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Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2022/2023

Exercise 1: General Information, Introduction to CasADi,
Convex Optimization

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Florian Messerer, Yizhen Wang

Part I: Introduction to CasADi

The aim of this part is to learn how to formulate and solve an optimization problem using CasADi, namely
the minimization of the potential energy of a chain of masses connected by springs.

Prepare your laptop

1. Coding Setup: For the exercises of this course you can choose between Python or Matlab. Templates
will be available for both, and we will also be able to support both. However, the solution videos
show only the Matlab version.

MATLAB: Instructions on how to get a free student license from the online software shop can be
found here:

https://www.rz.uni-freiburg.de/services-en/beschaffung-em/
software-en/matlab-license?set_language=en

If you are unfamiliar with MATLAB, here are some useful tutorials:

• http://www.maths.dundee.ac.uk/ftp/na-reports/MatlabNotes.pdf

• http://www.math.mtu.edu/˜msgocken/intro/intro.html

Python: Python is free to use. You can download it from here:

• https://www.python.org/downloads/

Make sure that the installation adds Python to your PATH / Environment variables for convenient
access from the terminal. After installation, you will also need a few packages for numerical calcu-
lation and plotting, these can be installed by running the following one-line command via terminal:
pip install numpy scipy matplotlib

If you don’t have an IDE or code editor yet, VS Code with proper extensions can be a good one to
start with:

• https://code.visualstudio.com/download

If you are unfamiliar with Python or NumPy, there is also a tutorial available (in the form of Jupyter
Notebook):

• https://www.syscop.de/files/2022ws/msi/tutorials/pythonIntroNotebooks.zip

2. CasADi: For this and future exercises we need to install CasADi. CasADi is an open-source tool for
nonlinear optimization and algorithmic differentiation. Further information can be found at:

https://web.casadi.org
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We will use CasADi’s Opti stack because it provides a syntax close to paper notation. For the docu-
mentation see https://web.casadi.org/docs/#document-opti

Note: CasADi is mainly a symbolic framework to formulate optimization problems and genera-
te derivatives. To solve the problems it needs some underlying solvers installed, such as IPOPT,
qpOASES, WORHP, KNITRO, ... (some of which are already included).

To download and install CasADi follow the instructions below:

MATLAB:

(a) Download the current version for MATLAB from https://web.casadi.org/get/ and
unzip.

(b) Move the folder called ’casadi-windows-matlabR2016a-v3.5.5’ (or similar) to the default MAT-
LAB directory or any directory of your choice.

(c) Start MATLAB and go to the directory that you chose in Step (b).

(d) Add the path of CasADi to the MATLAB path, by running:

>> addpath(’casadi-windows-matlabR2016a-v3.5.5’)

in the command line of MATLAB (adapt the folder name if necessary).

(e) Test CasADi by running:

>> import casadi.*
>> x = MX.sym(’x’);
>> disp(jacobian(sin(x),x))

Your output should be cos(x).

(f) To save the path beyond your current session of MATLAB, run

>> savepath

Python:

(a) This is again a simple one-line command: pip install casadi

Precaution for Conda (Anaconda / Miniconda) users: avoid conda install casadi . Regardless
of which channel, you will miss neccesary solver plugins. Instead, use “pip” inside a conda
environment, which you are able to do by running conda install pip inside the environment
first.

(b) You can use CasADi in the same way as any other package. Here is a simple example.

import casadi as ca
x = ca.MX.sym("x")
print(ca.jacobian(ca.sin(x), x))

Your output should be cos(x).

2

https://web.casadi.org/docs/#document-opti
https://web.casadi.org/get/


i
i

“ex1” — 2022/11/4 — 13:33 — page 3 — #3 i
i

i
i

i
i

Exercise Tasks

3. A tutorial example: Let’s first look at the following unconstrained optimization problem

min
x ∈ R

x2 − 2x (1)

(a) Derive first the optimal value for x on paper. Then, download the code provided for exercise 1
from the course homepage and run ex1 toy example.m in MATLAB to solve the same
problem with CasADi. Is the result the same?
x∗ = 1

(b) Have a closer look at the template and adapt it to include the inequality constraint x ≥ 1.5.
What is the new result? Is it what you would intuitively expect?
x∗ = 1.5

(c) Now modify the template to solve the two-dimensional problem:

min
x, y ∈ R

x2 − 2x + y2 + y

s.t. x ≥ 1.5,

x + y ≥ 0.

