Duk,
obtaining

yk = CAkx0 +

k−1∑
m=0

CAk−m−1Bum +Duk (4.13)

55

i
i

“main” — 2023/8/17 — 21:45 — page 56 — #57 i
i

i
i

i
i

4.2.3 Controllability and observability
Before we can proceed to a first MPC formulation, we need to introduce the important notions of control-
lability and observability. As we will see, we can only apply MPC succesfully to systems that are both
controllable and observable.
A discrete system is controllable if in a finite number of time steps n ≥ nx, any initial state x0 ∈ Rnx can
be driven to any given final state xn ∈ Rnx by an appropriate choice of control inputs u0, u1, . . . , un−1. A
convenient property of LTI systems is that its controllability can be checked by investigating the constant
state space matrices A and B. For this, we construct the controllability matrix

SC =
[
B AB A2B · · · An−1B

]
∈ Rnx×(n·nu) . (4.14)

Then, the LTI system is controllable if SC is non-singular, i.e.:

rank(SC) = nx ⇔ det(SCS
′
C) ̸= 0 (4.15)

This can be proven by using the forced solution formula from (4.12):

xn = Anx0 +

n−1∑
m=0

An−m−1Bum

xn −Anx0 =

n−1∑
m=0

An−m−1Bum

= SC

[
u⊤
n−1, u

⊤
n−2, . . . , u

⊤
0

]⊤
.

Thus, any state xn ∈ Rnx can be reached by an appropriate choice of controls, if the controllability matrix
spans Rnx . Moreover, it can be shown that for any n ≥ nx it holds

rank(
[
B AB . . . AnB

]
) = rank(

[
B AB . . . AnxB

]
)) , (4.16)

which means that if any arbitrary state xn can be reached in n steps, it can also be reached in nx steps and
vice versa. Thus, in order to check controllability, it suffices to check the rank of SC for n = nx.

Example. (Double integrator) We consider the system ÿ(t) = u(t), whose state space representation

is given by the matrices A =

[
0 1
0 0

]
, B =

[
0
1

]
, C =

[
1 0

]
, D = 0. We are only interested in

the pair (A, B) and want to investigate if the system is controllable. Therefore we construct the matrix

SC =
[
B AB

]
=

[
0 1
1 0

]
, and we test if it has rank nx = 2. This is the case, as det(SC) = −1 ̸= 0.

Example. Let us now consider the system with state space matrices A =

[
0 1
0 0

]
and B =

[
1
0

]
. If we

now construct SC =

[
1 0
0 0

]
, we see that det(SC) = 0, and thus that the system is uncontrollable. More

precisely, by observing SC we directly see that the second row only has zeros, and thus that the second
state cannot be influenced by the control inputs.

A system is observable if from a finite number of measurements y0, y1, . . . , yn−1, with n > nx, the
original state x0 can be reconstructed. Similar to controllability this can be controlled by checking that the
observability matrix

SO =


C
CA

...
CAn−1

 ∈ R(n·ny×nx) (4.17)

has full rank. The proof can be constructed using expression (4.13), by writing all measurements as a
function of x0 and then resolving for x0. Similar to controllability, if observability is shown for n = nx,
the system is also observable for n > nx and vice versa.

56

i
i

“main” — 2023/8/17 — 21:45 — page 57 — #58 i
i

i
i

i
i

4.3 Unconstrained linear MPC
For a given discrete-time LTI state space model that is controllable and observable, we now consider the
special case of unconstrained linear MPC. In particular we consider here the regulation problem, where the
control objective is to drive the states xk → 0 for k → ∞. Most commonly, this translates into a quadratic
penalty on the state deviation from the origin, resulting in the following OCP with horizon N :

minimize
x0,...,xN

u0,...,uN−1

1

2
x⊤
NPNxN +

1

2

N−1∑
k=0

x⊤
k Qxk + u⊤

k Ruk

subject to x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . , N − 1,

(4.18)

with the state weight matrix Q ∈ Rnx×nx , control weight matrix R ∈ Rnu×nu and terminal weight matrix
PN ∈ Rnx×nx . Note that in this formulation the index “0” of the state estimate x̂0 refers to the internal
time grid of the MPC problem and that it is updated at every time step of the control feedback loop.

Cost function The regulation cost function is chosen to be a quadratic penalty on the state deviation
from the origin. Additionally, the cost function penalizes the control effort. As a matter of fact, this control
regularization is necessary for the resulting quadratic program (QP) to be convex and have a well-defined
minimum. To be more precise, the weight matrices have to be chosen so that Q,PN ⪰ 0 and R ≻ 0.
Note that it is sometimes instructive to also penalize the rate of change of controls, in order to protect the
actuators from fatigue. This can be done adding the controls u to the state vector and by introducing a
pseudo-control ν ∈ Rnu and the state equation u̇ = v. Now, the variables ν can be penalized in the cost
function.

Analytic solution Because the linear regulation problem results in an equality-constrained QP, it admits
to an analytic solution. In order to compute this solution, we first eliminate the states from the optimal
control problem using the closed-form solution (4.12). The expressions for all states in the prediction
horizon can be written in matrix form:

X︷ ︸︸ ︷
x1

x2

...
xN

 =

E︷ ︸︸ ︷
A
A2

...
AN

 x̂0 +

Θ︷ ︸︸ ︷
B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AN−1B AN−2B · · · B


U︷ ︸︸ ︷
u0

u1

...
uN−1

 , (4.19)

or in more compact notation:
X = Ex̂0 +ΘU . (4.20)

We can also rewrite the cost function of problem (4.18) as

J =
1

2
(x̂⊤

0 Qx̂0 +X⊤Q̂X + U⊤R̂U) (4.21)

with

Q̂ =


Q 0 . . . 0
0 Q . . . 0
...

...
. . .

...
0 0 . . . PN

 and R̂ =


R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R

 . (4.22)

After substitution of X using (4.20), the cost function reads as

J =
1

2
(x̂⊤

0 Qx̂0 + (Ex̂0 +ΘU)⊤Q̂(Ex̂0 +ΘU) + U⊤R̂U) (4.23)

=
1

2
x̂⊤
0 (Q+ E⊤Q̂E)x̂0 +

1

2
U⊤(Θ⊤Q̂Θ+ R̂)U + U⊤Θ⊤Q̂Ex̂0 . (4.24)

57

i
i

“main” — 2023/8/17 — 21:45 — page 58 — #59 i
i

i
i

i
i

The first term in this cost function is a constant and does not influence the optimal solution, hence it can be
omitted. This results in the following unconstrained quadratic program

minimize
U

1

2
U⊤(Θ⊤Q̂Θ+ R̂)U + U⊤ΘQ̂Ex̂0 . (4.25)

In order to find the optimal controls U∗ we write down the KKT conditions for this QP, which comes down
to setting the gradient of the cost function w.r.t. U to zero:

(Θ⊤Q̂Θ+ R̂)U +Θ⊤Q̂Ex̂0 = 0 , (KKT conditions) (4.26)

resulting in the solution
U∗ = −(Θ⊤Q̂Θ+ R̂)−1Θ⊤Q̂Ex̂0 . (4.27)

Within the MPC feedback loop, we are only interested in the first control input u∗
0:

u∗
0 =

[
I 0 · · · 0

]
U∗ = Kx̂0 , (4.28)

with the constant feedback matrix

K = −
[
I 0 · · · 0

]
(Θ⊤Q̂Θ+ R̂)−1Θ⊤Q̂E . (4.29)

Interestingly, the optimal linear-quadratic regulator is a constant linear feedback controller. This is con-
venient since the optimal feedback matrix K can be computed offline and online computational effort is
limited to a matrix-vector product.
Finally, we can check if the optimal solution U∗ is a unique minimizer. This is the case if the second-order
sufficient conditions are fulfilled, which is the case if the quadratic cost is strictly convex, i.e. when the
Hessian of the cost function is strictly positive definite:

∇2J = Θ⊤Q̂Θ+ R̂ ≻ 0 . (4.30)

This condition is met when Q,PN ⪰ 0 and R ≻ 0. Thus, by an appropriate choice of weights, we can
guarantee convexity of the resulting optimization problem.

Finite horizon LQR The solution to the optimal control problem (4.18) is called the finite-horizon linear-
quadratic regulator (LQR). Let us now investigate the behavior of this controller by considering the follow-
ing example.

Example. Consider the slightly damped but stable, discrete-time system with state space model

xk+1 =

[
1.988 −0.998
1 0

]
xk +

[
0.125
0

]
uk . (4.31)

with x ∈ R2 and u ∈ R. We now conduct a closed-loop experiment for two different finite-horizon
LQR controllers, with horizon N = 3 and N = 100 respectively, but with identical weight matrices
Q = PN = I and R = 1. The initial state is x0 =

[
0 1

]⊤
.

Fig. 4.3 shows the evolution of the closed-loop system and the applied controls as well as the open-loop
predictions for three consecutive time steps. While for the case of the very large horizon N = 100,
the closed-loop response and open-loop predictions coincide, this is not the case for the case N = 3. This
mismatch is a crucial property of finite-horizon MPC since it can cause the closed-loop to become unstable.
Note that this mismatch occurs in the absence of model-plant mismatch, and is purely an effect of the finite
horizon.
Fig. 4.4 shows the closed-loop response as well as the stage cost

Jk = x⊤
k Qxk + u⊤

k Ruk (4.32)

for both LQR controllers for a longer time sequence. The shorter horizon results in a larger overshoot and
longer settling time. The longer horizon has a higher stage cost at the beginning of the trajectory, because
it allows for a lower stage cost later. The shorter horizon LQR has a lower stage cost in the beginning,
because it does not take into account that this leads to a higher cost later. Overall, the closed-loop cost of
the shorter horizon LQR is 60% higher than that of the longer horizon LQR.

Thus, the finite horizon not only leads to a mismatch between prediction and closed-loop response, it also
leads to suboptimal behavior compared to an LQR controller with an (in the limit) infinite horizon.

58

i
i

“main” — 2023/8/17 — 21:45 — page 59 — #60 i
i

i
i

i
i

0.0

2.5

0.0

2.5

0 5 10

k

0.0

2.5 uk, N = 3

x1,k, N = 3

uk, N = 100

x1,k, N = 100

Figure 4.3: Closed-loop response and open-loop predictions of the finite-horizon LQR problem for different
horizon lengths N .

−1

0

x
1
,k

0 10 20 30 40 50

k

0

5

10

J
k

N = 3

N = 100

Figure 4.4: Closed-loop response (top) and closed-loop stage cost Jk (bottom) of the finite-horizon LQR
problem for different horizon lengths N .

59

i
i

“main” — 2023/8/17 — 21:45 — page 60 — #61 i
i

i
i

i
i

Infinite horizon LQR From the previous considerations, we learned that the best possible LQR con-
troller is the one with an infinite horizon, i.e. the one that solves the following optimization problem:

minimize
x0,x1,...
u0,u1,...

1

2

∞∑
k=0

x⊤
k Qxk + u⊤

k Ruk

subject to x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . ,∞ .

(4.33)

This optimization problem has infinitely many variables and constraints and does not allow for an explicit
analytic solution.
However, it can be shown that the solution results in the linear feedback law

u∗
0 = K∞x̂0 , (4.34)

where the feedback matrix K∞ can be computed numerically via

K∞ = −(B⊤P∞B +R)−1B⊤P∞A , (4.35)

and where the infinite horizon cost matrix P∞ is found by solving the discrete algebraic Ricatti equation
(DARE)

P∞ = A⊤P∞A− (A⊤P∞B)(R+B⊤P∞B)−1(B⊤P∞A) +Q . (4.36)

This cost matrix P∞ determines the infinite-horizon cost-to-go J∞. This is the cost of optimally driving
the states from initial state x̂0 to zero in an infinite amount of steps, i.e.:

J∞(x̂0) = x̂⊤
0 P∞x̂0 . (4.37)

Under some technical conditions which are typically fulfilled in practice for controllable systems, the
DARE (4.36) has a unique positive definite solution P∞ which can be found by performing the so-called
Ricatti recursion.
The Ricatti recursion is performed by initializing P∞ with the weight matrix Q and then updating P∞ with
the right hand side of the DARE (4.36) until the recursion converges to a steady-state value of P∞. If the
aforementioned technical conditions are fulfilled, the Ricatti recursion is guaranteed to converge.
Moreover, under the same conditions, the resulting closed-loop system

xk+1 = Axk +B(K∞xk) = (A+BK∞)xk (4.38)

is guaranteed to be asymptotically stable.
Since the feedback matrix K∞ can be computed efficiently offline, there are no benefits to applying finite-
horizon LQR in real-world applications. The infinite-horizon LQR is always the better choice due to its
optimal performance and stability guarantees. Hence, in practice, “the LQR ontroller” is a synonym for the
infinite-horizon LQR version.
On a final note, the finite-horizon LQR controller with horizon length N can be made equivalent to the
infinite horizon LQR controller by choosing as the terminal weight matrix PN = P∞. In this case, the
terminal cost takes into account the remaining cost (outside of the prediction horizon) to drive the final
state xN to zero in infinite time exactly.

