Model Predictive Control for Renewable Energy Systems – Introduction –

Dr. Lilli Frison and Jochem De Schutter

University of Freiburg and Fraunhofer ISE

April 19, 2023

universität freiburg

1 Team & Course Organisation

2 Course Introduction

- Control-oriented challenges in a renewable-based energy system
- Classical control vs. model-based predictive control

3 MPC in Action

Table of Contents

1 Team & Course Organisation

2 Course Introduction

- Control-oriented challenges in a renewable-based energy system
- Classical control vs. model-based predictive control

3 MPC in Action

Dr. Lilli Frison

lilli.frison@ise.fraunhofer.de

Research interests

- optimal control under uncertainty
- model predictive control of building and solar energy systems and heating networks

Jochem De Schutter

jochem.de.schutter@imtek.de

Research interests

- optimal control for airborne wind energy
- efficient economic model predictive control

Systems Control and Optimization Laboratory (SYSCOP)

Prof. Dr. Moritz Diehl Head of group

- "embedded optimization of nonlinear systems"
- research activities include:
 - dynamic system modeling
 - optimal control formulations & algorithms
 - open-source software
 - robotics, mechatronics and renewable energy

SYSCOP teaching

Systems Control and Optimization Laboratory

IMTEK, Faculty of Engineering, University of Freiburg

Fraunhofer Institute for Solar Energy Systems (ISE): Business areas

Institute Directors: Prof. Dr. Hans-Martin Henning Prof. Dr. Andreas Bett

Employees: ca. 1400 Budget 2021: €116.7 million Founded: 1981

Photovoltaics

Silicon Photovoltaics III-V and Concentrator Photovoltaics Perovskite and Organic Photovoltaics Photovoltaic Modules and Power Plants

Energy Efficient Buildings

Solar Thermal Power Plants and Industrial Processes

Hydrogen Technologies and Electrical Energy Storage

Power Electronics, Grids und Intelligent Systems

Fraunhofer ISE: Research Focus

MPC for RES - Lecture 1

Organization - Lecture

Lecture[.]

• Wednesdays, 10:15 - 11:00, 11:10 - 11:55h (10 min break)

Learning material:

- Blackboard notes and slides
- Script (digital, updated weekly)
- Video recordings?
- https://www.syscop.de/teaching
- Software demonstrations (Python, Jupyter Norebooks)
- Open-source software: rockit. CasADi. SCIP

Date	Торіс	Voluntary exercises
19.04.23	Introduction	
26.04.23	Dynamic systems	
03.05.23	Modelling of renewable energy systems: Wind energy systems	Exercise 1 (Dynamic systems)
10.05.23	Modelling of renewable energy systems: Buildings, solar energy, heating networks	
17.05.23	Background on optimization	Exercise 2 (Optimization)
24.05.23	Linear model predictive control (part 1)	
31.05.23	*** Pentecost break ***	
07.06.23	Linear model predictive control (part 2)	Exercise 3 (LMPC)
14.06.23	Midterm quiz & Nonlinear model predictive control (part 1)	
21.06.23	Nonlinear model predictive control (part 2)	Exercise 4 (NMPC)
28.06.23	Special model predictive control formulations	
05.07.23	MPC of building and solar energy systems	Exercise 5 (MPC software)
12.07.23	MPC of wind energy systems	
19.07.23	Summary session	

Organization - Exam

Exercise:

- Bi-weekly, voluntary exercise sheet (with solutions)
- Goal: deepen understanding, get a feel for implementation

Midterm quiz:

- online via ILIAS
- mandatory infinitely many trials
- one full week to pass the quiz

Final exam:

- format written, closed-book
- duration 2 hours
- course load 3 ECTS
- date to be determined

What are renewable energy systems? What types of renewable energy systems are you interested in?

MPC for RES - Lecture 1

L. Frison and J. De Schutter, University Freiburg

What are renewable energy systems? What types of renewable energy systems are you interested in?

Our definition: Renewable energy systems use renewable energy sources (wind, sun, water) to generate electricity and heat.

Aim of this course

• Overall goal of the lecture:

Theory and application of linear and nonlinear model predictive control (MPC) for renewable energy systems (RES)

- Learning goals:
 - develop control-oriented models for RES
 - formulate & transcribe MPC optimization problems
 - apply MPC to challenging RES control problems

Courtesy by DENA, German Energy Agency

Lecture plan

Date	Торіс	Voluntary exercises
19.04.23	Introduction	
26.04.23	Dynamic systems	
03.05.23	Modelling of renewable energy systems: Wind energy systems	Exercise 1 (Dynamic systems)
10.05.23	Modelling of renewable energy systems: Buildings, solar energy, heating networks	
17.05.23	Background on optimization	Exercise 2 (Optimization)
24.05.23	Linear model predictive control (part 1)	
31.05.23	*** Pentecost break ***	
07.06.23	Linear model predictive control (part 2)	Exercise 3 (LMPC)
14.06.23	Midterm quiz & Nonlinear model predictive control (part 1)	
21.06.23	Nonlinear model predictive control (part 2)	Exercise 4 (NMPC)
28.06.23	Special model predictive control formulations	
05.07.23	MPC of building and solar energy systems	Exercise 5 (MPC software)
12.07.23	MPC of wind energy systems	
19.07.23	Summary session	