(2)

What are the optimal values for x and y returned by CasADi?
x = 1.5 y = −0.5

3
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4. Equilibrium position of a hanging chain: We want to model a chain of springs attached to two
supports and hanging freely in between. The chain consists of N masses connected by N−1 massless
springs. Each mass mi has position (yi, zi), i = 1, . . . , N . We would like to find the equilibrium
position which minimizes the potential energy of the full system. The potential energy associated
with each spring is given by

Vel(yi, yi+1, zi, zi+1) =
1

2
D
(
(yi − yi+1)

2 + (zi − zi+1)
2
)
,

for i = 1, . . . , N − 1, and with spring constant D ∈ R+. The gravitational potential energy of each
mass is

Vg(zi) = mg zi,

for i = 1, . . . , N , where g is the earth gravity constant, and m = m1 = . . .mN . The total potential
energy is thus given by

Vchain(y, z) =
1

2
D

N−1∑
i=1

(
(yi − yi+1)

2 + (zi − zi+1)
2
)

+ mg
N∑
i=1

zi,

where y = (y1, . . . , yN) and z = (z1, . . . , zN). The minimizing chain position is therefore the
solution of the optimization problem

min
y, z ∈ RN

Vchain(y, z)

s.t. y1 = ȳ1,

yN = ȳN ,

z1 = z̄1,

zN = z̄N .

(3)

where (ȳ1, z̄1) and (ȳN , z̄N) are the fixed positions of the outer masses.

(a) What type of optimization problem is this?
The objective function is quadratic and the constraints are affine⇒ the problem is a quadratic
program (QP)

(b) Formulate the problem using N = 40, m = 4/N kg, D = 70
40
N N/m, g = 9.81 m/s2

with the outer masses fixed to (ȳ1, z̄1) = (−2, 1) and (ȳN , z̄N) = (2, 1). You can start from
the template code ex1 hanging chain.m. Solve the problem using CasADi with IPOPT
as solver and interpret the results.

(c) Introduce ground constraints: zi ≥ 0.5 and zi−0.1yi ≥ 0.5 for i = 2, . . . , N −1. What type of
optimization problem is the resulting problem? Solve the problem and plot the result. Compare
the result with the previous one.
We have added only affine constraints, so the problem is still a QP.
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Part II: Convex Optimization

In this part we learn how to recognize convex sets and functions. Moreover we revisit the hanging chain
problem from the previous part and add different types of constraints.

Exercise Tasks

5. Convex sets and functions: Determine whether the following sets and functions are convex or not.

(a) A wedge, i.e., a set of the form (with a1, a2 ∈ Rn, b1, b2 ∈ R):

{x ∈ Rn|a>1 x ≤ b1, a
>
2 x ≤ b2}

a>i x ≤ bi each defines a halfspace, which is convex. The set is a conjunction of two convex
sets (the halfspaces), therefore convex.
Alternative: show set definition also holds for z = (1− t)x+ ty with x, y elements of the set.

(b) The set of points closer to a given point than a given set (with x0 ∈ Rn, S ⊆ Rn):

{x ∈ Rn | ‖x− x0‖2 ≤ ‖x− y‖2 ∀y ∈ S}
The set can be equivalently written as the intersection

Ω = ∩y∈S{x ∈ Rn | ‖x− x0‖2 ≤ ‖x− y‖2} = ∩y∈SΩy.

Now each Ωy defines a halfspace, which is convex. Then Ω is an intersection of convex sets
and therefore convex itself.
To see each Ωy defines a halfspace:
‖x− x0‖22 ≤ ‖x− y‖22⇔ (x− x0)

>(x− x0) ≤ (x− y)>(x− y)
⇔ x>x− 2x>x0 + x>0 x0 ≤ x>x− 2x>y + y>y

⇔ (y − x0)
>︸ ︷︷ ︸

a>y

x ≤ 1

2

(
‖y‖22 − ‖x0‖22

)
︸ ︷︷ ︸

by

⇔ a>y x ≤ by

(c) The set of points closer to one set than another (S, T ⊆ Rn):

C := {x ∈ Rn| dist(x,S) ≤ dist(x, T )} with dist(x,S) := infz∈S ‖x− z‖2
Not convex.
Counter example: n = 1, S = {−1, 1}, T = {0} ⇒ C = {x ∈ R | x ≤ −1

2
or x ≥ 1

2
}

(d) The function f(x1, x2) = 1/(x1x2) on R2
++.