4.4 Constrained linear MPC
Thus far, we have considered unconstrained linear MPC, with which we can tackle the regulating problem
of designing a controller for a linear MIMO system, which:

1. Optimizes “performance”

2. Asymptotically stabilizes the system, i.e. limk→∞ xk = 0.

60

i
i

“main” — 2023/8/17 — 21:45 — page 61 — #62 i
i

i
i

i
i

Note that in order to guarantee stability, we can choose the prediction horizon to be infinite. However, in
the presence of constraints, the control objective becomes more complex. Consider the following state and
control constraints:

x ∈ X , u ∈ U , (4.39)

where the sets X and U are polyhedral regions defined by the linear state and input constraints

X = {x | Axx ≤ bx} , U = {u | Auu ≤ bu} . (4.40)

The control task is now augmented with the following objectives:

3. Satisfy the constraints xk ∈ X , uk ∈ U for k = 0, . . . ,∞.

4. Maximize the “feasible set”, i.e. the set of initial conditions x̂0 for which the objectives 1-3 can
satisfied.

While for the unconstrained case, the feasible set spans the entire state space, this is not the case in the
constrained case. For example, the feasible set excludes the part of state space that violates the state
constraints. Moreover, feasible initial states x̂0 ∈ X can nevertheless lead to an unavoidable constraint
violation at a later time stage.
The best possible MPC controller that achieves objectives 1-4 is defined by the following infinite-horizon
optimal control problem:

minimize
x0,x1,...
u0,u1,...

1

2

∞∑
k=0

x⊤
k Qxk + u⊤

k Ruk

subject to x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . ,∞,

xk ∈ X , k = 0, . . . ,∞,

uk ∈ U , k = 0, . . . ,∞ .

(4.41)

However, this OCP has an infinite amount of variables and is numerically intractable. In contrast to uncon-
strained linear MPC, this OCP does not allow for an analytic solution (explicit or implicit). Therefore, the
only feasible MPC formulation is one with a finite horizon:

minimize
x0,...,xN

u0,...,uN−1

1

2
x⊤
NPNxN +

1

2

N−1∑
k=0

x⊤
k Qxk + u⊤

k Ruk

subject to x0 = x̂0,

xk+1 = Axk +Buk, k = 0, . . . , N − 1,

xk ∈ X , k = 0, . . . , N − 1,

uk ∈ U , k = 0, . . . , N − 1,

xN ∈ Xf ,

(4.42)

where, similar to the finite-horizon LQR, the terminal weight matrix PN gives a quadratic approximation
of the cost outside of the prediction horizon. The terminal region Xf , as we will see later in Section 4.5,
allows us to account for the constraints outside of the prediction horizon.

Feasible set The feasible set XN is defined as the set of initial conditions x0 for which finite-horizon
problem (4.42) with horizon N is feasible. More formally, we define it as

XN = {x0 ∈ Rnx | ∃(u0, . . . , uN−1) such that xk ∈ X , uk ∈ U , k = 0, . . . , N − 1, (4.43)
xN ∈ Xf , with xk+1 = Axk +Buk} . (4.44)

Note that the feasible set is independent of the OCP cost function.
The feasible set depends on the constraint regions X ,U and Xf . If one of these regions shrinks, the feasible
set also shrinks. The feasible set can be enlarged by increasing the horizon N . However, even for an infinite
horizon it cannot become larger than the feasible state region X , i.e. XN ⊆ X ,∀N .

61

i
i

“main” — 2023/8/17 — 21:45 — page 62 — #63 i
i

i
i

i
i

Sparse solution method When considered from an optimization point of view, the constrained linear
quadratic OCP (4.42) is a QP that can be summarized as

minimize
w

1

2
w⊤H̄w (4.45a)

subject to Āw + c̄x̂0 = 0, (4.45b)
D̄w + ē ≤ 0 (4.45c)

where it is important that the decision variables are ordered as w = (x0, u0, x1, u1, . . . , xN−1, uN−1, xN).
As soon as a new state estimate x̂0 becomes available, this QP needs to be solved, hence resulting in a large
computational cost compared to the unconstrained case. The QP can then be solved online with any QP
solver (as e.g. quadprog in Matlab). Moreover, the QP matrices that enter the KKT matrix, i.e. H̄, Ā
and D̄, have a special, “banded” OCP structure with N + 1 block matrices on the diagonal, which renders
them sparse, e.g.:

H̄ =



∗ ∗
∗ ∗

∗ ∗
∗ ∗

. . .
∗ ∗
∗ ∗


(4.46)

As the horizon length N increases, they get increasingly sparse (that is, the percentage of elements that are
zeros grows). This special structure can be efficiently exploited by specialized solvers, that work only with
the dense sub-matrices.

Dense solution method Although the sparse QP (4.45) can be efficiently solved, it also has a large
amount of of optimization variables, i.e. nw = N(nx+nu)+nx. For short horizons (where sparsity is rel-
atively low), and a large amount of states, a dense QP formulation might be beneficial. In this formulation,
the state variables are eliminated from the QP, similar as in the unconstrained case, using (4.20), resulting
in the QP

minimize
U

1

2
U⊤(Θ⊤Q̂Θ+ R̂)U + U⊤ΘQ̂Ex̂0 .

subject to D̄dU + ēd ≤ 0,

(4.47)

where the matrices D̄d, ēd can be constructed by substituting the states X from the inequalities (4.45c)
with (4.20).
The resulting dense QP has fewer optimization variables: nw = Nnu, which results in smaller dimensions
of the KKT matrix, which can result in faster computation times. However the matrices that make up the
KKT matrix are now dense, e.g.:

(Θ⊤Q̂Θ+ R̂) =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 , (4.48)

which renders the KKT matrix more expensive to invert.
Moreover, the matrix Θ involves many matrix potentiations of the system matrix A, which can lead to an
ill-conditioned KKT matrix for unstable systems.

Solution analysis The unconstrained MPC controller resulted in a linear control law. This was due to the
fact that the OCP is comprised of equality constraints only. These equality constraints could be eliminated
to obtain an unconstrained QP with corresponding analytic solution.
In constrained MPC, this method cannot be applied due to the inequality constraints, which cannot be
eliminated since the active set typically varies depending on the initial state x̂0.

62

i
i

“main” — 2023/8/17 — 21:45 — page 63 — #64 i
i

i
i

i
i

However, we can consider the case where within a region Xi around a given initial state x̂0, the active set
A remains constant, i.e. all inequalities remain active or inactive. Within this region, the active inequalities
can be treated as equality constraints. For the dense QP (4.47), this results in the locally equivalent QP

minimize
U

1

2
U⊤(Θ⊤Q̂Θ+ R̂)U + U⊤ΘQ̂Ex̂0 .

subject to D̄d,AU + ēd,A = 0,

(4.49)

where the matrix D̄d,A and vector ēd,A enforce only the active inequality constraints. The KKT conditions
for this QP read as [

(Θ⊤Q̂Θ+ R̂) D̄⊤
d,A

D̄d,A 0

] [
U
λ

]
+

[
0

ēd,A

]
+

[
ΘQ̂E
0

]
x̂0 = 0 , (4.50)

so that the optimal solution can be written as

u∗
0 =

[
I 0 · · · 0

] [U∗

λ∗

]
(4.51)

= −
[
I 0 · · · 0

] [(Θ⊤Q̂Θ+ R̂) D̄⊤
d,A

D̄d,A 0

]−1([
ΘQ̂E
0

]
x̂0 +

[
0

ēd,A

])
. (4.52)

which is an affine control law that is optimal for all x̂0 ∈ Xi. Outside of this region, the matrix D̄d,A
changes, and thus so does the control law.
Thus, the solution of the constrained MPC problem is characterized by a set of non-overlapping regions
X1,X2, . . . ,Xn ⊆ XN with corresponding affine feedback control laws:

u∗
0 =


K1x̂0 + v1, if x̂0 ∈ X1,
...

...
Knx̂0 + vn, if x̂0 ∈ Xn,

(4.53)

which can also be described as a piecewise affine control law.
As a result, a constrained linear MPC controller is nonlinear controller.

Explicit MPC It is possible to compute the different regions Xi and corresponding feedback matrices
Ki offline, using multi-parametric programming. This fact is exploited in explicit MPC. Here, the different
regions and feedback matrices are pre-computed and stored in the form of a look-up table. In the online
setting, when the state estimate comes in, the correct region needs to be identified, and the computational
cost of the feedback law is then again that of a simple matrix-vector product, instead of that of solving a
QP.
However tempting, this approach is only feasible for small systems and a low amount of possible active set
changes. The reason is that for q optimization constraints, there are 2q different possible active sets to be
checked. Therefore, for larger systems, it is more efficient to repeatedly compute the numerical solution of
either the sparse QP (4.45) or the dense QP (4.47) online.

4.5 Feasibility and stability
As discussed for the finite-horizon LQR controller, the short-sightedness of the controller causes a mis-
match between the open-loop prediction and the closed-loop response of the controlled system. In the
unconstrained MPC case, this can lead to a loss of stability. In the case of constrained MPC, this can addi-
tionally lead to infeasibility of the OCP: even if the initial state x̂0 is in the feasible set XN of the OCP, the
closed-loop system might navigate to a state outside of the feasible set. In this case, the MPC problem is
said to be not recursively feasible.
Of course, both recursive feasibility and closed-loop stability are necessary requirements for the practical
application of MPC. In this section, we will investigate these properties and look into how we can enforce
them by making the necessary modifications to the finite-horizon MPC problem

63

i
i

“main” — 2023/8/17 — 21:45 — page 64 — #65 i
i

i
i

i
i

4.5.1 Recursive feasibility
In order to describe the property of recursive feasibility of MPC, the following definitions are useful.
Since these concepts are applicable to nonlinear systems as well, we consider here the general dynamics
xk+1 = f(xk, uk).

Definition 15. A set O is called “positive invariant” for the autonomous discrete system dynamics xk+1 =
f(xk) if it holds that

xk ∈ O ⇒ xk+1 ∈ O , ∀k ∈ N+ . (4.54)

Thus, if x0 ∈ O, and the positive invariant set is within the constraints, i.e. O ∈ X , the system trajectory
will never violate the constraints, and recursive feasibility holds.

Definition 16. A set O∞ ⊂ X is “maximal positive invariant” with respect to X if it is positive invariant
and if it contains all possible positive invariant sets.

The maximal positive invariant set O∞ is thus the largest possible set of initial states for which recursive
feasibility of the autonomous system holds. Such a set is difficult to compute in general, but it can be done
for linear systems with polyhedral state constraints.

Definition 17. A set C is called “control invariant” for the controlled system xk+1 = f(xk, uk), with
constraint sets X and U if it holds that

xk ∈ C ⇒ ∃u ∈ U s.t. xk+1 ∈ C , ∀k ∈ N+ . (4.55)

Definition 18. The set C∞ is “maximal control invariant” for the controlled system xk+1 = f(xk, uk)
with constraint sets X and U if it is control invariant and if it contains all control invariant sets contained
in X .

Thus, for all states in the maximal control invariant set C∞, there exists a control law that ensures that the
system constraints are never violated, i.e. the system can be made recursively feasible.
For constrained linear systems, it is often too complex to compute control invariant sets explicitly. For
nonlinear systems, this is almost always the case. Rather, we employ constrained MPC which implicitly
defines a control invariant set.
Note that the maximal control invariant set C∞ represents the largest set of recursively feasible initial
conditions that any controller can achieve! If the set C∞ would be known, this ideal controller κ(x) could
be formulated as the solution of following optimization problem:

κ(x) = arg min
u ∈ U

J(x, u)

subject to f(x, u) ∈ C∞ ,
(4.56)

for any arbitrary cost function J(x, u) (including J(x, u) = 0).
The maximal control invariant set is in general very difficult to compute, so that in practice, we cannot
use (4.56) for our controller synthesis. However, we can also define C∞ implicitly via the infinite-horizon
constrained MPC problem

minimize
x0,x1,...
u0,u1,...

∞∑
k=0

J(xk, uk)

subject to x0 = x̂0,

xk+1 = f(xk, uk), k = 0, . . . ,∞,

xk ∈ X , k = 0, . . . ,∞,

uk ∈ U , k = 0, . . . ,∞ .

(4.57)

which is recursively feasible if and only if x̂0 ∈ C∞, independent of the cost function J .
As we well know, this problem is computationally intractable. Therefore we approximate this problem
with a finite-horizon MPC problem with horizon N , and we introduce the terminal constraint

xN ∈ Xf , (4.58)

with the terminal set Xf ⊂ X . The terminal set Xf and horizon N should be chosen so that:

64

i
i

“main” — 2023/8/17 — 21:45 — page 65 — #66 i
i

i
i

i
i

• ... the feasible set of the MPC problem XN is control-invariant, i.e. every feasible initial condition is
recursively feasible.

• ... the feasible set of the MPC problem XN is as large as possible (ideally XN = C∞).

Typically two variants are considered: a terminal point constraint at zero, and a terminal constraint in some
convex set.