Topics covered and not covered in this lecture

Maths topics:

- Dynamic system modelling and simulation
- Optimization
- Linear and nonlinear MPC Formulations, methods and (to some extent) theory
- Mixed-integer MPC

Applications:

- Wind energy: wind turbines, airborne wind energy (to some extent)
- Building energy systems: heat pumps, PVT/PV/ST systems, heat storages
- Heating networks

Topics NOT covered in this lecture:

- Time series forecasting (e.g. of energy demand)
- E-Mobility, electricity grids

Recommended Literature (for deeper understanding)

- Rawlings, Mayne, Diehl Model Predictive Control: Theory and Design
- Borelli, Bemporad, Morari Predictive Control for Linear and Hybrid Systems
- Maciejowski Predictive Control: with Constraints

(free PDFs online)

Table of Contents

1 Team & Course Organisation

2 Course Introduction

- Control-oriented challenges in a renewable-based energy system
- Classical control vs. model-based predictive control

3 MPC in Action

CO₂-emissions and climate change

Figure 1.19 ▷ Energy-related and process CO₂ emissions, 2010-2050 and temperature rise in 2100 by scenario

IEA. CC BY 4.0.

Electricity sector outlook

Figure 3.10 ▷ Total installed capacity and electricity generation by source in the NZE Scenario, 2010-2050

IEA. CC BY 4.0.

Key milestones in the pathway to net zero

Key milestones in the pathway to net zero

Electricity generation in Germany in 2022

Figure: Annual total net electricity generation in Germany from 1990 to 2023 (partly) grouped by type of energy source (nuclear, renewable, fossil).

Others Waste renewable: 7.99 TWh 4.16 TWh 1.5% 0.8% Waste non-renewable Hydro Run-of-River 4.50 TWh 15.05 TWh 0.8% 2.7% Fossil oil: Biomass 1.34 TWh 42.00 TWh 0,2% 7.6% Fossil hard coal: Wind offshore: 61.89 TWh 24.75 TWh 11.3% 4.5% Fossil gas: Wind onshore: 89,21 TWh 98.70 TWb 18.0% Solar Fossil brown coal / lignite 107.86 TWb 58.30 TWh 10.6% 10 65 Nuclear 32,82 TWh 6.0% Waste renewable Hydro Run-of-River Hydro water reservoir Biomass Wind offsbore Wind onshore Solar Coothormal Nuclear Fossil brown coal / lignite 😑 Fossil gas Fossil hard coal Fossil oi Waste non-renewable Others

Figure: Total net electricity generation in Germany in 2022. Source: energy-charts.info

Transition from a fossil fuel based to a renewable-based energy system poses new challenges:

- high energy yield but fluctuating \rightarrow control challenge
- grid stability, supply reliability \rightarrow control challenge
- energy storage \rightarrow control challenge
- energy efficiency (e.g. buildings, heating networks, technologies) \rightarrow control challenge

Renewable-based energy system are highly diverse and complex systems:

- nonlinear (wind energy, hydraulics)
- mixed-integer (heating networks, min-up/down times)
- fast and slow dynamics (heating network with seasonal storage, PV plants with converters)

 \rightarrow **Increasingly complex systems** (multi-energy networks, 4/5G district heating, integrated PVT-HP systems) and **technologies** (heat pumps, PV/PVT, seasonal storages, (airborne) wind energy) require **advanced control techniques**.

Classical feedback and feedforward control

Feedback control

- Measure output of the process ("sensors")
 - \rightarrow compare with set point
 - \rightarrow error is given to controller
 - \rightarrow controller generates manipulated variable ("actuator") to control the process
- Ex.: PID controller

Feedforward control

- Need a disturbance model
- Disturbances are measured and accounted for before they have time to affect the system.
- Ex.: Heating curve controller

Feedback control

Feedforward control

Introducing Model Predictive Control

- Most relevant higher control concept in industry applications
- Controller explicitly contains a model of the system

What is Model Predictive Control?

