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Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2022-2023

Exercise 4: Weighted Linear Least-Squares
(to be returned on Nov 21st, 8:00)

Prof. Dr. Moritz Diehl, Katrin Baumgärtner, Jakob Harzer, Yizhen Wang, Rashmi Dabir

The aim of this sheet is to strengthen your knowledge in least squares estimation and introduce some basic
properties about quadratic functions and how they relate to weighted linear least-squares.

Exercise Tasks

1. PAPER: We would like to find the parameters θ̂LS of a linear model y(k) = ϕ(k)⊤θ + ϵ(k), where
ϵ(k) ∼ N (0, σ2

ϵ ) is an additive i.i.d. zero-mean Gaussian noise that perturbed a series of N scalar
measurements yN = [y(1), . . . , y(N)] ∈ RN . From the lecture we know that θ̂LS can be computed
using least-squares:

θ̂LS = argmin
θ

1

2
∥yN − ΦNθ∥22

where ΦN ∈ RN×d. Assume that σ2
ϵ is known.

(a) State the matrix ΦN and the solution of least squares problem θ̂LS.

(b) Calculate the covariance of the least squares estimate cov
(
θ̂LS

)
.

Hint: Recall from Exercise 2 that the covariance matrix of a vector-valued variable Y = AX + b
for a constant A ∈ Rm×n and b ∈ Rm is given by cov (Y ) = A cov (X)A⊤.

(2 points)

2. PAPER: Consider a series of N scalar measurements yN = [y(1), . . . , y(N)] ∈ RN and a linear
model y(k) = ϕ(k)⊤θ + ϵ(k), where ϕ(k) ∈ Rd, θ ∈ Rd, ϵ(k) ∼ N (0, σ2

ϵ (k)). The measurements
thus are perturbed by additive independent zero-mean noise that is not identically distributed. In or-
der to give a lower weight to the measurements with stronger noise, we introduce a weighting matrix
W ∈ RN×N which is positive definite. Consider the following weighted least-squares optimization
problem (WLS)

min
θ∈Rd

1

2
∥r∥2W =

1

2
r⊤Wr (1)

where r = [r(1), . . . , r(N)] ∈ RN is the vector of the prediction errors r(k) = y(k)− ϕ(k)⊤θ .

(a) Please re-write the WLS optimization problem (1) as an unweighted LLS problem, i.e. specify
ỹ and Φ̃ such that

min
θ∈Rd

1

2
∥ỹ − Φ̃θ∥22 = min

θ∈Rd

1

2
r⊤Wr

(1 point)

(b) Is it a convex problem? Prove it. (1 point)
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3. Recall the resistance estimation example from the last exercise sheet. Again, we consider the fol-
lowing experimental setup:

i(k)

R

+ −
E

V

u(k)

We assume that only our measurements of the voltage are corrupted by noise, i.e. we make the
following model assumption:

u(k) = R0i(k) + E0 + nu(k)

where nu(k) ∼ N (0, σ2
u(k)) follows a zero-mean Gaussian distribution.

You are given the data of Ne students, each of them performed the same experiment where they
measured the voltage u(k) for increasing values of i(k), k = 1, . . . , Nm.

Unfortunately, the fan of your measuring device is broken. Thus, it starts heating up over the course
of the experiment which decreases the accuracy of your measurements such that later measurements
are much noisier than earlier ones.

(a) PAPER: In the template we already provided a plot showing the measurements from all stu-
dents. What do you observe?
To account for the decreasing accuracy of your measuring device, you decide to assume that
the noise variance σ2

u(k) is proportional to the timestep k, i.e.

σ2
u(k) = c · k, k = 1, . . . , Nm,

where c is a constant. How do you make use of this assumption to modify the LLS estimator?
(1 point)

(b) CODE: For student 1, perform both linear least-squares (LLS) and weighted linear least-
squares (WLS) to obtain estimates of the parameter θ = [R0, E0]

⊤. Plot the data of student 1,
as well as the fit obtained from LLS and WLS in a single figure. Hint: for coding purpose, you
can compute the weighting matrix assuming that c = 1.
PAPER: Which estimator fits better and why? (1 point)

(c) CODE: For each student d = 1, . . . , Ne, compute θ
(d)
LLS and θ

(d)
WLS. (0.5 point)

(d) CODE: Estimate the mean and covariance matrix of the random variables θLLS and θWLS by
calculating the sample mean θ̄∗LS = 1

Ne

∑Ne

d=1 θ
(d)
∗LS and the sample covariance matrix Σ∗LS that

is given by

Σ∗LS =
1

Ne − 1

Ne∑
d=1

(
θ
(d)
∗LS − θ̄∗LS

)(
θ
(d)
∗LS − θ̄∗LS

)⊤
.

Here ∗LS refers to LLS and WLS. (0.5 point)

(e) CODE: Plot θ(d)LLS and θ
(d)
WLS, d = 1, . . . , Ne, where the x-axis corresponds to the estimated R0

values and the y-axis corresponds to the estimated E0 values.
Plot the mean and 1σ-confidence ellipsoids for both θLLS and θWLS in the same figure.
PAPER: What do you observe? (1.5 point)

(f) PAPER: In part (a) we assumed that the measurement noise is proportional to k. Does θWLS

depend on the choice of the proportionality factor c? Why (not)? (1.5 point)

This sheet gives in total 10 points.
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