Terminal point constraint The terminal point constraint is formulated as

xN = 0 . (4.59)

Independent of the chosen horizon, this constraint enforces recursive feasibility for all feasible points. This
can be proven as follows.
Consider any feasible initial condition xk ∈ XN The corresponding feasible and optimal control and state
trajectories are given by {u∗

0, u
∗
1, . . . , u

∗
N−1}, {x∗

0, x
∗
1, . . . , x

∗
N}, with x∗

N = 0. We apply the first control
and compute the next state Axk +Bu∗

0 = x∗
1.

Recursive feasibility dictates that x∗
1 must be feasible as well. This is the case, since we can construct the

following feasible control trajectory: {u∗
1, u

∗
2, . . . , u

∗
N−1, 0}. The first N − 1 stages are feasible since they

are identical to the last N − 1 stages of the previous, feasible problem. The last stage is also feasible since
it holds that A x∗

N︸︷︷︸
=0

+B · 0 = 0, which satisfies the terminal point constraint. Hence, recursive feasibility

holds for any xk ∈ XN and the feasible set is control invariant.
The terminal point constraint is a very simple way to impose recursive feasibility, but it often results in
an overly restrictive feasible set, unless the horizon N is chosen very large, which is computationally
expensive. Therefore a terminal set constraint is often preferable.

Terminal set constraint Since the terminal point constraint reduces the size of the feasible set, we can
relax this constraint to a terminal set constraint, with convex set Xf :

xN ∈ Xf . (4.60)

How to choose this terminal set to ensure recursive feasibility? It must be control invariant!
That means that there must exist some local control law κf(xk) such that

xk+1 = f(xk, κf(xk)) ∈ Xf , for all xk ∈ Xf , (4.61)

while satisfying the constraints

Xf ⊆ X , κf(xk) ∈ U , for all xk ∈ Xf . (4.62)

Recursive feasibility can now be shown in similar fashion to the terminal point constraint.
Consider a feasible initial state xk ∈ XN and corresponding feasible and optimal control and state trajec-
tories given by {u∗

0, u
∗
1, . . . , u

∗
N−1}, {x∗

0, x
∗
1, . . . , x

∗
N}, with x∗

N = 0.
At the next state xk+1 = x∗

1, we can construct the following feasible control sequence:
{u∗

1, u
∗
2, . . . , u

∗
N−1, κf(x

∗
N)}. This sequence is feasible because x∗

N ∈ Xf which is positive invariant for
the closed-loop system with control law κf . Thus: κf(x

∗
N) ∈ U and Ax∗

N + Bκf(x
∗
N) ∈ Xf , so that

recursive feasibility holds for all xk ∈ XN.

Example. As mentioned above, it is in general difficult to compute (maximal) control invariant sets. How-
ever, in the case of a linear system with quadratic cost, it can be done. Let us choose as a local control law
the infinite horizon LQR controller K∞, given by (4.35). The terminal set Xf can now be chosen to be the
maximum positive invariant set of the closed-loop system xk+1 = (A+BK∞)xk, so that:

xk+1 = (A+BK∞)xk ∈ Xf , for all xk ∈ Xf , (4.63)

and so that all constraints are satisfied:

Xf ⊆ X , K∞xk ∈ U , for all xk ∈ Xf . (4.64)

65

i
i

“main” — 2023/8/17 — 21:45 — page 66 — #67 i
i

i
i

i
i

The “trick” of the terminal set is thus to construct a region inside of the constraints, for which it holds that
an unconstrained controller can keep the system inside this region.
For increasing N , the (recursively) feasible set XN of the OCP problem will approach the maximum in-
variant set C∞ of the constrained problem.
Recursive feasibility does not depend on the cost function, but it also does not guarantee stability of the
system. To guarantee closed-loop stability, additional considerations need to be made.

4.5.2 Stability
Stability of nonlinear systems Let us first formally define stability for nonlinear, time-invariant, discrete
systems of the form xk+1 = f(xk), around an equilibrium point xss = f(xss).

Definition 19. The equilibrium point xss ∈ Ω of the system xk+1 = f(xk) is asymptotically stable in the
positive invariant set Ω ⊆ Rnx if it is Lyapunov stable and attractive, i.e.

lim
k→∞

∥xk − xss∥ = 0 , ∀x0 ∈ Ω . (4.65)

If it additionally holds that Ω = Rnx , then the equilibrium point is globally asymptotically stable.

In this context, the set Ω is also called the region of attraction of the equilibrium point.
How do we investigate stability of general nonlinear systems? To this aim, Lyapunov functions can be a
useful tool.

Definition 20. Consider the equilibrium point xss = 0 of the system xk+1 = f(xk). Let Ω ⊂ Rnx be a
closed and bounded positive invariant set for this system, containing the origin. A function V : Rnx → R,
which

• is continuous at the origin.

• is finite for all x ∈ Ω.

• satisfies

V (0) = 0 , (4.66)
V (x) > 0, ∀x ∈ Ω\{0} , (4.67)

V (f(x))− V (x) ≤ −α(x), ∀x ∈ Ω\{0} , (4.68)

where α : Rnx → R is continuous positive definite,

is called a Lyapunov function.

If there exists a Lyapunov function V (x) in Ω for the system dynamics f , then the equilibrium point xss is
asymptotically stable in Ω.

Example. Consider the autonomous nonlinear system xk+1 = x2
k, with xk+1, xk ∈ R. Consider now the

trial function V (x) = x2. We investigate the condition (4.68):

V (xk+1)− V (xk) = x4
k − x2

k = x2
k(x

2
k − 1). (4.69)

It holds that V (xk+1) − V (xk) < 0 if and only if (x2
k − 1) < 0, i.e. if |xk| < 1. Thus, the trial function

is a Lyapunov function for this particular system with the region of attraction Ω = {x ∈ R | |x| < 1}. For
states xk /∈ Ω, the nonlinear system is unstable.

Example. Consider an unconstrained linear system with state x ∈ Rnx that is being regulated with an
infinite-horizon LQR controller K∞ with the resulting closed-loop dynamics xk+1 = (A+BK∞)xk. To
show stability of the autonomous closed-loop system, we consider as a trial function the infinite-horizon
cost-to-go:

V (x) = x⊤P∞x , (4.70)

66

i
i

“main” — 2023/8/17 — 21:45 — page 67 — #68 i
i

i
i

i
i

where P∞ ≻ 0 is the solution of the DARE (4.36). We recall that K∞ is given as a function of P∞ by
(4.35). We now test the Lyapunov criterium (4.68):

V (xk+1)− V (xk) = x⊤
k (A+BK∞)⊤P∞(A+BK∞)xk − x⊤

k P∞xk . (4.71)

This expression less then zero if and only if it holds that

(A+BK∞)⊤P∞(A+BK∞)− P∞ ≺ 0 . (4.72)

We can reformulate the left hand side of this matrix inequality, first using expression (4.35), then using the
DARE (4.36) to obtain:

A⊤P∞A+A⊤P∞BK∞ − P∞ −K⊤
∞RK∞ = −Q−K⊤

∞RK∞ ≺ 0 . (4.73)

The final inequality holds for any Q ⪰ 0, R ≻ 0. Thus the infinite-horizon LQR controller (if it exists)
leads to a globally asymptotically stable closed-loop system, i.e, for all xk ∈ Rnx .

Stability of linear MPC We now have all the necessary tools to investigate the closed-loop stability of a
linear system controlled using linear MPC. Recall that this closed-loop system has piecewise linear (thus
nonlinear) dynamics. Similar to recursive feasibility, we consider two cases of linear MPC: one with a
terminal point constraint, and one with a terminal set and terminal cost. In both cases we will consider as
a trial function the optimal MPC cost function:

V (x) = J∗(x) , (4.74)

which is the optimal cost value obtained by solving (4.18) for x̂0 = x.
Note that for the case of a terminal point constraint xN = 0, the terminal cost x⊤

NPNxN is always zero,
and it can be dropped.

Terminal point constraint We consider an initial state in the feasible set, i.e., x0 ∈ XN. The feasible
set is recursively feasible, as shown in previous considerations. To investigate the Lyapunov criterium, we
first evaluate the trial function at xk:

V (xk) =

N−1∑
i=0

x∗⊤
i Qx∗

i + u∗⊤
i Ru∗

i . (4.75)

with x∗
i , u∗

i the optimal MPC solution for initial state xk. How to evaluate the trial function at xk+1? We
know that the MPC problem for initial state xk+1 admits as a feasible, but possibly suboptimal solution
(u∗

1, u
∗
2, . . . , u

∗
N−1, 0), (x

∗
1, x

∗
2, . . . , x

∗
N , 0). Thus, the optimal cost for this initial state must be less or equal

than the cost for this feasible-but-suboptimal solution:

V (xk+1) ≤
N−1∑
i=1

x∗⊤
i Qx∗

i + u∗⊤
i Ru∗

i = V (xk)− (x∗⊤
0 Qx∗⊤

0 + u∗⊤
0 Ru∗⊤

0)︸ ︷︷ ︸
>0, if x∗

0 ̸=0

(4.76)

Thus we can conclude that for all x∗
0 ∈ XN\{0}, it holds that

V (xk+1)− V (xk) < 0 , (4.77)

which proves that the closed loop is asymptotically stable.

Terminal set constraint In the case of a terminal set constraint, we again assume that an unconstrained,
invariance-inducing controller κf(x) is applied inside the terminal set Xf . In the case of linear MPC, this
controller can be chosen as the infinite horizon LQR, i.e. κf(x) = K∞x. We can now enforce stability by
ensuring that the terminal cost x⊤PNx is a Lyapunov function in the terminal set (i.e., the control law κf

is stabilizing inside the terminal set). Moreover, it should hold that:

x⊤
k+1PNxk+1 − x⊤

k PNxk ≤ −x⊤
k Qxk − κf(xk)

⊤Rκf(x) . (4.78)

This condition is satisfied for the case that κf(x) = K∞x and PN = P∞, as can be seen from inequality
(4.73).
We leave the proof as an exercise for the reader.

67

i
i

“main” — 2023/8/17 — 21:45 — page 68 — #69 i
i

i
i

i
i

Summary We summarize the problem of feasibility and stability for MPC in the following way:

• An infinite-horizon MPC controller provides stability and recursive feasibility (invariance).

• The infinite horizon can be replaced by forcing the final predicted state into an invariant set for which
an invariance-inducing and stabilizing controller exists, for which the infinite-horizon cost-to-go can
be expressed in close form.

• The simplest terminal set is given by a point constraint, i.e. Xf = {0}. However, this may restrict
the feasible set XN (and thus region of attraction) too much.

• The combination of a convex terminal set and terminal cost function can increase the feasible set.
For linear systems and quadratic cost functions, such a set and cost function can be computed.

• The region of attraction can approach the maximum control invariant set by increasing the horizon
length N .

• In practice, the terminal constraint is often omitted at the cost of a very large horizon length N . This
then leads to a larger region of attraction, which is however difficult to characterize. In this case,
stability cannot be guaranteed a priori, but is checked empirically via sampling.

• The concepts above can be directly applied to nonlinear MPC as well. However, in this case, com-
puting a stabilizing terminal set and cost function is very difficult.

68

i
i

“main” — 2023/8/17 — 21:45 — page 69 — #70 i
i

i
i

i
i

Chapter 5

Nonlinear Model Predictive Control

The nonlinear model predictive control (NMPC) approach allows more challenging control problems to
be handled than those dealt with by the linear model predictive control (LMPC) method. NMPC employs
nonlinear system models that accurately capture the dynamics of systems with inherent nonlinearities.
This enables NMPC to provide superior performance and improved control outcomes compared to LMPC,
especially when dealing with complex control problems.

5.1 Introduction to NMPC
The system model within LMPC is restricted to being a linear or a linearized model with a quadratic
objective function such as for a reference tracking problem. However, the use of a linear model is often
insufficient for representing the system behavior. In these cases, the NMPC approach allows for a better
control performance than the LMPC. The term NMPC is used typically when the resulting optimization
problem is neither a QP nor an LP. An NLP optimization problem results for MPC when a nonlinear
system model, nonlinear constraints or a non-convex cost function is considered. Typically, nonlinear
models are present as continuous-time models, e.g. because they are derived from physical modeling. The
consideration of this continuous-time nonlinear models in an optimization-based control algorithm results
in an OCP. An example of an OCP is depicted by the following optimization problem with cost function
Jocp.

Jocp(x(t), u(t)) =

∫ T

0

L(x(t), u(t)) dt + E (x(T))

The cost function Jocp in this example is subject to the system dynamics given as an ODE model, the fixed
initial state of the system at t = t0, the equality constraints on the final states T , and the path constraints
which are present as inequality constraints.

minx,u Jocp(x(t), u(t))
s.t.

ẋ(t) = f(x(t), u(t)), t ∈ [0, T], (ODE model)
x(0) = x0, (fixed initial value)

h(x(t), u(t)) ≤ 0, t ∈ [0, T], (path constraints)
r(x(T)) = 0 (end point constraints)

Equivalent formulations Other variants of the above presented OCP that result in equivalent reformu-
lations or simple extensions could be considered as well. We remark that, for instance, other optimization
variables could be present as well, such as a free parameter p that can be chosen but is constant over time,
like e.g. the size of a component in the system. Such parameters could be added to the optimization
formulation above by defining dummy states p(t) that satisfy the dummy dynamic model equations

ṗ = 0.

