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Ellipsoids 101 - Definition

I Define ellipsoid by center c ∈ Rn and shape
matrix Q ∈ Sn++ (i.e.,Q � 0)

E(Q, c) := {x ∈ Rn | ‖x− c‖Q−1 ≤ 1}

I Denote by λi, vi, i = 1, . . . , n, the eigenvalues
/ -vectors (normalized) of Q.
I These correspond to the ellipsoid axes

I Measuring the size of an ellipsoid

TrQ =

n∑
i=1

λi (“least squares”)

√
detQ =

n∏
i=1

√
λi ∝ Volume

c

Q
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Ellipsoid 101 – Affine transformation

Q

AQA>

A ∈ Rm×n, b ∈ Rm,

AE(Q, c) + b,

:= {Ax+ b | x ∈ E(Q, c)}

= E(AQA>, Ac+ b)

center position of the ellipsoid usually
unspectular → We focus on ellipsoids centered
around the origin

E(Q) := E(Q, 0)
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Support function

g

I Any non-empty compact convex set S ⊂ Rn can be
defined via its support function:

V (g) = max
x ∈ Rn

g>x s.t. x ∈ S

I Important tool for analysis of convex sets

I For ellipsoid:

V (g) = max
x ∈ Rn

g>x s.t. x ∈ E(Q)

=
√
g>Qg
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Sum of ellipsoids (Minkowski sum)

E(Q0)

E(Q1)

E(Q0) + E(Q1)

E(Q0)

E(Q1)

E(Q2)

E(Q0) + E(Q1) + E(Q2)
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Overapproximating sum of ellipsoids by ellipsoid

I Aim: find Q such that E(Q) ⊇ E(Q1) + E(Q2)

I More general: Find Q such that E(Q) ⊇∑N
k=1 E(Qk)

I Construct family of outer approximations parametrized by α ∈ RKN++

Q(α) =
N∑
k=1

1

αk
Qk ⇒ E(Q(α)) ⊇

N∑
k=1

E(Qk) ∀α ∈ RN++ with
N∑
k=1

αk = 1

I Denote set of feasible α by AN (basically a simplex)

I Parametrized outer approximation is tight (but not complete)

⋂
α∈AN

E(Q(α)) =

N∑
k=1

E(Qk)
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Overapproximating sum of ellipsoids by ellipsoid (cont.)

I In general: Choose α according to some criterion
I e.g., such that E(Q(α)) has minimal size, e.g., minα∈AN Tr(Q(α))
I or E(Q(α)) tight in a given direction g ∈ Rn (approximation touches true sum)

min
α ∈ AN

(
max
x ∈ Rn

g>x s.t. x ∈ E(Q(α))

)
= min
α ∈ AN

√
g>Q(α)g =̂ min

α ∈ AN
Tr(gg>Q(α))

I Special case N = 2
I Q(α) = 1

α1
Q1 + 1

α2
Q2 with α1 + α2 = 1

I Reparametrize: α2 = 1− α1, β = 1
1−α1

> 0

I Q̃(β) = (1 + 1
β
)Q1 + (1 + β)Q2

I Inclusion-minimal (contains all the “best” overapproximations)

arg min
β > 0

Tr Q̃(β) = arg min
β > 0

(1 +
1

β
)TrQ1 + (1 + β)TrQ2 =

√
TrQ1

TrQ2
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Overapproximations of sum of two ellipsoids

E(Q0)

E(Q1)

E(Q0) + E(Q1)

min trace overapprox

minkowski sum

tight overapprox

tight overapprox
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Overapproximations of sum of three ellipsoids

E(Q0)

E(Q1)

E(Q2)

E(Q0) + E(Q1) + E(Q2)

min trace overapprox

minkowski sum

tight overapprox

tight overapprox



10/16

Uncertain linear dynamical systems

xk+1 = Axk + Γwk

I Reachable set

xk ∈ E(Pk), wk ∈ E(W )

⇒ xk+1 ∈ E(APkA
>) + E(ΓWΓ>)

