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Exercise 2: Duality and Fitting Problems
Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Florian Messerer, Yizhen Wang

1. Lagrange duality and dual problems:

(a) Consider the following logarithmic barrier problem,

n
min CTJZ—g log x;
reR™

J=1

st. alz=b,

where a,c € R" and b € R.
Remark 1: Problems using a logarithmic barrier as the one above will be at the core of interior
point methods that we will analyze later in this course.
Remark 2: log x; is only defined for x; € R.. For simplicity, and without discussing this
further here, we will assume that — log x; takes the value 400 whenever x; € R_.

i. Derive the explicit form of the dual of this problem.

ii. Does strong duality hold?

Solution: the Lagrangian of the problem reads

L(z,\)i=cz— Z logz; — AMa'z —b) = (c" —Xa)x — Zlog xj + b,
j=1 j=1
with A € R. The dual function is
g(A\) = inf L(x,\),
xeR"
If ¢; — Aa; < 0 for some component j, the Lagrangian is unbounded below, so we will impose
the condition
c;—Ma; >0, Vj=0,...,n
Taking the derivative of the Lagrangian with respect to x, we have
VoLl(z,\) =c— X1 — \a,
with X = diag(x). The j-th component of gradient of the Lagrangian vanishes for
1
—Aa;’

Cj j

* —

:/-U]' —

where, in order to derive such condition, we have to impose ¢; — Aa; > 0, which is anyway re-
quired for the Lagrangian function to be unbounded. As £(x, \) is convex in x, such conditions

attain the global minimum of the Lagrangian over R". We therefore get
d0) = Ab+ { cla* =370 logas +Aa'a* if¢; —Aa; > 0fori=1,...,n
—00 else

Substituting the expression for z*, we obtain the dual problem:

min  n-+ b+ log(c; — Aa;
i >t~ o)

s.t. c—Aa>0



(b) Consider the following mixed-integer quadratic program (MIQP):
min  27Qx +¢'x
ze{0,1}m
s.t. Ax > b,

where ) € R™", ¢ € R", A € R™*" and b € R™. where the optimization variables x; are
restricted to take values in {0, 1}. Solving mixed-integer problems is in general a challenging
task, thus it is common practice to exploit continuous reformulations as the following:

min 27 Qx +q¢"x

zeR”

st.  Ax>b

i. Is this reformulation convex?

Solution: no, it has nonlinear equality constraints, hence is not convex.

ii. A lower bound to the optimal solution can be computed by solving the (convex) dual
problem (not required here). Derive the explicit form of the dual of the continuous refor-
mulation.

Solution: the Lagrangian of the problem reads

Lz, \p)=2"Qr+q z—p (Ar —b) — AT X(1 —2)
=2 (Q+MNz+(¢" — A=Az +p'b,
where A € R”, u € R™, and A = diag A. This is unbounded below in x if ) + A < 0 or

Q+A=0andqg—\— AT € N(Q + A). (with N(Q + A) denoting the null space).
Otherwise the minimum is attained for

(Q@+MN) (g—A—A"p).

1
Ty = —=
2

The dual function is therefore

T T _ T AT Ty e @FAZO
g\ p) = z, (@ + ANz + (¢ pr A=Az +ptb if g—A—ATneR(Q+A)
—00 else,

with R(+) denoting the row-space. The dual problem is then given as

: T T T T T
min , (Q+Nre+(q —p A=XN )z, +p' b
AeR" peR™ ( ) ( )
S.t. >0,
Q+A=0,

g—A—ATneR(Q+AN),

where the dependency of x, depends on A and p is dropped for notational brevity.



2. Regularized linear least squares: Given a matrix J € R™*", a symmetric positive definite matrix
@ > 0, a vector of measurements 7 € R and a point £ € R", compute the limit:

1
lim argmm—Hn Jz||3 + g(:15—:2‘)TQ(33'—:TE). (1)
a—=0 2
a>0

Hint: Use matrix square root and Lemma 6.1 from the lecture notes.