69

i
i

“main” — 2023/8/17 — 21:45 — page 70 — #71 i
i

i
i

i
i

This implies that they are constant over time. Note that the initial value of p0 is not fixed by these constraints
and thus we would have obtained our aim of having a time constant parameter vector that is free for
optimization.
In optimization, we might have different requirements than just a fixed initial state. We might consider a
free initial state that is also up to optimization. We might, for example, have both a fixed initial state and a
fixed terminal state that we want to reach. Or we might just look for periodic sequences with x(t0) = x(T).
All these desires on the initial and the terminal state can be expressed by a boundary constraint function

r(x(t0), x(T)) = 0.

For the case of fixed initial value x(t0) = x0, this function would just be

r(x(t0), x(T)) = x(t0)− x0

where x0 is the fixed initial value and not an optimization variable. Another example would be to have
both ends fixed, resulting in a function r as follows:

r(x(t0), x(T)) =

[
x(t0)− x0

x(T)− xT

]
.

Finally, periodic boundary conditions x(t0) = x(T), for instance to be found in period movement of a kite,
can be imposed by setting

r(x(t0), x(T)) = x(t0)− x(T)

Of course, also constraints at other discrete time points tk other that the initial and final time could be
considered. Furthermore, the constraints could also be defined as inequality constraints instead of equality
constraints, which is common practice for a terminal constraint on the final time t = T .
Other constraints that are usually present are path constraint inequalities of the form

h(x(t), u(t)) ≤ 0, 0 ≤ t ≤ T.

In the case of upper and lower bounds on the controls, umin ≤ uk ≤ umax, the function h would just be

h(x, u) =

[
u− umax

umin − u

]
.

Discretized OCP Due to the infinite number of optimization variables, OCPs usually cannot be solved
in real time, especially when a nonlinear model is considered. Thus, the OCP cannot be directly used for
practical NMPC applications. However, in order to obtain a tractable optimization problem, the OCP can
be approximated by an NLP, that is, a finite-dimensional optimization problem. The transformation from
the OCP to the NLP is conducted by a suitable discretization of the control and state trajectories on the
time horizon. The process of the discretization is detailed in the following section.
Given a discretization method, a quite generic discrete time optimal control problem can be formulated as
the following constrained NLP:

minimize
x0,u0,x1,...,
uN−1,xN

N−1∑
k=0

L(xk, uk) + E(xN) (5.1a)

subject to xk+1 − f(xk, uk) = 0, k = 0, . . . , N − 1, (5.1b)
h(xk, uk) ≤ 0, k = 0, . . . , N − 1, (5.1c)
r(x0, xN) = 0. (5.1d)

Note that an NLP also results if the system model, cost function, and the constraints are directly given in
discrete time. Also for data-based modeling, usually a discrete-time system model results. The general
NLP is usually of the following form:

minz∈Rn J(z)
s.t. g(z) = 0,

h(z) ≤ 0

70

i
i

“main” — 2023/8/17 — 21:45 — page 71 — #72 i
i

i
i

i
i

0 5 10 15 20 25 30 35 40 45
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Path constraint h(x1) ≤ 0

Path constraint h(x2) ≤ 0

Initial value:
x0,2

Initial value: x0,1

Terminal conditions:
r (xN) ≤ 0

k

State xk,1

State xk,2

Control uk

Figure 5.1: Variables of a discrete optimal control problem with N = 49

The optimization variables are denoted by z ∈ Rn, while g defines the equality constraints and h the
inequality constraints. Here, z = (x0, u0, x1, u1, . . . , xN−1, uN−1, xN), g is given by the constraints
(5.1b) and (5.1d) and h by (5.1c).

5.2 Numerical Integration Methods
Before we delve into NMPC, we should take a look at simulation methods, that is, methods for numerical
integration in time. Within NMPC the system states need to be predicted, for which numerical simulation
methods are used. The goal of numerical simulation is to compute the trajectory of x(t) which, starting
from the initial values, satisfies as best possible the system dynamics given by the ODE. This problem is
also referred to as an initial value problem (IVP). The system dynamics and the initial value condition can
be described by

ẋ(t) = f(x(t), u(t), t)

x(t0) = x0

The trajectory u(t) can be assumed to be part of the function f . Thus, the following differential equation
with simplified notation is examined in the remainder of this section.

ẋ(t) = f(x(t), t)

x(t0) = x0

Different to linear systems, nonlinear differential equations allow an analytical solution only in a few spe-
cial cases. Numerical integration methods are used to approximately solve a well-posed IVP that satisfies
the conditions of Theorem 1.
All numerical integration methods start by discretizing the state trajectories over a discretization time grid
over the integration interval [t0, tf]. For the sake of simplicity, let us assume a uniform time grid, i.e. having
fixed interval sizes of ∆t = (tf − t0) /N , where N is a positive integer. The discretization time grid is

71

i
i

“main” — 2023/8/17 — 21:45 — page 72 — #73 i
i

i
i

i
i

then setup as tk := t0 + k∆t with k = 0, . . . N , and divides the time interval [t0, tf] into N subintervals
[tk, tk+1], each of length ∆t. Then, the solution is approximated on the grid points tk by discrete values sk
that shall satisfy

sk ≈ x(tk), k = 0, . . . , N

where x(t) is the exact solution to the IVP.
Numerical integration methods differ in the ways they approximate the solution on the grid points and in
between, but they all shall have the property that

sk → x(tk) if N → ∞.

This property is labelled convergence. Methods differ in how fast the integrator converges as N increases.
One says that a method is convergent with order p if

max
k=0,...,N

∥sk − x(tk)∥ = O(∆tp).

In this case, the local truncation error

τk = ∥x(tk)− sk(x(tk−1),∆t)∥,

that is, the error caused by one step sk of the numerical method if started at x(tk−1) must be of order
O(∆tp+1).
Numerical integration methods come in many different variants, and can be categorized according to two
major branches, on the one hand the one-step vs. the multistep methods, on the other hand the explicit vs.
the implicit methods.

One-Step Versus Multi-step Methods One-step methods only use the values sk at the discrete time
instance k to calculate sk+1. Multi-step methods also use previous values sk, sk−1, . . . at the discrete time
instance k for the calculation of sk+1. One example for a one-step method is the Runge–Kutta 4 method.
Examples for multi-step (not covered here) schemes are the Adams–Bashforth and the Adams–Moulton
methods.

Implicit Versus Explicit Methods Explicit methods use for the calculation of sk+1 only derivatives at
previous values of x up to time point tk, e.g. sk, sk−1, In implicit methods, sk+1 depends also on the
derivative at time point tk+1. Therefore, to determine sk+1, an iterative solution method as the Newton
method has to be used.

5.2.1 Explicit Methods
The simplest integrator is the explicit Euler method. It first sets s0 := x0 and then recursively computes,
for k = 0, . . . , N − 1:

sk+1 := sk +∆t f(sk, tk).

It is a first-order method, i.e. p = 1, and due to this low order it is very inefficient and should not be used
in practice. Indeed, a few extra evaluations of f in each step can easily yield higher-order methods with
higher accuracy.
Other methods exist that deliver the desired accuracy levels at much lower computational cost. One of the
most widespread integrators is the Runge-Kutta Method of Order Four, abbreviated as RK4. One step of
the RK4 method needs four evaluations of f and stores the results in four intermediate quantities ki ∈ Rnx ,
i = 1, . . . , 4.

72

i
i

“main” — 2023/8/17 — 21:45 — page 73 — #74 i
i

i
i

i
i

Like the Euler integration method, the RK4 also generates a sequence of values sk, k = 0, . . . , N , with
s0 = x0. At sk, and using step size h = ∆t, one step of the RK4 method proceeds as follows:

k1 = f(sk, tk) (5.2a)

k2 = f(sk +
h

2
k1, tk +

h

2
) (5.2b)

k3 = f(sk +
h

2
k2, tk +

h

2
) (5.2c)

k4 = f(sk + h k3, tk + h) (5.2d)

sk+1 = sk +
h

6
(k1 + 2k2 + 2k3 + k4) (5.2e)

Runge-Kutta (RK) methods methods use on each discretization interval [tk, tk+1] not only one but m
evaluations of f . They then hold intermediate state values sk,i, i = 1, . . . ,m within each interval [tk, tk+1],
which live on a grid of intermediate time points tk,i := tk+ci ∆t with suitably chosen ci ∈ [0, 1]. One RK
step is then obtained via the following construction: There exist many other Runge–Kutta methods. They
are given by

sk+1 = sk + h

N∑
i=1

biki

where

k1 = f(sk, tk),

k2 = f(sk + (a21k1)h, tk,2),

k3 = f(sk + (a31k1 + a32k2)h, tk,3),

...
km = f(sk + (as1k1 + as2k2 + · · ·+ as,s−1ks−1)h, tk,m).

To specify a particular method, one needs to provide the integer m (the number of stages), and the coef-
ficients aij (for 1 ≤ j < i ≤ m), bi (for i = 1, 2, ...,m) and ci (for i = 2, 3, ...,m). The matrix [aij] is
called the Runge–Kutta matrix, while the bi and ci are known as the weights and nodes. Each RK method
is characterized by its so-called Butcher tableau of dimension m:

0
c2 a21
c3 a31 a32
...

.
cm am1 · · · am,m−1

b1 b2 · · · bm

The RK4 Butcher tableau is
0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

which yields a method of order m = 4, often simply referred to as the RK4 integration scheme. One step
of RK4 is thus as expensive as four steps of the Euler method. But it can be shown that the local truncation
error is of order h5, therefore rendering RK4 a fourth-order method. In practice, this means that the RK4
method usually needs tremendously fewer function evaluations than the Euler method to obtain the same
accuracy level.
Practical Runge-Kutta methods also have stepsize control, i.e. they adapt ∆t depending on estimates of
the local error, which are obtained by comparing two RK steps of different orders. Particularly efficient

73

i
i

“main” — 2023/8/17 — 21:45 — page 74 — #75 i
i

i
i

i
i

t

0 0.2 0.4 0.6 0.8 1

x

-5

0

5

10

Figure 5.2: Numerical simulation of the first-order linear dynamics ẋ = −15x using the explicit Euler
method with ∆t = 0.1, starting from the initial condition x(0) = 10. The exact solution is displayed as
a plain curve, while the numerical solution is displayed using circles, connected by dotted lines. One can
observe that due to the steep state derivative ẋ in the early time of the integration, the explicit Euler scheme,
which essentially computes the next state on the time grid via the tangent to the trajectory, significantly
overshoots the exact solution of the ODE.

adaptive methods are the Runge-Kutta-Fehlberg methods, which reuse as many evaluations of f as possible
between the two RK steps.
Because of its simplicity, the Euler method may appear appealing in practice, however it is strongly recom-
mended to favor higher-order methods. To get an intuitive idea of why it is so, let us assume that we want
to simulate an ODE on the interval [0, 1] with an accuracy of ϵ = 10−3 and that a first-order method gives
an accuracy ϵ = 10∆t. Then a time step of ∆t = 10−4 is required, i.e. N = 10000 steps are necessary in
order to achieve the desired accuracy. If a fourth-order method gives the accuracy ϵ = 10(∆t)4, a time step
of ∆t = 0.1 is needed, i.e. only N = 10 steps are required for the same accuracy. Given this enormous dif-
ference, the fourfold cost per RK step required to deploy the fourth-order method is more than outweighed
by the low number of steps required, such that it is actually 250 times cheaper than the first-order Euler
method. In practice, Runge-Kutta integrators with orders up to 8 are used, but the Runge-Kutta-Fehlberg
method of fourth order (with fifth-order evaluation for error estimation and control) is the most popular
one.

5.2.2 Stiff Systems and Implicit Integrators*
When an explicit integrator is applied to a very stable system, its steps can overshoot the actual trajectory of
the ODE solution, resulting in an inaccurate numerical integration, or even outright instability. The simple
prototypical first-order system is often used to discuss these issues:

ẋ = −λx.

It takes the explicit, exact solution x(t) = x(t0)e
−λ(t−t0). For a very large λ ≫ 1 the ODE has a very fast

stable mode decaying very quickly to zero. If we now use an explicit Euler method with stepsize ∆t, then
the trajectories of the discrete state sk are defined by the discrete-time dynamic system:

sk+1 = sk −∆t λsk = (1−∆t λ)sk, s0 = x(t0),

74

i
i

“main” — 2023/8/17 — 21:45 — page 75 — #76 i
i

i
i

i
i

which differs significantly from the exact trajectories x(t), see Fig. 5.2 for an illustration. This discrete
system actually becomes unstable if ∆t > 2

λ , which might be very small when λ is very large. Note
that such a small stepsize is not necessary to obtain a high accuracy, but is only necessary to render the
integrator stable.
It turns out that all explicit methods suffer from the fact that systems having very fast modes necessitate
excessively short step sizes. This becomes particularly problematic if a system has both slow and fast
decaying modes, i.e., if some of the eigenvalues of the Jacobian ∂f

∂x have a small magnitude while others
are strongly negative, resulting in very quickly decaying dynamics. In such a case, one typically needs to
perform fairly long simulations in order to capture the evolution of the slow dynamics, while very short
steps are required in order to guarantee the stability and accuracy of the numerical integration due to the
very fast modes. Such systems are called stiff systems.
Instead of using explicit integrators with very short stepsizes, stiff systems can be much better treated by
implicit integrators. The simplest of them is the implicit Euler integrator, which in each integrator step
solves the nonlinear equation in the variable sk+1

sk+1 = sk +∆t f(sk+1, tk+1).