I Uncertainty set not ellipsoidal :(
I Overapproximate by ellipsoid

I Overapproximation of reachable set

xk ∈ E(Pk(β)), wk ∈ E(W )

Pk+1(β) = (1 + βk)APk(β)A> + (1 + 1
βk

)ΓWΓ>

⇒ xk+1 ∈ E(Pk+1(β))
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Overapproximation OCP

min
β0, . . . , βN−1 ∈ R++,

P0, . . . , PN

N∑
k=0

TrLkPk (1a)

s.t. P0 = P̄0, (1b)

Pk+1 = (1 + βk)APkA
> + (1 +

1

βk
)ΓWΓ>, k = 0, . . . , N. (1c)

I Eliminating Pk and substituting exp γ ← β results in convex problem
I special case A = I, L0 = · · · = LN−1 = 0 or A = I, L0 = · · · = LN

I solve by forward recursion, βk =
√

Tr ΓWΓ>
TrPk

I Recursive overapproximation of N sums of two ellipsoids
vs. overapproximation of one sum of N ellipsoids?
I No loss of expressiveness (I think)
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Example – Linearized Pendulum

x =

[
ϕ

ω

]
, ẋ =

[
ω

− g
Lϕ+ 1

mLw

]

I discretize in time with T = 1.2, N = 10

I uncertainty w ∈ [−1, 1] piecewise constant

I Start at x0 = 0.

I compute reachable set at final time and
compare to overapproximations

min
β > 0

TrPN (β), min
β > 0

Tr(gg>PN (β)), (Houska 2011)
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Example – Linearized Pendulum

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
1.5

1.0

0.5

0.0

0.5

1.0

1.5 reachable set
min trace overapprox

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
1.5

1.0

0.5

0.0

0.5

1.0

1.5

reachable set
tight overapprox 1
tight overapprox 2
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Uncertain linear dynamical systems

I Now consider controlled system

xk+1 = Axk +Buk + Γwk

I plan over feedback law to manipulate the ellipsoids

uk = ūk +Kk(x− x̄k)

Pk+1 = (1 + βk)(A+BKk)Pk(A+BKk)>

+ (1 + 1
βk

)ΓWΓ>

I Linearize Constraints

h(x) ≤ 0 ∀x ∈ E(P, x̄)

→ h(x̄) +∇h(x̄)>(x− x̄) ≤ 0 ∀x ∈ E(P, x̄)

→ Conservative for concave h(x)

4 3 2 1 0 1 2
x1

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x 2

x *

(Q, x * )
h(x) 0
hlin(x; x * ) = 0
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Where do I want to go with this?

Robust OCP with optimal overapproximation and feedback, for linear dynamics, and “concave
constraints”.

min
x, u, β, P,K

N−1∑
k=0

lk(x̄k, ūk) + lN (x̄N )

s.t. x̄0 = ¯̄x0, P0 = P̄0,

x̄k+1 = Akx̄k +Bkūk, k = 0, . . . , N − 1,

Pk+1 = (1 + βk)(Ak +BkKk)Pk(Ak +BkKk)> + (1 + 1
βk

)W̃>k , k = 0, . . . , N − 1,

0 ≥ hk(x̄k, ūk) +∇hk(x̄k, ūk)>(x− x̄) ∀z ∈ E(Pz(Pk,Kk), z̄), k = 0, . . . , N − 1,

0 ≥ hN (x̄N ) +∇hN (x̄N )>(x− x̄N ) ∀x ∈ E(PN ),

with z = (x, u) and Pz the corresponding ellipsoid matrix
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Further considerations

I Establish advantage of minimizing over β, K
I vs. precomputing arbitrary LQR gain and choosing β as minimizing trace step-by-step
I feedback → small uncertainty → choice of β less relevant

I Design taylored algorithm, ZORO / SIRO style (alternate Riccati recursion, “Trace OCP”,
and nominal OCP with fixed back-off?)

I Find a nice linear system as example

I Alternative: affine-in-state-and-disturbance

xk+1 = A(uk)xk + Γ(uk)wk + b(uk)

I in this case without feedback-law
I Examples of this system class

I systems with controlled mass-flow-rate (heating)
I ... ?


