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Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2022/2023

Exercise 2: Duality and Fitting Problems
Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Florian Messerer, Yizhen Wang

1. Lagrange duality and dual problems:

(a) Consider the following logarithmic barrier problem,

min
x∈Rn

cTx−
n∑
j=1

log xj

s.t. aTx = b,

where a, c ∈ Rn and b ∈ R.
Remark 1: Problems using a logarithmic barrier as the one above will be at the core of interior
point methods that we will analyze later in this course.
Remark 2: log xj is only defined for xj ∈ R++. For simplicity, and without discussing this
further here, we will assume that − log xj takes the value +∞ whenever xj ∈ R−.

i. Derive the explicit form of the dual of this problem.
ii. Does strong duality hold?

Solution: the Lagrangian of the problem reads

L(x, λ) := c>x−
n∑
j=1

log xj − λ(a>x− b) = (c> − λa>)x−
n∑
j=1

log xj + λb,

with λ ∈ R. The dual function is

q(λ) = inf
x ∈ Rn

L(x, λ),

If cj − λaj ≤ 0 for some component j, the Lagrangian is unbounded below, so we will impose
the condition

cj − λaj > 0, ∀j = 0, . . . , n.

Taking the derivative of the Lagrangian with respect to x, we have

∇xL(x, λ) = c−X−11− λa,

with X = diag(x). The j-th component of gradient of the Lagrangian vanishes for

x∗j =
1

cj − λaj
,

where, in order to derive such condition, we have to impose cj −λaj > 0, which is anyway re-
quired for the Lagrangian function to be unbounded. As L(x, λ) is convex in x, such conditions
attain the global minimum of the Lagrangian over Rn. We therefore get ‘

q(λ) = λb+

{
c>x∗ −

∑n
j=1 log x∗j + λa>x∗ if cj − λaj > 0 for i = 1, . . . , n

−∞ else

Substituting the expression for x∗, we obtain the dual problem:

min
λ ∈ R

n+ λb+
n∑
j=1

log(cj − λaj)

s.t. c− λa > 0
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(b) Consider the following mixed-integer quadratic program (MIQP):

min
x∈{0,1}n

xTQx+ qTx

s.t. Ax ≥ b,

where Q ∈ Rn×n, q ∈ Rn, A ∈ Rm×n and b ∈ Rm. where the optimization variables xi are
restricted to take values in {0, 1}. Solving mixed-integer problems is in general a challenging
task, thus it is common practice to exploit continuous reformulations as the following:

min
x∈Rn

xTQx+ qTx

s.t. Ax ≥ b

xi(1− xi) = 0 i = 1, . . . , n.

i. Is this reformulation convex?
Solution: no, it has nonlinear equality constraints, hence is not convex.

ii. A lower bound to the optimal solution can be computed by solving the (convex) dual
problem (not required here). Derive the explicit form of the dual of the continuous refor-
mulation.
Solution: the Lagrangian of the problem reads

L(x, λ, µ) = x>Qx+ q>x− µ>(Ax− b)− λ>X(1− x)

= x>(Q+ Λ)x+ (q> − µ>A− λ>)x+ µ>b,

where λ ∈ Rn, µ ∈ Rm, and Λ = diag λ. This is unbounded below in x if Q + Λ ≺ 0 or
Q + Λ � 0 and q − λ − A>µ ∈ N (Q + Λ). (with N (Q + Λ) denoting the null space).
Otherwise the minimum is attained for

x∗ = −1

2
(Q+ Λ)+(q − λ− ATµ).

The dual function is therefore

q(λ, µ) =

 x>∗ (Q+ Λ)x∗ + (q> − µ>A− λ>)x∗ + µ>b if
Q+ Λ � 0
q − λ− A>η ∈ R(Q+ Λ)

−∞ else,

withR(·) denoting the row-space. The dual problem is then given as

min
λ ∈ Rn, µ ∈ Rm

x>∗ (Q+ Λ)x∗ + (q> − µ>A− λ>)x∗ + µ>b

s.t. µ ≥ 0,

Q+ Λ � 0,

q − λ− A>η ∈ R(Q+ Λ),

where the dependency of x∗ depends on λ and µ is dropped for notational brevity.
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2. Regularized linear least squares: Given a matrix J ∈ Rm×n, a symmetric positive definite matrix
Q � 0, a vector of measurements η ∈ Rm and a point x̄ ∈ Rn, compute the limit:

lim
α→ 0
α > 0

arg min
x

1

2
||η − Jx||22 +

α

2
(x− x̄)>Q(x− x̄). (1)

Hint: Use matrix square root and Lemma 6.1 from the lecture notes.

Q is symmetric positive definite and therefore has unique square root Q
1
2 , such that Q = Q

1
2
>Q

1
2

1
2
‖η − Jx‖22 + α

2
(x− x̄)>Q(x− x̄)

= 1
2
‖η − Jx‖22 + α

2
(x− x̄)>Q

1
2
>Q

1
2 (x− x̄) = 1

2
‖η − Jx‖22 + α

2
‖Q

1
2 (x− x̄)︸ ︷︷ ︸

=:y

‖22 = . . .