One ought to observe the subtle yet crucial difference between this equation and the one used for deploying
an explicit Euler integrator. While explicit Euler requires implementing an explicit rule, the equation above
provides sk+1 implicitly. If applied to the fast, stable test system from above, for which this equation can
be solved explicitly because of the linear dynamics, the implicit Euler scheme yields the discrete dynamics

sk+1 = sk −∆t λsk+1 ⇔ sk+1 = sk/(1 + ∆t λ),

which are stable for any ∆t > 0 and always converge to zero, like the true solution of the ODE. Hence
the implicit Euler scheme is always stable for this example. This idea can be easily generalized to implicit
Runge-Kutta methods where the nonlinear system needs typically to be solved by a Newton method.

5.3 Overview of Solution Methods for continuous-time OCP
Generally speaking, there are three basic families of approaches to address continuous-time optimal control
problems, (a) state-space, (b) indirect, and (c) direct approaches, cf. the top row of Fig. 5.3. While we only
consider the direct methods in this course, in particular direct multiple shooting, we give a brief overview
about the three different approaches.
State-space approaches use the principle of optimality that states that each subarc of an optimal trajectory
must be optimal. While this was the basis of dynamic programming in discrete time, in the continuous time
case this leads to the so-called Hamilton-Jacobi-Bellman (HJB) equation, a partial differential equation
(PDE) in the state space. Methods to numerically compute solution approximations exist, but the approach
severely suffers from Bellman’s “curse of dimensionality” and is restricted to small state dimensions.
Indirect Methods utilize the necessary conditions of optimality for infinite-dimensional problems, which
are similar to the KKT conditions used in optimization problems with finite dimensions. While the KKT
conditions result in a root-finding problem involving a system of equations, the necessary conditions of
optimality for infinite-dimensional problems give rise to a boundary value problem (BVP) in ordinary
differential equations (ODEs). A BVP can be seen as analogous to an initial value problem but with
additional end-point constraints. This BVP must numerically be solved, and the approach is often sketched
as “first optimize, then discretize”, as the conditions of optimality are first written in continuous time for
the given problem, and then discretized in one way or another in order for computing a numerical solution.
The two major drawbacks are that the underlying differential equations are often difficult to solve due to
strong nonlinearity and instability, and that changes in the control structure, i.e. the sequence of arcs where
different constraints are active, are difficult to handle.
Direct methods transform the original infinite-dimensional optimal control problem into a finite-dimensional
nonlinear programming problem (NLP) which is then solved by structure-exploiting numerical optimiza-
tion methods. Roughly speaking, direct methods transform (typically via numerical methods) the continuous-
time dynamic system into a discrete-time system and then proceed as described in the first two parts of this
script. The approach is therefore often sketched as “first discretize, then optimize”, as the problem is first

75

i
i

“main” — 2023/8/17 — 21:45 — page 76 — #77 i
i

i
i

i
i

Continuous Time Optimal Control
�������������

PPPPPPPPPPPPP

Hamilton-Jacobi-
Bellman Equation:

Tabulation in
State Space

Indirect Methods,
Pontryagin:

Solve Boundary Value
Problem

Direct Methods:
Transform into

Nonlinear Program
(NLP)

((((((((((((((((((((((((((

�������������

�
�

�
��

Direct Single Shooting:
Only discretized controls

in NLP
(sequential)

Direct Collocation:
Discretized controls and

states in NLP
(simultaneous)

Direct Multiple
Shooting:

Controls and node start
values in NLP
(simultaneous)

Figure 5.3: The optimal control family tree.

converted into a discrete one, on which optimization techniques are then deployed. One of the most im-
portant advantages of direct methods over indirect ones is that they can easily treat all sorts of constraints,
such as e.g. the inequality path constraints in the formulation above. This ease of treatment stems from
the fact that the activation and de-activation of the inequality constraints, i.e. structural changes in active
constraints, occurring during the optimization procedure are treated by well-developed NLP methods that
can efficiently deal with such active set changes. All direct methods are based on one form or another of
finite-dimensional parameterization of the control trajectory, but differ significantly in the way the state
trajectory is handled, cf. the bottom row of Fig. 5.3. For solution of constrained optimal control problems
in real world applications, direct methods are nowadays by far the most widespread and successfully used
techniques, and are therefore the focus of this script.

5.4 Discretization of the OCP via Direct Shooting Methods
Direct methods to continuous optimal control finitely parameterize the infinite dimensional decision vari-
ables, notably the controls u(t), such that the original problem is approximated by a finite dimensional
nonlinear program (NLP). This NLP can then be addressed by structure exploiting numerical NLP solution
methods. For this reason, the approach is often characterized as “First discretize, then optimize.”

76

i
i

“main” — 2023/8/17 — 21:45 — page 77 — #78 i
i

i
i

i
i

The optimization problem formulation we address in this chapter typically read as (but are not limited to):

minimize
x (.) , u (.)

∫ T

0

L(x(t), u(t)) dt + E (x(T))

subject to x(0)− x0 = 0, (initial value),
ẋ(t)− f (x(t), u(t)) = 0, (system dynamics),

h(x(t), u(t)) ≤ 0, (path constraints),
r (x(T)) = 0 (terminal constraints).

For many OCPs, the system state derivatives ẋ(t) are provided via an implicit function, or even via a
Differential-Algebraic Equation (DAE). The methods presented hereafter are applicable to all these cases
with some minor modifications. The direct methods differ in how they transcribe this problem into a finite
NLP. The optimal control problem above has a fixed initial value, which simplifies in particular the single
shooting method, but all concepts can in a straightforward way be generalized to other OCP formulations
with free initial values, or other variants.
All shooting methods use an embedded ODE solver in order to eliminate or dicretize the continuous time
dynamic system. They do so by first parameterizing the control function u(t), e.g. by polynomials, by
piecewise constant functions, or, more generally, by piecewise polynomials. We denote the finite control
parameters by the vector q, and the resulting control function by u(t, q). The most widespread parameteri-
zation are piecewise constant controls, which we have encountered as zero-order hold in the LMPC chapter.
We choose a fixed time grid 0 = t0 < t1 < . . . < tN = T, and N parameters qi ∈ Rnu , i = 0, . . . , N − 1,
and then we set

u(t, q) = qk for t ∈ [tk, tk+1).

Thus, the discretized control vector q = (q0, . . . , qN−1) is of dimension Nnu.

5.4.1 Direct Single Shooting
In single shooting, we regard the states x(t) on [0, T] as dependent variables that are obtained by a forward
integration of the dynamic system using an embedded ODE solver, e.g., a Runge Kutta method, starting at
x0 and using the controls input u(t, q). We denote the resulting trajectory as x(t, q).
In order to discretize inequality path constraints, we choose a grid, typically the same as for the control
discretization, at which we check the inequalities. Thus, in single shooting, we transcribe the optimal
control problem into the following NLP, that is visualized in Figure 5.5.

minimize
q ∈ RNnu

N−1∑
k=0

L(x(tk, q), qk)∆t+E(x(tN , q))

subject to h(x(tk, q), qk) ≤ 0, k = 0, . . . , N − 1 (path constraints),
r (x(tN , q)) = 0 (terminal constraints).

Here, ∆t = tk+1 − tk the uniform grid step length. Note that we have used a discretized approach for the
objective function using the rectangular method to approximate the integral. Often, a better solution is to
use an integrator to compute the cost function (as we will do in the multiple shooting method).
Compared to the multiple shooting approach, which we will soon see, this is a reduced problem with
much less variables. The ODE model is implicitly satisfied by definition of the forward simulation, and is
not anymore a constraint of the optimization problem. The only remaining optimization variables are the
discretized control vector q (and the initial value x0 if it is not fixed). NLP problem can now be addressed
again by Newton-type methods. Compared to the following multiple shooting approach, the exploitation
of sparsity in the problem is less important. This is called the sequential approach, because the simulation
problem and optimization problem are solved sequentially, one after the other. Note that the user can
observe during all iterations of the optimization procedure what is the resulting state trajectory for the
current iterate, as the model equations are satisfied by definition.

77

i
i

“main” — 2023/8/17 — 21:45 — page 78 — #79 i
i

i
i

i
i

6

x0 s
states x(t, q)

discretized controls u(t, q)

q0

q1

qN−1 -p
0 t

p
T

Figure 5.4: The NLP variables in the direct single shooting method.

Example. Let us illustrate the single shooting method using the following simple OCP:

minimize
x(.), u(.)

∫ 5

0

x1(t)
2 + 10x2(t)

2 + u(t)2 dt

subject to ẋ1(t) = x1(t)x2(t) + u(t), x1(0) = 0,

ẋ2(t) = x1(t), x2(0) = 1,

u(t) ≥ −1, x1(t) ≥ −0.6, t ∈ [0, T].

(5.3)

The resulting solution is illustrated in Figure 5.5, together with the sparsity patterns of the Jacobian of the
inequality constraint function x1(t) ≥ −0.6, i.e.

∂

∂q
h(x(ti, q), u(ti, q)),

and the one of the Hessian of the Lagrange function.

Nonlinearity propagation in direct single shooting Unfortunately, when deploying single shooting in
the context of direct optimal control a difficulty can arise from the nonlinearity of the “simulation” function
x(t, q) with respect to the control inputs q for a large simulation time t.

Example. We illustrate this problem using the following example:

ẋ1 = 10 (x2 − x1) (5.4a)
ẋ2 = x1 (q − x3)− x2 (5.4b)
ẋ3 = x1x2 − 3x3 (5.4c)

where x = (x1, x2, x3) ∈ R3 and q ∈ R is a constant control input. Note that the nonlinearities in this
ODE result from apparently innocuous bilinear expressions. We are then interested in the relationship q →
x(t, q) for different values of t. The initial conditions of the simulation were selected as x(0) = (0, 0, 0)
and q ∈ [18, 38]. The resulting relationship is displayed in Fig. 5.6. One can observe that while the
relationship is not very nonlinear for small integration times t, it becomes extremely nonlinear for large
times t, even though the ODE under consideration here appears simple and mildly nonlinear.

The function x(t, q) resulting from the simulation of nonlinear dynamics can be extremely nonlinear. As
a result, functions such as the constraints and cost function in the NLP resulting form the discretization
of an optimal control problem via single-shooting can be themselves extremely nonlinear functions of the
input sequence q. Because most NLP solvers proceed to find a candidate solution via taking successive
linearization of the KKT conditions of the problem at hand, the presence of very nonlinear functions in
the NLP problem typically invalidates these approximations outside of a very small neighborhood of the
linearization point.

78

i
i

“main” — 2023/8/17 — 21:45 — page 79 — #80 i
i

i
i

i
i

Figure 5.5: Solution to OCP (5.3) using a discretization based on single shooting, with N = 20 and using
a 4-steps Runge-Kutta integrator of order 4. The upper graph reports the states and input trajectories. The
lower graphs report the sparsity pattern of the Jacobian of the inequality constraints h(x(t), u(t)) ≤ 0 in
the resulting NLP and the sparsity pattern of the Hessian of the Lagrange function.

79

i
i

“main” — 2023/8/17 — 21:45 — page 80 — #81 i
i

i
i

i
i

Figure 5.6: Illustration of the propagation of nonlinearities in the simple dynamic system (5.4). One can
observe that for a short integration time t = 0.25 (first row), the relationship q → x(t, q) is close to
linear. However, as the integration time increases to t = 1.33, 2.41, 3.5, the relationship q → x(t, q)
becomes extremely nonlinear. While the effect of integration time is not necessarily as dramatic as for this
specific example, large integration times yield strong nonlinear relationship q → x(t, q) for many nonlinear
dynamics.

80

i
i

“main” — 2023/8/17 — 21:45 — page 81 — #82 i
i

i
i

i
i

These observations entails that in practice, when using single-shooting, a very good initial guess for q is
often required. For many problems, such an initial guess is very difficult to construct. As in the context of
indirect methods, these observations motivate the use of alternative transcription techniques.

5.4.2 Direct Multiple Shooting
The idea behind the direct multiple-shooting approach, which is considered a simultaneous approach, stems
from the observation that performing long integration of dynamics can be counterproductive for discretizing
continuous optimal control problems into NLPs, and tackles the problem by limiting the integration over
shorter time intervals.
In contrast to single shooting, the ODE is solved separately on each discretization interval [tk, tk+1], start-
ing with artificial initial values sk:

ẋ(t, sk, qk) = f (x(t, sk, qk), qk) , t ∈ [tk, tk+1],
x(tk, sk, qk) = sk.

