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Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2022-2023

Exercise 3: Unconstrained Newton-type Optimization,
Globalization Strategies

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli, Florian Messerer, Yizhen Wang

Exercise Tasks

1. Unconstrained minimization: In this task we will implement different Newton-type methods for
solving the problem

min
x, y ∈ R

1

2
(x− 1)2 +

1

2
(10(y − x2))2 +

1

2
y2︸ ︷︷ ︸

=:f(x,y)

. (1a)

You can use the provided Matlab script to get an idea of the shape of the function.

(a) Derive, first on paper, the gradient and Hessian matrix of f(x, y). Then, rewrite it in the form
f(x, y) = 1

2
||R(x, y)||22 where R : R2 → R3 is the residual function. Derive the Gauss-Newton

Hessian approximation and compare it with the exact one. When do the two matrices coincide?

(b) Implement your own Newton method with exact Hessian information and full steps. Start from
the initial guess (x0, y0) = (−1, 1) and use as termination condition ‖∇f(xk, yk)‖∞ ≤ 10−3.
Keep track of the iterates (xk, yk) and add them to the provided contour plot.

(c) Update by adding a Newton-type method that uses the Gauss-Newton Hessian approximation
instead. Add the resulting iterates (xk, yk) to the plot.

(d) Check how the steepest descent method performs on this example. Your Hessian approximation
is now αI , where α is a positive scalar and I the identity matrix of appropriate size. Try
α = 100, 200 and 500. Add the resulting iterates (xk, yk) to the plot. For which values does
your algorithm converge?

(e) Compare the performance of the implemented methods. Consider the iteration path (xk, yk),
the number of iterations and the run time. You can use timeit.default_timer() in
Python, tic toc in MATLAB to measure time.
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2. Lifted Newton method: Consider the scalar nonlinear function F : R→ R, F (w) = w16 − 2.

(a) In Matlab, implement Newton’s method in order to numerically find a root of F (w). Use
‖F (w)‖2 < 10−12 as convergence criterion. Plot how the residuals evolve. Test the algorithm
for different initial guesses and analyze the convergence behaviour of the algorithm.

(b) Implement now a Newton-type algorithm that exploits a fixed approximation of the Jacobian

w[k+1] = w[k] −M−1F (w[k]),

where the superscript [k] denotes the iteration index and M = ∇F (w[0])> is the Jacobian of F
at the initial guess w[0]. Use the conditions for local Newton-Type convergence (Theorem 8.4)
to derive a bound on the convergence region. Test numerically for which region(s) of initial
values w[k] the algorithm converges (in 104 iterations or less).

(c) An equivalent problem to (a) can be obtained by lifting the original one to a higher dimensional
space

F̃ (ω) =


ω2 − ω2

1

ω3 − ω2
2

ω4 − ω2
3

−2 + ω2
4

 ,
such that for any root ω̄ with F̃ (ω̄) = 0, it holds that F (ω̄1) = 0, i.e., ω1 corresponds to w, and
w̄ = ω̄1 is a root of F if ω̄ is a root of F̃ . This can be seen via

F̃ (ω̄) = 0⇔ ω̄2 = ω̄2
1, ω̄3 = ω̄2

2, ω̄4 = ω̄2
3, ω̄

2
4 − 2 = 0. (2)

0 = −2 + ω̄2
4 = −2 + (ω̄2

3)2 = . . . = −2 + ω̄16
1 = F (ω̄1). (3)

While F (w) is a strongly nonlinear function with unbounded curvature, F̃ (ω) – though still
nonlinear – is linear quadratic and therefore has bounded curvature (actuall even a constant
Hessian.)
Implement the Newton method for this lifted problem and compare the convergence of the two
algorithms. Use w[0] = 100, and correspondingly ω[0]

1 = w[0], ω[0]
2 = (ω

[0]
1 )2, . . . .

Also note that for the lifted method you have more flexibility of initializing. Try what happens
if you initialize all components as ω[0]

i = 100 for i = 1, . . . , 4.

3. Convergence of damped Newton’s method: Let f : Rn → R be a twice continuously differentiable
function satisfying LI � ∇2f(x) � mI for some L > m > 0 and let x∗ be the unique minimizer
of f over Rn.

(a) Show that for any x ∈ Rn:

f(x)− f(x∗) ≥ m

2
‖x− x∗‖22,

Hint: Use the Taylor rest term formula (cf. proof of Thrm. 3.2, last equation)

(b) Let {xk}k≥0 be the sequence generated by the damped Newton’s method with constant stepsize
tk = m

L
, such that xk+1 = xk + tkpk, where pk is the full Newton step. Show that:

f(xk)− f(xk+1) ≥
m

2L
∇f(xk)>(∇2f(xk))−1∇f(xk).

(c) Show that xk → x∗ as k →∞.
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4. Hanging chain, revisited: We revisit the hanging chain problem from the first exercise sheet. So
far, our problem formulation uses the assumption that the springs have a rest length L = 0, which
is not very realistic. A more realistic model includes the rest length L in the potential energy of the
string in the following way:

Vel(yi, yi+1, zi, zi+1) =
1

2
D (

√
(yi − yi+1)2 + (zi − zi+1)2 − L)2, i = 1, . . . , N − 1, (4)

where L = l/(N − 1) and l the length of the chain. Note that setting L = 0 we obtain the same
expression as in Exercise sheet 1.

In this task you will solve the unconstrained minimization problem of the hanging chain using the
BFGS method in combination with backtracking and the Armijo condition. The objective function
is given by

Vchain(y, z) =
1

2

N∑
i=0

D(
√

(yi − yi+1)2 + (zi − zi+1)2 − Li)
2 + g0

N+1∑
i=0

mzi. (5)

Note that the indices range from 0 to N+1. This is in order to fix the chain ends without formulating
an equality constraint, i.e., y0 = −2, yN+1 = 2 and z0 = zN+1 = 1 are treated as parameters. Choo-
sing the indices like this we still have decision variables y1, . . . , yN and z1, . . . , zN . The provided
function F = hc obj(x,param) returns the value of this nonlinear function for a given set of
parameters defined in the data structure param and a point x ordered as x = [y1, z1, . . . , yN , zN ]>.

(a) Write your own function [F,J] = finite difference(fun,x,param) that calcu-
lates the function value and the Jacobian of function fun at x using finite differences. Note
that the argument fun is a function handle. You can then call your function using the syntax
[F,J] = finite difference(hc fun,x,param) in Python,
[F,J] = finite difference(@hc fun,x,param) in MATLAB (note the @ before
the function handle argument) to evaluate the Jacobian of our objective at x.
Hint: Calling numpy.finfo(float).eps or sys.float info.epsilon in Python,
eps in MATLAB returns floating point precision.

(b) Complete the template file main.m to find the rest position of the hanging chain using the
constant Hessian approximation Bk = I (i.e., steepest descent) with backtracking and the
Armijo condition to ensure convergence.

(c) Now update your code to perform BFGS updates on your Hessian approximation. How many
iterations does your new scheme need to converge?
Remark: The BFGS Hessian approximation is guaranteed to be positive-definite if and only
if the curvature condition sTy > 0 holds. A common workaround to ensure that the search
direction is always a descent direction is to check weather this condition holds or not and to
skip the BFGS update in case positive-definiteness is not guaranteed.
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