Model predictive control

- Model-based
- Predictive
- Control: optimization-based feedback control

Main principle: repeat at each time step the procedure of **looking into the future** using the **process model** followed by solution of an **optimization problem**

receding horizon control

Summary: classical vs. model-based control

Classical control	MPC	
+ Can be implemented without much	+ Flexible: nonlinear, constrained,	
system knowledge	time delay, MIMO, non-minimum phase	
+ No model needed	+ Tuning more intuitive	
+ Low computational demands	+ High control quality	
 No constraints possible 	 Model of the process needed 	
 Extension to MIMO systems difficult 	 High computational effort 	
ightarrow Suited for small, simple, linear systems/	\rightarrow Suited for high performance, complex systems	
specific task, e.g., low-level control		
	Reference value Actuated value	

Table of Contents

1 Team & Course Organisation

2 Course Introduction

- Control-oriented challenges in a renewable-based energy system
- Classical control vs. model-based predictive control

3 MPC in Action

MPC for a HP-PVT building heating system

• Ice Storage stores heat (over weeks) and extracts heat from ground (acts as heat source)

https://www.ise.fraunhofer.de/de/forschungsprojekte/HPPVT40.html

Nonlinear Mixed-Integer Control of a Solar Adsorptive Cooling Machine

- After discretisation of PDE components, obtain nonlinear ODE with 39 states, 6 continuous and 2 binary inputs.
- Predict 24 hours
- Aim: minimize electricity consumption

Bürger et al., Experimental operation of a solar-driven climate system with thermal energy storages using mixed-integer nonlinear model predictive control, Optimal Control Applications and Methods, 2021, 1-17

Solar Adsorptive Cooling Machine: Model Overview

Experimental MPC Results from Sept 14-17, 2019

Every 2 minutes, a new optimization problem is solved, using a real-time algorithm based on CasADi, IPOPT [Wächter and Biegler 2006], and Pycombina [Bürger et al, 2019], an implementation of the combinatorial integral approximation (CIA) method [Sager 2009].

Prosumer-based solar district heating networks

- Prosumer-based solar district heating networks: buildings generate and store heat
- MPC for optimal operation of heat supply and cooperative heat transfer between the different prosumer buildings
- Aim: maximize network self-coverage from solar heat
- Application in »Freiburg-Gutleutmatten« (~40 buildings with STC)
- Results (simulation study June 2020): centrally produced heat is reduced by 75%

https://www.ise.fraunhofer.de/de/forschungsprojekte/enwisol.html

MPC for existing district heating networks with decentrally produced heat

 MPC for the control of heating networks with decentralized energy sources/storage facilities

Power and heat optimized operation

Demonstration sites Weil am Rhein & Rheinfelden

- 3-10 producers:
 - CHP, biomass, heat pump
 - gas and oil boiler for peak loads
 - waste heat source
- storage tanks
- Current control: Rule based prioritization between production units

Verbundvorhaben: Entff:Wärme: WOpS - Wärmefluss-Optimierung zur Sektorenkopplung in Fernwärmenetzen mittlels MPC unter Berücksichtigung eines strommarktorientierten Betriebes

NMPC for Power Electronics

- Convert DC from PV panels into AC for feeding into the grid
- Bipolar DC/AC converter
 - 11 kW
 - 48 kHz switching frequency
- NMPC implemented on ARM/FPGA-based embedded platform
- Optimizes switching times of S_1/S_2
- Can deal with nonlinearities
 - Inductor saturation
 - Blanking times
- Executes in $\sim 17 \mu {\rm s}$

Stickan, Frison, Burger, Diehl: "A nonlinear Real-Time Pulse-Pattern MPC Scheme for Power-Electronics Circuits Operating in the Microseconds Range," 2022 American Control Conference (ACC)

eco4wind: MPC for wind turbine control

Nonlinear MPC with about 40 states based on ACADO code generation with QP solver HPIPM running on industrial hardware at IAV

Optimal control of airborne wind energy: Skysails Power

- pilot project with permit to feed electricity into grid on the island of Mauritius (Jan. 2023)
- power optimization with periodic optimal control using CasADi + IPOPT [Wächter and Biegler 2006]
- simulations on smaller prototype show increase in power output with factor of 2 compared to naive experimental flight pattern

Erhard et al., A quaternion-based model for optimal control of an airborne wind energy system, Journal of Applied Mathematics and Mechanics, 97 (1), 2017

www.skysails.com

Optimal control of airborne wind energy: Multi-wing systems

Power production phase

Power consumption phase

De Schutter et al., AWEbox: An Optimal Control Framework for Single- and Multi-Aircraft Airborne Wind Energy Systems, Energies 2023, 16(4), 1900

Optimal control of airborne wind energy: Vertical wind farms

- "Vertical" wind farms have potential power density of 43 MW/km², a factor 17 larger than conventional wind (2.4 MW/km², for cubically averaged wind speed of 7 m/s)
- Detailed optimal-control based studies result in more modest 6.5 MW/km².
- Requires advanced control and coordination of many flying systems

De Schutter et al, Vertical Airborne Wind Energy Farms with High Power Density per Ground Area based on Multi-Aircraft Systems, European Control Conference, 2023

MPC in other applications: Freiburg Race Cars

- time-optimal MPC formulation
- acados coupled into ROS
- optimization every 10ms

Kloeser et al., NMPC for Racing Using a Singularity-Free Path-Parametric Model with Obstacle Avoidance, Proceedings of the IFAC World Congress 2020