See Figure 5.7 for an illustration. Thus, we obtain trajectory pieces x(t, sk, qk). Likewise, we numerically
compute the integrals

lk(sk, qk) :=

∫ tk+1

tk

L (x(t, sk, qk), qk) dt.

The problem of piecing the trajectories together, i.e. ensuring the continuity condition

sk+1 = x(tk+1, sk, qk)

is left to the NLP solver. Finally, we choose a time grid on which the inequality path constraints are
checked. It is common to choose the same time grid as for the discretization of the controls as piecewise
constant, such that the constraints are checked based on the artificial initial values sk.
The NLP arising from a discretization of an OCP based on multiple shooting typically reads as:

minimize
s, q

N−1∑
k=0

lk(sk, qk) + E (sN)

subject to x0 − s0 = 0, (initial value),
x(tk+1, sk, qk)− sk+1 = 0, k = 0, . . . , N − 1 (continuity),

h(sk, qk) ≤ 0, k = 0, . . . , N − 1 (path constraints),
r (sN) = 0 (terminal constraints).

(5.5)

It is visualized in Figure 5.7.
Note that by defining f(sk, qk) := x(tk+1, sk, qk), the continuity conditions can be interpreted as discrete
time dynamic system sk+1 = f(sk, qk) and the above optimal control problem has exactly the same
structure as the discrete time optimal control problem (5.2) discussed in the beginning of this chapter. The
optimization variables are z = (s0, q0, s1, q1, . . . , sN−1, qN−1, sN).
The nonlinear program (5.5) is large and structured and can thus in principle be solved by any NLP solver.
Note that in this approach, all original variables, i.e., qk and sk, remain optimization variables of the NLP.
Its name stems from the fact that the NLP solver has to simultaneously solve both, the simulation and the
optimization problem. It is interesting to remark that the model equations over the whole time horizon will
for most NLP solvers only be satisfied once the NLP iterations are converged.
The sparsity structure arising from a discretization based on multiple-shooting (see Figure 5.8 for an illus-
tration) ought to be exploited in the NLP solver in order to be efficient.

Example. Let us tackle the OCP (5.3) of Example 5.4.1 via direct multiple-shooting. A 4-step RK4
integrator has been used here, deployed on N = 20 shooting intervals. Here the ordering of the equality
constraints and variables is important in order to get structured sparsity patterns. In this example, the
variables are ordered in time as:

s1,0, s2,0, q0, s1,1, s2,1, q1, . . . , qN−1, s1,N , s2,N

81

i
i

“main” — 2023/8/17 — 21:45 — page 82 — #83 i
i

i
i

i
i

Figure 5.7: Illustration of the direct multiple shooting method. A piecewise-constant input profile
parametrized by q0,...,N−1 is deployed on the time grid t0,...,N . The discrete states s0,...,N act as ”check-
points” on the continuous state trajectories x(t) at all discrete time points t0,...,N . Numerical integrators
build the simulations x (t, sk, qk) over each time interval [tk, tk+1]. The state trajectory held in the NLP
solver becomes continuous only when the solution of the NLP is reached, where the continuity conditions
x (tk+1, sk, qk)− sk+1 are enforced.

and the constraints are also ordered in time. The resulting solution is illustrated in Figure 5.8, together with
the sparsity patterns of the Jacobian of the equality constraint function, and the one of the Hessian of the
Lagrange function. One can observe the discrete state trajectories (black dots) at the discrete time instants
t0,...,N together with the simulations delivered by the integrators at the solution. One can also observe the
very specific sparsity patterns of the Jacobian of the equality constraints and of the Hessian of the Lagrange
function that arise from the direct multiple-shooting approach.

82

i
i

“main” — 2023/8/17 — 21:45 — page 83 — #84 i
i

i
i

i
i

Figure 5.8: Solution to OCP (5.3) using a discretization based on multiple shooting, with N = 20 and using
a 4-steps Runge-Kutta integrator of order 4. The upper graph reports the states and input trajectories at the
solution, where the continuity condition holds. The lower graphs report the sparsity pattern of the Jacobian
of the equality constraints (the continuity conditions) in the resulting NLP and the sparsity pattern of the
Hessian of the Lagrange function. The Hessian of the Lagrange function arising from multiple-shooting is
block-diagonal, due to the separability of the Lagrange function. The Jacobian of the equality constraints
is diagonal in this example, and block-diagonal in general.

83

i
i

“main” — 2023/8/17 — 21:45 — page 84 — #85 i
i

i
i

i
i

5.5 Practical aspects of MPC

5.5.1 Soft Constraints
Constraints play an important role in MPC optimization problems, however, introducing constraints into
the optimization problem can lead to infeasibility at specific time steps. In such scenarios, the feasible set
for the optimization problem is empty and thus there is no suitable solution. Infeasibility can also arise
due to disturbances, discrepancies between the model and the actual system, and inappropriate selection of
MPC tuning parameters, such as setting the prediction horizon too short.
If constraints are only applied to the actuated values, and these constraints are set appropriately – i.e., the
lower limit is less than the upper limit for box constraints – infeasibility does not become an issue. The
feasible set is then directly determined by the constraint set of the actuated variables. Consequently, the
actuated variable constraints can always be formulated exactly as hard constraints. For instance, a valve
cannot exceed 100% open. However, when constraints are applied to system states or outputs, potential
feasibility issues may arise. Feasibility issues arise with constraints on system states or outputs because
these are influenced by the system’s dynamics and the control inputs, making them interdependent and
potentially conflicting. Constraints on just control inputs are more straightforward as they don’t depend on
the system’s response, ensuring direct enforceability. Moreover, the feasibility of a single MPC step does
not assure the feasibility of all subsequent steps, a characteristic known as recursive feasibility.
The prevalent strategy for managing infeasibility in practical scenarios involves using soft constraints rather
than hard ones. The concept behind soft constraints is to permit minor violations of the original hard con-
straints, offset by imposing a significant cost in the cost function. An appropriate penalty function is added
to the original cost function. With this enhanced cost function, the controller aims to minimize the violation
of the original hard constraints. Ideally, when the original optimization problem is feasible, the optimizer
of the modified optimization problem should yield the same solution. This is known as the ’exact penalty’
property of the penalty function. Soft constraints also better represent real-world scenarios, as constraints
on system states and outputs are generally not hard. The building room teperature, as an example of build-
ing heating control, should be kept above a certain comfort limit value. However, surpassing this limit
value for a short time and with low excess is tolerable. The concept of soft constraints is detailed in the
following. This section is based on [9, Chapter 6.1].

Original Optimization Problem We consider a generic OCP of the form:

min
x,u

Jorig

s.t. system dynamics,
initial conditions,
umin ≤ u(t) ≤ umax,

xmin ≤ x(t) ≤ xmax,

other constraints (hard constraints).

The hard constraints on the system states can be relaxed by the introduction of the slack variables s. Within
the augmented optimization problem, the slack variables are considered as additional optimization vari-
ables which enter the cost function as well as the constraints. Of course, for a high number of constraints
to be softened, many new optimization variables have to be introduced which increase the necessary com-
putation time. In the following, various choices for the penalty function are discussed. Weighting matrices
with positive values are used for appropriate penalization. In general, the location of a minimizer in an
optimization problem can shift as a result of changes to the cost function, including changes brought about
by the addition of a penalty term. The purpose of the penalty function is to ”penalize” solutions that vio-
late the constraints of the problem, thus driving the optimization algorithm towards solutions that meet the
constraints.
The weighting factors in the penalty function determine the strength or severity of this penalty. If the
weights are too low, the penalty for violating the constraints might not be severe enough to prevent the
algorithm from finding a ”cheaper” (in terms of the cost function) but less optimal solution that violates the
constraints.

84

i
i

“main” — 2023/8/17 — 21:45 — page 85 — #86 i
i

i
i

i
i

Quadratic penalty on the slack variables The original cost function is augmented by the penalty func-
tion Jpen, resulting in Jaug = Jocp+Jpen. First, a quadratic penalty is applied. The resulting optimization
problem is:

min
x,u,s

JOCP + cq

∫ tf

0

s2(t) dt

s.t. system dynamics,
initial conditions,
umin ≤ u(t) ≤ umax,

xmin − s(t) ≤ x(t),

− xmax − s(t) ≤ −x(t),

s(t) ≥ 0,

other constraints (hard constraints).

One advantage of the quadratic penalty function is that if the original optimization problem is strictly con-
vex, the augmented optimization problem stays strictly convex and the Hessian remains positive definite.
The quadratic penalty function does not introduce any exact penalties, which implies that the optimizer can
be shifted even though there exists a solution without any violation of constraints.

Linear Penalty Function Instead of the 2-norm, the 1 -norm can be used to penalize s. The 1-norm
penalizes the sum of the absolute values of the slack variables. For weighting of the penalties, cl ∈ Rnx

(here for simplicity we assume nx = 1) is used. As the slack variables are defined to be nonnegative, the
following optimization problem can be used:

min
x,u,s

JOCP + cl

∫ tf

0

s2(t)t.

s.t. system dynamics,
initial conditions,
umin ≤ u(t) ≤ umax, i = 0, . . . , Nu − 1

xmin − s(t) ≤ x(t), ,

− xmax − s(t) ≤ −x(t),

s(t) ≥ 0,

other constraints (hard constraints).

The main advantage of using a linear penalty term by the 1-norm is the fact that exact penalties can be
obtained. The additional linear penalty function introduces a gradient of cl. The weightings cl of the
slack variables just need to be chosen sufficiently high, such that the gradient of the penalty function is
large enough. By making the weights and therefore the gradient of the penalty function at the original
constrained minimizer sufficiently large, we ensure that any shift in the location of the minimizer due to
the addition of the penalty term is minimized. The large gradient represents a strong pull or drive towards
the original minimizer, which can help to maintain its location even when the penalty term is added to the
cost function. When a feasible solution of the original problems exists, the location of the local minimizer
thus is not changed by the augmented optimization problem.
In the case of adding the linear penalty function, it has to be considered that even if the original problem
is strictly convex, the resulting optimization problem no longer is strictly convex. When QP solvers are
applied that rely on strictly convex optimization problems, suitable regularization has to be added.

Quadratic Plus Linear Penalty Function The combination of a quadratic and a linear penalty term
combines the advantages of both formulations. The combination sustains a strictly convex optimization
problem. Additionally, for sufficiently high values of cl, exact penalties are obtained. In practice, the
combination of quadratic and linear penalization functions is used most widely. One example is shown in
the following optimization problem where the maximum deviation, a scalar value, over the entire prediction
horizon and all states is penalized.

85

i
i

“main” — 2023/8/17 — 21:45 — page 86 — #87 i
i

i
i

i
i

min
x,u,s

JOCP +

∫ tf

0

cqs
2(t) + cls(t)t.

s.t.
system dynamics,
initial conditions,
umin ≤ u(t) ≤ umax,

xmin − s ≤ x(t),

− xmax − s ≤ −x(t),

s ≥ 0

other constraints (hard constraints).

These penalty functions can be used for both LMPC and NMPC to soften the constraints. In order to not
shift the location of the local minimizer, the weighting factors have to be chosen such that the gradient of
the penalty function at the original constrained minimizer is sufficiently large. However, the addition of
the penalty function can lead to new minima in regions that previously were excluded by the constraints.
In general, new local minimizers that exceed the original constraints can be found much easier for NMPC
compared to LMPC. Hence, the NLP solver can find unwanted local minima outside of the operating
region. This has to be considered when developing NMPC with soft constraints. This affects for instance
the process model. It needs to be suitable for usage within NMPC even outside of the feasible region
defined by the original hard constraints. This is especially true for data-driven models as their extrapolation
capabilities are limited.

86

i
i

“main” — 2023/8/17 — 21:45 — page 87 — #88 i
i

i
i

i
i

Chapter 6

Model predictive control of wind energy
systems

6.1 Control task of wind turbines

6.1.1 Control objectives
The control objectives depend on the given wind speed (see Fig. 2.21):

• Partial load: Here the control goal is to maximize power extraction while respecting operational
limits (Region IIB).

• Full load: Here the main control goal is to alleviate dynamic mechanical loads and maintain opera-
tional limits, including maximum rotational speed and electric power limits (Region III).

• Transition: A smooth transition is required between these two regions (Region IIC).

Industrial practice of wind turbine control The industrial practice in wind energy systems meets the
control objectives by tackling each objective (in the partial- or the full-load region respectively) with a
separate controller. The transition between controllers is handled via elaborate and carefully tuned heuris-
tics. Both controllers typically have different parametrizations for varying wind speeds to account for the
varying sensitivities.

• Baseline controller: The baseline controller operates in the partial load region and mainly actu-
ates the generator torque to follow the pre-defined optimal torque-speed curve. The pitch angle is
typically actuated only little or not at all.