Convex if Hessian is positive semidefinite on the domain (R2
++)

∇2f(x1, x2) = 1
x1x2

[
2
x2
1

1
x1x2

1
x1x2

2
x2
2

]
A symmetric matrix A is positive definite iff its leading principal minors are > 0, i.e., the
determinants of all upper-left quadratic submatrices. Check leading principal minors:
det (∇2f (x1, x2)) = 1

x1x2

(
4

x2
1x

2
2
− 1

x2
1x

2
2

)
= 3

x3
1x

3
2
> 0 ∀x1, x2 ∈ R2

++

det
(

1
x1x2

2
x2
1

)
= 2

x3
1x2

> 0 ∀x1, x2 ∈ R2
++

⇒ Hessian is positive definite.
Alternative: show z>∇2f(x1, x2)z ≥ 0 ∀z ∈ R2, or compute eigenvalues.

(e) The function f(x1, x2) = x1/x2 on R2
++.

A is positive semidefinite⇔ all its principal minors are ≥ 0.

∇2f(x1, x2) =

[
0 − 1

x2
2

− 1
x2
2

2x1

x3
2

]
det (∇2f) = 0− 1

x4
2
< 0 ∀x2 ∈ R2

++⇒ Hessian is not PSD.
Alternative: show z>∇2fz ≥ 0 ∀z ∈ R2 does not hold, or compute eigenvalues.
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6. Minimum of coercive functions: Prove that the unconstrained optimization problem

min
x∈Rn

f(x)

with f : Rn → R a continuous, coercive function, has a global minimum point.

Hint: Use the Weierstrass Theorem and the following definition.

Definition (Coercive functions). A continuous function f(x) that is defined on Rn is coercive if

lim
‖x‖→∞

f(x) = +∞

or equivalently, if ∀M ∃R : ‖x‖ > R⇒ f(x) > M .

Choose M = f(0). Then from coerciveness we know that ∃r ≥ 0 : ‖x‖ > r ⇒ f(x) > f(0). Now
define set Ω := {x : ‖x‖ ≤ r}, which is compact. Then we know from the Weierstrass Theorem
that ∃x∗ : f(x∗) ≤ f(x) ∀x ∈ Ω, i.e., x∗ is a minimizer of f on Ω.
More specifically f(x∗) ≤ f(0) also holds , since 0 ∈ Ω ∀r ≥ 0. We know that f(0) < f(x)∀x :
‖x‖ > r, so also f(x∗) < f(x) ∀x ∈ Rn \ Ω.
Therefore f(x∗) is a global minimum of f on Rn, and x∗ a global minimizer.

7. Hanging chain, revisited: Recall the hanging chain problem from the previous part.

(a) What would happen if you add, instead of the linear ground constraints, the nonlinear ground
constraints zi ≥ −0.2 + 0.1y2i , for i = 2, . . . , N − 1 to your problem? Do not use MATLAB
yet! What type of optimization problem is the resulting problem? Is it convex?
The objective is still quadratic, but now there are quadratic constraints as well. Therefore it is
no longer a QP. Instead it is a Quadratically Constrained Quadratic Program (QCQP).
For each i = 2, . . . , N − 1, the constraint describes a parabola opened in positive z-direction,
where all points above the parabola are part of the set. This is a convex set, therefore the NLP
is still convex.
Alternative: bring into standard NLP form h(x) ≥ 0. This is a concave function, therefore the
NLP is still convex (see lecture notes theorem 3.4).

(b) What would happen if you add instead the nonlinear ground constraints zi ≥ −y2i , i =
2, . . . , N − 1? Do you expect this optimization problem to be convex?
The additional constraints are still quadratic, therefore it is still a QCQP.
The constraint describes a parabola opened in negative z-direction, where all points above the
parabola are part of the set. This is not a convex set, therefore the NLP is not convex.

(c) Now solve both variations using CasADi and plot the results (both chain and constraints). If
any of these two optimization problems is non-convex, does it have multiple local minima?
If yes, can you confirm that numerically by initializing the solver differently? Note that in
CasADi you can provide an initial value x0 for variable x via

opti.set_initial(x,x0)

As demonstrated in code, for the non-convex constraint from (b) different initializations find
different solutions (local optima).
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