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Exercises for Course on Modeling and System Identification (MSI)
Albert-Ludwigs-Universität Freiburg – Winter Term 2022-2023

Exercise 2: Statistics + Parameter Estimation
(to be returned on November 7th, 8:00)

Prof. Dr. Moritz Diehl, Katrin Baumgärtner, Jakob Harzer, Yizhen Wang, Rashmi Dabir

In this exercise you get to know some matrix properties. In addition, you investigate some important facts
from statistics in numerical experiments. Pen-and-paper exercises can be uploaded on the Ilias course page
as a digitally created PDF or handed in during the lecture.

Exercise Tasks

1. PAPER: The covariance matrix of a vector-valued random variable X ∈ Rn with mean
E {X} = µX is defined by

cov (X) := E
{
(X − µX) (X − µX)

⊤
}
.

Prove that the covariance matrix of a vector-valued variable Y = AX + b with constant A ∈ Rm×n

and b ∈ Rm is given by
cov (Y ) = A cov (X)A⊤.

(2 points)

2. PAPER: Let X ∈ Rn be a vector-valued random variable with mean µ ∈ Rn. Show that the
covariance matrix cov(X) can also be calculated by

cov(X) = E
{
XX⊤}− µµ⊤

(2 points)

3. PAPER: Suppose we are measuring a constant x0 ∈ R perturbed by random independent noise ϵ
with mean µϵ = 0 and variance σ2

ϵ > 0, i.e. we have

x = x0 + ϵ.

(a) State the mean µx and the variance σ2
x of the random variable x. (1 point)

(b) Let x(n) = (x1, . . . , xn) denote a sample of n observations of x. The sample mean is given by
x̄(n) = 1

n

∑n
i=1 xi and it is an unbiased estimator of the mean µx.

What is the variance of x̄(n)? (1 point)

(c) Prove that the Least Squares (LS) estimate for x0 is the sample mean x̄(n). State the minimiza-
tion problem explicitly. Is it convex? (2 bonus points)
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4. Consider the following experimental setup, where we measure the temperature-dependent expansion
of a steel bar. Here L0 [cm] is the length of the bar at the beginning of the experiment and L(T ) [cm]
represents the length of the bar at temperature T [K]. The following relationship holds, between the
length of the bar at temperature T0 [K]: L0 = L(T0). We define ∆T := T − T0 as the independent
variable. Furthermore, we define A := α · L0 [cm/K], where α [1/K] is the specific expansion
coefficient. Then the model is given by

m(∆T (k);A,L0) = A ·∆T (k) + L0. (1)

Below, you find the datapoints. Using the data, you will compute estimates for the parameters A and
L0.

k 1 2 3 4
∆T (k) [K] 5 15 35 60
L(k) [cm] 6.55 9.63 17.24 29.64

(a) CODE: Plot the ∆T (k), L(k) relation using ’x’ markers. (0.5 points)

(b) PAPER: Using the model from above, calculate the experimental values for the parameters A
and L0 by minimizing the sum of squared distances, i.e.

A∗, L∗
0 = argmin

A, L0

4∑
k=1

dk(A,L0)
2, (2)

where the distance dk is given by

dk(A,L0) = L(k)−m(∆T (k);A,L0).

CODE: Plot the fit m(∆T ;A∗, L∗
0) = A∗∆T + L∗

0 over the range [0, 100] in the same figure as
before.

Hint: Compute the solution by setting the gradient of the objective function with respect to the
parameters (A, L0) to zero, i.e. ∇(A,L0)

∑
k d

2
k = 0. This will give you a 2 × 2 linear system.

Check if the objective function is convex! (2 points)

(c) CODE: Now, use a third order polynomial and fit it to the data using np.polyfit. Again
minimize the sum of squared distances to find optimal values for the coefficients of your model
equation. Plot the fit in the same figure as before. (0.5 point)

(d) CODE: You take another measurement: at ∆T = 70K you measure a length of L = 32.89 cm.
You can use this additional datapoint to validate your fit. Therefore plot it in the existing plot.
PAPER: Which fit looks more reasonable to you?
Hint: The phenomenon of fitting a model to a data set which then does not pass validation is
called ’overfitting’. (1 point)

This sheet gives in total 10 points and 2 bonus points.
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