• Load alleviating controller: This controller operates in the full load region and mainly actuates
the blade pitch angle to curtail the generated power and to counteract the tower oscillations. The
generator torque can be used to dampen drive train oscillations.

In addition, many heuristic rules and filters are necessary in order to satisfy constraints and to account
for cross-coupling of in- and outputs. These heuristic algorithms make up the largest part of the developed
code! Controller and heuristics tuning needs to be done manually, and has to be more or less re-done before
application on a new wind turbine variant, as it is not derived directly from model knowledge.

6.2 MPC design of wind turbines

6.2.1 LTV-MPC
Although the reduced-order wind turbine model is nonlinear in the aerodynamic submodel, a linear MPC
scheme has thus far been preferred over nonlinear MPC approached. This is because nonlinear MPC is

87

i
i

“main” — 2023/8/17 — 21:45 — page 88 — #89 i
i

i
i

i
i

Figure 6.1: Linear models along the optimal WT operating curve and switching rule based on “hysteresis”.
Courtesy by T. Wintermeyer-Kallen.

associated with a larger computational cost and unpredictable solution times. Moreover, there are no hard
convergence guarantees and convergence-enhancing strategies such as globalization come at an additional
computational cost.
In order to control the system over the full nonlinear operating region, an obvious idea to use different
linear MPC schemes corresponding to different linearizations of the system dynamics for different oper-
ating points that are well-known in advance. In order to avoid undesired oscillations between models, the
switching rule can be based on a hysteresis principle, as illustrated by Fig. 6.1. The problem with this
approach is that during large wind speed disturbances such as extreme gusts, the wind turbine is operating
for a large time in an unsteady regime, where the linearizations aroudn steady operating points are a bad
approximation, as illustrated in Fig. 6.2.
Therefore, in order to make the MPC scheme more robust, it is better to linearize the WT dynamics at
every sampling instant at the current (unsteady) operating point. This approach is called a linear time-
variant MPC scheme (LTV-MPC). While this scheme comes at an additional computational costs, and
comes with the loss of a priori stability guarantees, it allows the stabilization of the plant also in extreme
operating conditions.
The LTV-MPC scheme can then be summarized by the following steps:

1. Estimate x̂0 and the wind speed v̂w.

2. Linearize at x̄ = x̂0, ū = uk−1, v̄w = v̂w to obtain the linear model

ẋ(t) = f(x̄, ū, v̄w) + Ā(x(t)− x̄) + B̄(u(t)− ū) (6.1)

with
Ā =

∂f

∂x

∣∣∣
x̄,ū,v̄w

and B̄ =
∂f

∂u

∣∣∣
x̄,ū,v̄w

(6.2)

3. Discretize and use linear model over the entire prediction horizon.

4. Construct (dense) QP matrices.

5. Solve convex QP, apply u∗
0 and repeat.

88

i
i

“main” — 2023/8/17 — 21:45 — page 89 — #90 i
i

i
i

i
i

Figure 6.2: Unsteady WT behavior as a response to an extreme wind gust. Courtesy by T. Wintermeyer-
Kallen.

6.2.2 MPC sampling time and horizon
The reduced-order wind turbine model consists of three different submodels with different time constants:

• Aerodynamics: static model

• Drive train dynamics: characteristic time constant T ≈ 0.3 s.

• Rotor-tower dynamics: characteristic time constant T ≈ 4 s.

The MPC sampling time should be chosen so that it can stabilize the fastest system dynamics. Hence the
sampling time is chosen as Ts = 0.1 s as determined by the drive train dynamics.
The horizon should be chosen so that the slowest relevant system dynamics are still considered within the
prediction horizon. Thus, as determined by the rotor-tower dynamics, the horizon should be at least around
5 s, or equivalently, N = 50.

6.2.3 Move blocking
In order to capture the tower and rotor dynamics, the prediction horizon N has to be relatively long. This
leads to a large QP with a computational load that is at the limits of real-time feasibility. In order to reduce
the QP size, it is possible to introduce an additional horizon, called the “control horizon” Nu < N . After
the control horizon, the control input is kept constant (“blocked”). Thus, in the dense formulation, the
resulting QP has the size Nunu instead of Nnu. The control horizon length is then chosen as low as
possible without compromising closed-loop performance too much.
This approach can be generalized to the idea where the piecewise constant control actions are distributed
on a non-uniform grid within the control horizon. This way, controls can be applied at a higher frequency
in the beginning of the control horizon, and at a lower frequency at the end, as illustrated by Fig. 6.3

89

i
i

“main” — 2023/8/17 — 21:45 — page 90 — #91 i
i

i
i

i
i

Figure 6.3: Illustrative example for different system dynamics considered within one MPC problem and
the use a move-blocking strategy [6]

In the wind turbine case, for example, the control horizon can be chosen to be Nu = 10. Three high-
frequency control steps then suffice to control the drive train dynamics, followed by two lower-frequency
control actions for the rotor-tower dynamics and one constant control action for the remainder of the total
prediction horizon.

6.2.4 Weight scheduling
In LTV-MPC, the prediction model is linearized at the current unsteady operating point. However, the
linearization is constant over the prediction horizon, even though the predicted system state might travel to
a significantly different operating point, where the sensitivities of the outputs with respect to the inputs can
be vastly different than assumed. This can lead to undesired closed-loop behavior.
As an alternative to full nonlinear MPC, this issue can be addressed via weight scheduling, where the
weight matrices Q and R are dependent on the current operating point.
For example, in the partial load region, the system is operated so as to maximize power output for a given
rotation speed, leading to ∂cP

∂θ ≈ ∂cT
∂θ ≈ 0. Away from this optimal point, the sensitivities change rapidly,

but the LTV-MPC cannot take this into account.
Thus, in the linearized model, a much large change in pitch actuation is necessary to change the aerody-
namic torque on the turbine, than is really needed. Since the pitch actuation is penalized in the objective,
this leads to a too small pitch actuation and consequently to a too slow closed-loop response.
This problem can be countered by decreasing the weight entry of the pitch angle in the matrix R in the
partial load region. In the full load region, the sensitivity w.r.t. to the pitch angle is less pronounced and its
variation limited, and the weight can be chosen to be higher.
In order to have a continuous feedback law, the weight entries qi and ri of the matrices Q and R respectively
should vary continuously, for example with the system operating point yk. To achieve this for two different
regions, a pair of limits (y0j , y

1
j) for a specific output yj can defined, between which there is a transition in

weight value from value qi,0 to value qi,1, e.g.:

qi(yk) = qi,0 +

(
yk,j − y0j
y1j − y0j

)2

(qi,1 − qi,0) . (6.3)

90

i
i

“main” — 2023/8/17 — 21:45 — page 91 — #92 i
i

i
i

i
i

To change weights between full and partial load regions, the weights can also be varied with the estimated
wind speed.

6.2.5 State-of-the-art experimental results
While simulative design of MPCs for wind turbines has been extensively studied, only a single study has
been published on the real-world application of MPC to a full-scale wind turbine. In [4], the capability of
an MPC controller is validated and tested on a 3 MW wind turbine. We refer the reader to the cited paper
for more details.

91

i
i

“main” — 2023/8/17 — 21:45 — page 92 — #93 i
i

i
i

i
i

Chapter 7

Online state estimation

The upcoming topic we will discuss is state estimation. In order for optimization to be carried out with
an MPC controller, all state variables of the model must be known. However, in many practical scenarios,
we can only measure a small subset of the variables needed to accurately model the system. Additionally,
the measurements we obtain are typically corrupted by sensor noise, the evolution of the system’s state
is affected by process noise, and modeling errors and system disturbances are present. Consequently,
deriving a reliable state estimate that can be used effectively in the controller becomes a challenging task
due to the noisy and incomplete nature of the output measurements. This challenge forms the essence of
state estimation.
For instance, considering the building energy model, the state variables of the used model could be the
heating system return temperature Tret(t), the building floor temperature Tfloor(t) and/or the building wall
temperature Twall(t) and the room temperature Troom(t). However, only Troom(t) is measured. To obtain
the missing state variables, an observer can be used. In fact, since the building model is linear, a Kalman
filter can be used. For this aim, the building model need to be fully observable (or satisfy another weaker
condition called detectability) and controllable.
Aim of this chapter is to present methods that estimate the current state parameters from a series of mea-
surements in the past. In fact, the same techniques can be applied if unknown system parameters have to be
estimated. We start with the simplest scenario — a linear model influenced by normally distributed (called
Gaussian) process and measurement noise. The optimal state estimator in this context is widely known as
the Kalman filter (Kalman, 1960).
Exceeding the linear case and Gaussian noise, one powerful method for online state (and parameter) estima-
tion uses the measurements on a moving time window in the past, and is called moving horizon estimation
(MHE). This approach leads to optimization problems that have nearly the same structure as the optimal
control problems treated earlier in this course. It is the second main topic of this chapter, and a technology
often combined with nonlinear model predictive control (NMPC), with which its optimization problems
share many characteristics. The typical combined observer and state feedback loop is depicted in Figure
7.1.
For the derivation of the Kalman filter and MHE , we refer to Chapters 1.4 and 4 of the MPC book by
Rawlings, Mayne and Diehl [10] for further information.

7.1 Linear optimal state estimation (Kalman filter)
The Kalman filter is a recursive algorithm that is used to estimate the evolving state of a system in the
presence of noise. It can be applied to any system that can be modeled by linear equations.
The basic idea is to maintain an ongoing estimate of the state of the system, and then to continuously correct
that estimate based on new measurements. This is done in a two-step process, involving a prediction step
and an update step.
We summarize the equations of the Kalman filter for a time-discrete linear system. The system model
consisting of the state vector xk and the output vector yk representing the measurement, can be expressed
in the following form:

92

i
i

“main” — 2023/8/17 — 21:45 — page 93 — #94 i
i

i
i

i
i

Figure 7.1: Combined observer and feedback control loop

xk+1 = Axk +Buk + wk (7.1)
yk = Cxk + vk (7.2)

where

• xk is the state vector at time k, uk is the control vector at time k, yk is the measurement vector at
time k.

• A is the state transition matrix, B is the control-input matrix, C is the observation matrix.
• wk is the process noise which is assumed to be Gaussian with zero mean and covariance Q (w ∼
N (0, Q)).

• vk is the measurement noise which is assumed to be Gaussian with zero mean and covariance R
(v ∼ N (0, R)).

In fact, the auto-covariance matrices of the process and measurement error are given by

E
{
wkw

T
j

}
= Q · δkj k, j ≥ 0

E
{
vkv

T
j

}
= R · δkj k, j ≥ 0

Here, Q must be symmetric and positive semi-definite and R symmetric and positive-definite.
The first equation (7.1) signifies that the system state at time k + 1 is a linear transformation of the state at
time k, represented by matrix A, plus the effect of any control inputs (Buk), as well as the impact of any
process noise (wk). The second equation (7.2) represents the measurement at time k + 1, which is a linear
transformation of the state at time k, represented by matrix C, plus measurement noise (vk). The input
variables and output variables are superimposed with white noise.
For the Kalman Filter to perform optimally, we assume the system to be both observable and controllable
(see Section 4.2.3 for definitions):

• Observability: For a Kalman Filter to work, it is crucial that it can determine the state of the system.
If the system is not observable, then there might exist states that cannot be inferred from the mea-
surements, which means the filter might not be able to accurately predict the future states or correct
its estimates based on the measurements. If this condition is not fulfilled, the estimates it provides
for the unobservable states may not converge to their true values, and thus would be inaccurate.

• Controllability: While controllability is not a strict requirement for a Kalman Filter to operate, it’s
important for the filter to be effective in control scenarios. If a system is not controllable, then no
matter how good our estimate of the system state is, we may not be able to apply inputs to achieve a
desired state.

93

i
i

“main” — 2023/8/17 — 21:45 — page 94 — #95 i
i

i
i

i
i

These two conditions simplify the analysis. In fact, weaker conditions such as detectability can be imposed
and controllability is not strictly necessary. Readers who are keen on delving deeper into this subject are
encouraged to refer to the suggested literature
To sketch out the derivation of the Kalman filter, we will employ the following notation:

• x̂k|k−1 is the priori predicted state vector (predicted without knowing the current measurement yk).
• x̂k|k is the posterior predicted state vector (updated/filtered estimate).
• K is the Kalman gain, controlling the contribution of the measurement difference in the posterior

prediction.
• yk − Cx̂k|k−1 is the difference between the actual and predicted measurements.
• Σk|k is the state estimate error covariance matrix at time k after updating the Kalman Filter with

all measurements through time k. That is, it is the error covariance for the updated/filtered state
estimate.

• Σk|k−1 is the state estimate at time k after updating the Kalman Filter with all but the most recent
measurement. That is, it is the error covariance for the predicted state estimate.

The Kalman filter calculates the estimate x̂k|k of the real state vector xk such that the estimate does not
have a systematic error at each time point k and the estimation error covariance matrix Σk|k is ”minimal.”

Σk|k = E
{[

xk − x̂k|k
] [
xk − x̂k|k

]T}
The solution to the optimization problem is given by the following algoritmic procedure. The Kalman
Filter equations can be broken down into two main steps: the prediction step and the update step.