Substitute y := Q
1
2 (x− x̄)⇔ x = Q−

1
2y + x̄

· · · = 1
2
‖η − Jx̄︸ ︷︷ ︸

η̃

− JQ−
1
2︸ ︷︷ ︸

J̃

y‖22 + α
2
‖y‖22 = 1

2
‖η̃ − J̃y‖22 + α

2
‖y‖22

This is now the same form as problem (6.20) in the lecture notes (p. 46), and to obtain the limit in a
clean way we can follow the steps outlined in the proof of Lemma 6.1.

lim
α→ 0
α > 0

arg min
y

1

2
‖η̃ − J̃y‖22 +

α

2
‖y‖22 = lim

α→ 0
α > 0

(J̃>J̃ + αI)−1J̃>η̃
Lem. 6.1

= J†η̃

with J̃† the Moore Penrose Pseudo inverse. So in the limit we obtain y∗ = J†η̃, and substituting
back, x∗ = Q−

1
2y∗ + x̄.

3. Linear L2 fitting: Assume we have modeled the dependency of some output y ∈ R on some input
x ∈ R as the linear model y = ax + b with parameters a, b ∈ R. The value of these parameters is
unknown, but we have a data set of N noisy measurements (xi, ỹi), i = 1, . . . , N . These measure-
ments are obtained as ỹi = axi + b + ηi, where ηi is noise drawn from a normal distribution with
zero mean and variance one, ηi ∼ N (0, 1).

One way of finding an estimate of the parameter values is to minimize a least-squares loss of the
residuals axi + b− ỹi, which can be formulated as the optimization problem

min
a,b∈R

N∑
i=1

1

2
(axi + b− ỹi)2 = min

a,b

1

2

∥∥∥∥J [ab
]
− ỹ
∥∥∥∥2
2

, (2)

where ỹ = (ỹ1, . . . , ỹN) and it will be part of the exercise to define J . As discussed in the lecture,
the optimal solution of (2) can be calculated explicitly by solving the linear system

J>J

[
â

b̂

]
= J>ỹ, (3)

where â, b̂ are the resulting estimates of the parameter values.

(a) Define J by writing it down on paper.
J =

[
x 1

]
∈ RN×2, where x = (x1, . . . , xN), and 1 = (1, . . . , 1) ∈ RN

(b) Generate the problem data. Take N = 30 and generate x = (x1, . . . , xN) as N equally spaced
points in the interval [0, 5] and, for i = 1, . . . , N , generate the measurements as ỹi = 3xi + 4 +
ηi, where ηi is sampled from the normal distribution N (0, 1). Plot the results.
Hint: look up the linspace and randn commands, e.g., via NumPy documentation (Python)
/ using help or doc command (MATLAB). If you want a reproducible ’random’ sequence, you
can use rng.
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(c) Calculate the estimates â, b̂ in MATLAB using Equation (3) and plot the obtained line in the
same graph as the measurements.

(d) Introduce 3 outliers in ỹ by replacing arbitrary measurements and plot the new fitted line in
your plot.

You will need the measurements ỹ (both with and without outliers) and the matrix J for the next
task.
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4. Linear L1 fitting: In this task we want to fit a line to the same set of measurements, but we use a
different cost function:

min
a,b∈R

N∑
i=1

|(axi + b− ỹi)|. (4)

(a) Problem (4) is not differentiable. Find an (equivalent) smooth reformulation.
Hint 1: Introduce slack variables s1, . . . , sN ∈ R as additional decision variables.
Hint 2: The resulting problem will be a Linear Program (LP).

min
a, b ∈ R, s ∈ RN

N∑
i=1

si

s.t. −si ≤ axi + b− ỹi ≤ si i = 1, . . . , N

(b) The result of the previous task is a LP. In order to solve it with linprog, the native LP solver
of MATLAB, we need to bring it to the form:

min
z∈Rn

fT z (5a)

s.t. Az ≤ b (5b)
Cz = d (5c)
lz ≤ z ≤ uz, (5d)

Define matrices A,C and vectors f, b, d, lz, uz by writing them down on paper. You may not
need all of these. In this case you can define them as ’empty’. Order your variables as z =
(a, b, s1, . . . , sN). Use matrix J from the previous exercise to define A.

f =

0
0
1

, A =

[
J −I
−J −I

]
, b =

[
ỹ
−ỹ

]
(c) Solve the problem with linprog (SciPy / MATLAB). Use the measurements ỹ from the

previous exercise (both with and without outliers) and plot the results against those of the L2
fitting. Which norm performs better?
The L1 norm is more robust against the outliers (as it does not penalize the model-measurement-
mismatch quadratically). Which norm performs better depends on the context, but here it seems
like we want our method to ’ignore’ the outliers (the outliers seem nonsensical). That means
L1 performs better.

(d) Solve the problem resulting from task 4a with CasADi and compare the results.
Should be identical
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