() is symmetric positive definite and therefore has unique square root Qz such that () = Q% Q%
sl = Jzl3 + §(z — 2)'Q(z — 7)
_ 1 1 — o
=il = Jzl3+ 5@ -2 Q Q3w — 7) = §lln — Jz|3+ §1Q> (z — B)|I3 =
A,—/

=y

M\»—

Substitutey —Ql(x—:f)<:>1’—Q +
= 3lIn = J2—JQ= yl3 + Syl = 317 — Tyll3 + $lvl3
~— \z—’

il
This is now the same form as problem (6.20) in the lecture notes (p. 46), and to obtain the limit in a

clean way we can follow the steps outlined in the proof of Lemma 6.1.

1 T T TT~ em. 6. ~
lim argmmen Jy|? + ||y\|3 = lim (J'J+al)'J'y ol gt
a—0 a—0
a>0 a>0

with J' the Moore Penrose Pseudo inverse. So in the limit we obtain y* = J'7, and substituting
1
back, z* = Q7 2y* + Z.

3. Linear L, fitting: Assume we have modeled the dependency of some output y € R on some input
x € R as the linear model y = ax + b with parameters a,b € R. The value of these parameters is
unknown, but we have a data set of N noisy measurements (z;,7;), 7 = 1,..., N. These measure-
ments are obtained as y; = ax; + b + 1;, where 7, is noise drawn from a normal distribution with
zero mean and variance one, 7; ~ N (0, 1).

One way of finding an estimate of the parameter values is to minimize a least-squares loss of the
residuals ax; + b — y;, which can be formulated as the optimization problem

N 2

. 1 ~\2 . 1 a ~
min - glazi +b—4;)" = mn o HJ M R (2)
where § = (71, ...,yn) and it will be part of the exercise to define J. As discussed in the lecture,
the optimal solution of (2)) can be calculated explicitly by solving the linear system
J'J M =J'y, 3)
where @, b are the resulting estimates of the parameter values.
(a) Define J by writing it down on paper.
J =z 1] e R"*?, where z = (z1,...,zy),and 1 = (1,...,1) € RY
(b) Generate the problem data. Take N = 30 and generate © = (z1,...,zy) as N equally spaced
points in the interval [0, 5] and, fori = 1, ..., N, generate the measurements as ¢; = 3z; +4 +

n;, Where 7); is sampled from the normal distribution A/(0, 1). Plot the results.

Hint: look up the 1inspace and randn commands, e.g., via NumPy documentation (Python)
/using help or doc command (MATLAB). If you want a reproducible "random’ sequence, you
can use rng.



(c) Calculate the estimates a, b in MATLAB using Equation and plot the obtained line in the
same graph as the measurements.

(d) Introduce 3 outliers in y by replacing arbitrary measurements and plot the new fitted line in
your plot.

You will need the measurements y (both with and without outliers) and the matrix J for the next
task.



4. Linear L, fitting: In this task we want to fit a line to the same set of measurements, but we use a
different cost function:

N

i ; — 7). 4
;gle%;!(axﬂrb 7)) 4
(a) Problem (@) is not differentiable. Find an (equivalent) smooth reformulation.
Hint 1: Introduce slack variables s, . ..,sy € R as additional decision variables.

Hint 2: The resulting problem will be a Linear Program (LP).

min E S;

a,beR, seRY 5
s.t. —si<ar;+b—y; <s; 1=1,...,N

(b) The result of the previous task is a LP. In order to solve it with 1inprog, the native LP solver
of MATLAB, we need to bring it to the form:

min 'z (Sa)
s.t. Az < b (5b)
Cz=d (5¢)

l. <z<u,, (5d)

Define matrices A, C' and vectors f,b, d, (., u, by writing them down on paper. You may not
need all of these. In this case you can define them as ’empty’. Order your variables as z =

(a,b,s1,...,sy). Use matrix J from the previous exercise to define A.
0 -
- S T |y

(c) Solve the problem with 1inprog (SciPy / MATLAB). Use the measurements y from the

previous exercise (both with and without outliers) and plot the results against those of the 1.2
fitting. Which norm performs better?
The L1 norm is more robust against the outliers (as it does not penalize the model-measurement-
mismatch quadratically). Which norm performs better depends on the context, but here it seems
like we want our method to ’ignore’ the outliers (the outliers seem nonsensical). That means
L1 performs better.

(d) Solve the problem resulting from task [#a] with CasADi and compare the results.
Should be identical