1. Initialization: Start with an initial guess of what the state might be along with an initial error covari-
ance. This is the best guess of the state of the system and the error associated with it.

x̂0 = xinitial // Initial state estimate
Σ0 = Σinitial // Initial error covariance

2. Prediction: Given a model of the system (how it changes over time without any measurements),
predict the state and the error covariance at the next time step. This is often called the prior estimate.
Since the prediction is without new data, the uncertainty (error covariance) increases.

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 // Predict state (prior)

Σk|k−1 = AΣk−1|k−1A
T +Q // Predict error covariance (prior)

3. Update: When a new measurement arrives, you correct the predicted estimate to form an ”updated
estimate” or ”posterior estimate”. Update the predicted state using the measurement residual and
update the error covariance.

• With the measurement data at time step k, the estimate is corrected using the Kalman gain,
thus providing the optimal estimate of the state variables x̂k|k needed for optimization. To this
aim, calculate a weighted average of the predicted estimate and the new measurement. The
weights are given by the Kalman gain, which determines how much trust to place in the new
measurement versus the prediction from the model. If the model’s predictions are very accurate,
you’d put more weight on the predicted estimate; if the measurements are more accurate, you’d
put more weight on the measured data.

• Update the model’s prediction: update the error covariance (how much uncertainty there is in
the estimate) based on the difference between the prediction and the actual measurement (the
”innovation” or ”residual”).

Kk = Σk|k−1C
T (CΣk|k−1C

T +R)−1 // Compute Kalman Gain
x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1) // Update state estimate (posterior)
Σk|k = (I −KkC)Σk|k−1 // Update error covariance (posterior)

94

i
i

“main” — 2023/8/17 — 21:45 — page 95 — #96 i
i

i
i

i
i

By rewriting the error covariance update equation and substituting in for the Kalman gain, we obtain the
discrete-time Riccati equation (DARE), wich arises also in discrete-time optimal control problems and the
LQR:

Σk|k = AΣk−1|k−1A
T −AΣk−1|k−1C

T (CΣk−1|k−1C
T +R)−1CΣk−1|k−1A

T +Q

The estimation error covariance matrix Σk|k is the only stabilizing solution to the DARE. Since the model
used is observable and controllable, Σk|k ≡ Σ can be set equal to Σk−1|k−1. This holds true because in an
observable and controllable system, all state information can be extracted from the output measurements,
and all states can be influenced by control inputs. Therefore, if the model accurately describes the dynamics
of the system, the uncertainty about the system’s state, as expressed by the error covariance matrix, would
not increase over time.
The Kalman filter is intended to determine the value of the state variables as precisely as possible at each
optimization time point. Therefore the sampling time is often set smaller than the sampling time for the
control problem. In building heating control, for instance, in order to take into account the effects of
switching the heat pump on and off, the observer sampling time is set to 60 seconds while the control
sampling time may be set to 15 minutes.
The behavior of the filter can be adjusted with the intensity matrices Q and R.
The beauty of the Kalman filter is that it doesn’t need to store and process all the data points from the
history of the system. It maintains an ongoing, updated state estimate and uncertainty, and only needs the
latest measurement to update this state. This property is what makes it ”recursive” and extremely useful
for real-time applications.

Extensions The Kalman Filter is used for linear systems with Gaussian noise. For non-linear systems,
variants like Extended Kalman Filter (EKF) are used. The EKF handles nonlinearity by linearizing the
process and measurement models at the current estimate of the state, and then it applies the standard
Kalman Filter to this linearized model. Similar to the iterative linearization of a nonlinear process model
in LTV-MPC, this approach has several limitations. The accuracy of the EKF can be poor if the system is
highly non-linear, or if the initial state estimate is far from the true state.

7.2 Moving horizon estimation
When we work with nonlinear models or apply constraints on our estimates, we cannot compute the con-
ditional density in a closed form, step-by-step manner, as was the case in Kalman filtering. To derive the
otimal state estimate, we would need to simultaneously optimize all the states present in the trajectory xT

to derive the state estimates. However, as T enlarges, this optimization task proves to be computationally
intractable. Moving horizon estimation (MHE) removes this issue by considering only the most recent N
measurements and finds only the most recent N values of the state trajectory as depicted in Figure 7.2.
MHE is an optimization-based state-estimation technique where the current state of the system is inferred
based on a finite sequence of past measurements. In many ways it can be seen as the counterpart to MPC
– similar to the Kalman filter that can be seen as counterpart to LMPC. Traditional filtering methods such
as the Kalman Filter are optimal under the assumption of linearity and Gaussian noise. MHE does not
require these assumptions. Additionally, MHE is better suited to handle constraints on states and inputs
than standard filtering techniques.

Formulation of MHE Problem The MHE algorithm can be formulated for nonlinear dynamic systems
with state variables x, inputs u and measureable outputs y, which we consider of the following form for
the continurous-time case:

ẋ(t) = f(x(t), u(t)) + w(t), (7.3)
y(t) = h(x(t), u(t)) + v(t), (7.4)

95

i
i

“main” — 2023/8/17 — 21:45 — page 96 — #97 i
i

i
i

i
i

Figure 7.2: Moving horizon estimation (online) vs. full information estimation [10].

and for the discrete-time case by

xk+1 = f(xk, uk) + wk, (7.5)
yk = h(xk, uk) + vk. (7.6)

Note that instead of additive noise, we could have also defined the noise in the process and measurement
model. To simplify the notation, we consider the discrete-time case, e.g. after discretization with direct
multiple shooting. The states that we’re aiming to estimate are xN (T) = (xT−N , . . . , xT), given the
measurement sequence yN (T) = (yT−N , . . . , yT). In this context, we disregard the initial phase when
the estimation window is still gathering the first measurements and smaller than N and assume that the
window is always full.
The principle of MHE is to solve a finite-horizon optimization problem at each time step. Given a window
of past measurements and a system model, MHE minimizes the discrepancy between the predicted outputs
(from the model) and the actual measurements, along with the model discrepancy over a certain finite
horizon. The optimization problem is formulated to estimate the states and/or parameters of the system.
The ”moving horizon” aspect comes into play as new measurements are received. The horizon (the window
of past measurements considered) shifts forward in time, discarding the oldest measurement and including
the newest one, hence ”moving horizon”.
Following this concept, we formulate the MHE optimization problem as minimization problem with a
least-squares cost function:

JMHE (xN (T), uN−1(T)) =
1

2
∥xT−N − x̃T−N∥2Σx

+

T−1∑
k=T−N

||yk − h(xk, uk)||2Q + ||uk − ũk||2R

min JMHE (xN (T), uN−1(T)) (7.7)

s.t. xk+1 = f(xk, uk),

g(xk, uk) ≤ 0

}
k = T −N, . . . , T − 1. (7.8)

Here, we use the same notation as before, with the additions:

• N is the horizon length.
• ũk are the fixed control inputs.
• f is the system dynamics function, h is the measurement output function, g are the constraints.
• The process and measurement noise wk and vk does not necessarily be Gaussian.

96

i
i

“main” — 2023/8/17 — 21:45 — page 97 — #98 i
i

i
i

i
i

• ||.||2Q and ||.||2R represent weighted square norms (where, e.g., ∥x∥2Q = xTQx), which account for
the uncertainty in measurements and model prediction, respectively.

The fundamental idea of MHE is that the current state of the system is inferred based on a finite sequence
of N past measurements, while incorporating information from the dynamic system equation. This is
formulated as an optimization problem, where the finite sequence of states and inputs are optimization
variables. These sequences are determined, such that

• The initial state xT−N of the sequence is coherent with the previous estimate x̃T−N (if applicable).
• The computed measurements match the true measurements very closely.
• The computed control match the given inputs very closely.
• The dynamic state equation is obeyed.

Similarly to MPC, the MHE optimization problem is solved repeatedly at each sampling instance. At each
estimation step, the new initial state is the second element from the previous estimation and we take into
consideration the newest measurement while dropping the oldest. This can be seen in the figure below,
which depicts the successive horizon.
The first term in the least-squares cost function

1

2
∥xT−N − x̃T−N∥2Σx

is called arrival cost and summarizes the prior knowledge on the states. It plays the same role as the cost-
to-go function in MPC. MHE for a linear system with Gaussian noise is equivalent to the Kalman filtering
if this prior weighing is set to the exact arrival cost. In practice, the arrival cost often discounted (i.e., set to
0). For a deeper understanding of the theory behind MHE, Chapters 1.4 and 4 of Rawlings et al. [10] are
recommended.

Advantages and Disadvantages MHE has several advantages:

• It is suitable for nonlinear and constrained systems.
• It provides a systematic way to handle model uncertainties.
• It can give better performance than standard filters for some systems, especially those with significant

model errors or non-Gaussian noise.

However, MHE also has some disadvantages:

• It requires solving an optimization problem at each time step, which can be computationally expen-
sive.

• It requires the selection of the horizon length and the weighting matrices, which can be challenging.
• It requires a good initial guess for the states, which might not always be available.

In conclusion, MHE is a powerful tool for state estimation in complex systems. It can provide superior
performance compared to traditional filtering techniques under certain conditions, but it also comes with
its own challenges and limitations.

97

i
i

“main” — 2023/8/17 — 21:45 — page 98 — #99 i
i

i
i

i
i

Bibliography

[1] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. CasADi – a software framework
for nonlinear optimization and optimal control. Mathematical Programming Computation, 11(1):1–
36, 2019.

[2] Alberto Bemporad, Manfred Morari, and Fabrizio Borelli. Predictive Control for Linear and Hybrid
Systems. Cambridge University Press, 2017.

[3] Steven C Chapra. Numerical methods for engineers. Mcgraw-hill, 2010.

[4] S. Dickler, T. Wintermeyer-Kallen, and J. et al. Zierath. Full-scale field test of a model predictive
control system for a 3MW wind turbine. Forsch Ingenieurwes, 85:313–323, 2021.

[5] Lars Grüne, Jürgen Pannek, Lars Grüne, and Jürgen Pannek. Nonlinear model predictive control.
Springer, 2017.

[6] U. Jassmann, S. Dickler, J. Zierath, M. Hakenberg, and D. Abel. Model predictive wind turbine
control with move-blocking strategy for load alleviation and power leveling. Journal of Physics:
Conference Series, 735(052021), 2016.

[7] Jan M Maciejowski. Predictive Control: with Constraints. Pearson Education Limited, 1995.

[8] Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer Science & Business Media,
2006.

[9] Thivaharan Albin Rajasingham. Nonlinear model predictive control of combustion engines. Springer,
2021.

[10] James Blake Rawlings, David Q Mayne, and Moritz Diehl. Model predictive control: theory, compu-
tation, and design, volume 2. Nob Hill Publishing Madison, WI, 2017.

[11] A. Wächter and L. Biegler. IPOPT - an Interior Point OPTimizer. https://projects.coin-or.org/Ipopt,
2009.

[12] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57, 2006.

[13] Roger Wilfried Wimmer. Regelung einer Wärmepumpenanlage mit model predictive control. ETH
Zurich, 2004.

98

	Introduction
	A short primer on Model Predictive Control
	Why Model Predictive Control of Renewable Energy Systems?
	Recommended Literature

	Dynamic Systems Modelling
	Fundamentals of Dynamic Systems Modelling
	Introduction to Dynamic Systems
	Dynamic System Modelling with ODE
	Linear Time-Invariant Systems

	Modelling of renewable energy systems
	Modelling the thermal behavior of buildings
	Modelling of heat pumps
	Solar thermal collector model
	Modelling of thermal energy networks
	Wind energy systems modeling

	Background on Optimization
	Definition of an Optimization Problem
	Classes of Optimization Problems
	Convex Optimization Problems
	Quadratic Programming (QP)
	Linear Programming (LP)
	Mixed-Integer Programming (MIP)

	Optimality Conditions
	First Order Optimality Conditions
	Second Order Optimality Conditions

	Optimization Algorithms
	Newton-Type methods for Equality Constrained Optimization
	Interior Point Methods for Inequality Constrained Optimization*
	Generating derivatives*

	Linear Model Predictive Control
	MPC control idea
	Discrete-time linear state space models
	Discretization of LTI state-space models
	Solution of the state space ODE
	Controllability and observability

	Unconstrained linear MPC
	Constrained linear MPC
	Feasibility and stability
	Recursive feasibility
	Stability

	Nonlinear Model Predictive Control
	Introduction to NMPC
	Numerical Integration Methods
	Explicit Methods
	Stiff Systems and Implicit Integrators*

	Overview of Solution Methods for continuous-time OCP
	Discretization of the OCP via Direct Shooting Methods
	Direct Single Shooting
	Direct Multiple Shooting

	Practical aspects of MPC
	Soft Constraints

	Model predictive control of wind energy systems
	Control task of wind turbines
	Control objectives

	MPC design of wind turbines
	LTV-MPC
	MPC sampling time and horizon
	Move blocking
	Weight scheduling
	State-of-the-art experimental results

	Online state estimation
	Linear optimal state estimation (Kalman filter)
	Moving horizon estimation

