Optimal ellipsoidal overapproximations for robust optimal

 control
Florian Messerer

Systems Control and Optimization Laboratory, University of Freiburg
syscop group retreat
Feb 15, 2023

Ellipsoids 101 - Definition

- Define ellipsoid by center $c \in \mathbb{R}^{n}$ and shape matrix $Q \in \mathbb{S}_{++}^{n}$ (i.e., $Q \succ 0$)

$$
\mathcal{E}(Q, c):=\left\{x \in \mathbb{R}^{n} \mid\|x-c\|_{Q^{-1}} \leq 1\right\}
$$

Ellipsoids 101 - Definition

- Define ellipsoid by center $c \in \mathbb{R}^{n}$ and shape matrix $Q \in \mathbb{S}_{++}^{n}$ (i.e., $Q \succ 0$)

$$
\mathcal{E}(Q, c):=\left\{x \in \mathbb{R}^{n} \mid\|x-c\|_{Q^{-1}} \leq 1\right\}
$$

- Denote by $\lambda_{i}, v_{i}, i=1, \ldots, n$, the eigenvalues / -vectors (normalized) of Q.
- These correspond to the ellipsoid axes

Ellipsoids 101 - Definition

- Define ellipsoid by center $c \in \mathbb{R}^{n}$ and shape matrix $Q \in \mathbb{S}_{++}^{n}$ (i.e., $Q \succ 0$)

$$
\mathcal{E}(Q, c):=\left\{x \in \mathbb{R}^{n} \mid\|x-c\|_{Q^{-1}} \leq 1\right\}
$$

- Denote by $\lambda_{i}, v_{i}, i=1, \ldots, n$, the eigenvalues / -vectors (normalized) of Q.
- These correspond to the ellipsoid axes

Ellipsoids 101 - Definition

- Define ellipsoid by center $c \in \mathbb{R}^{n}$ and shape matrix $Q \in \mathbb{S}_{++}^{n}($ i.e., $Q \succ 0)$

$$
\mathcal{E}(Q, c):=\left\{x \in \mathbb{R}^{n} \mid\|x-c\|_{Q^{-1}} \leq 1\right\}
$$

- Denote by $\lambda_{i}, v_{i}, i=1, \ldots, n$, the eigenvalues / -vectors (normalized) of Q.
- These correspond to the ellipsoid axes
- Measuring the size of an ellipsoid

$$
\begin{aligned}
\operatorname{Tr} Q & =\sum_{i=1}^{n} \lambda_{i} & \text { ("least squares") } \\
\sqrt{\operatorname{det} Q} & =\prod_{i=1}^{n} \sqrt{\lambda_{i}} & \propto \text { Volume }
\end{aligned}
$$

Ellipsoid 101 - Affine transformation

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, \\
& A \mathcal{E}(Q, c)+b, \\
:= & \{A x+b \mid x \in \mathcal{E}(Q, c)\}
\end{aligned}
$$

Ellipsoid 101 - Affine transformation

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, \\
& A \mathcal{E}(Q, c)+b, \\
:= & \{A x+b \mid x \in \mathcal{E}(Q, c)\} \\
= & \mathcal{E}\left(A Q A^{\top}, A c+b\right)
\end{aligned}
$$

Ellipsoid 101 - Affine transformation

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, \\
& A \mathcal{E}(Q, c)+b, \\
:= & \{A x+b \mid x \in \mathcal{E}(Q, c)\} \\
= & \mathcal{E}\left(A Q A^{\top}, A c+b\right)
\end{aligned}
$$

center position of the ellipsoid usually unspectular \rightarrow We focus on ellipsoids centered around the origin

$$
\mathcal{E}(Q):=\mathcal{E}(Q, 0)
$$

Support function

- Any non-empty compact convex set $\mathcal{S} \subset \mathbb{R}^{n}$ can be defined via its support function:

$$
V(g)=\max _{x \in \mathbb{R}^{n}} g^{\top} x \quad \text { s.t. } \quad x \in \mathcal{S}
$$

- Important tool for analysis of convex sets
- For ellipsoid:

$$
\begin{aligned}
V(g) & =\max _{x \in \mathbb{R}^{n}} g^{\top} x \quad \text { s.t. } \quad x \in \mathcal{E}(Q) \\
& =\sqrt{g^{\top} Q g}
\end{aligned}
$$

Sum of ellipsoids (Minkowski sum)

- $\mathcal{E}\left(Q_{0}\right)$
$-\mathcal{E}\left(Q_{1}\right)$
$-\mathcal{E}\left(Q_{0}\right)+\mathcal{E}\left(Q_{1}\right)$

$$
\begin{aligned}
& \text { - } \mathcal{E}\left(Q_{0}\right) \\
& \text { - } \mathcal{E}\left(Q_{1}\right) \\
& -\mathcal{E}\left(Q_{2}\right) \\
& -\mathcal{E}\left(Q_{0}\right)+\mathcal{E}\left(Q_{1}\right)+\mathcal{E}\left(Q_{2}\right)
\end{aligned}
$$

Overapproximating sum of ellipsoids by ellipsoid

- Aim: find Q such that $\mathcal{E}(Q) \supseteq \mathcal{E}\left(Q_{1}\right)+\mathcal{E}\left(Q_{2}\right)$

Overapproximating sum of ellipsoids by ellipsoid

- Aim: find Q such that $\mathcal{E}(Q) \supseteq \mathcal{E}\left(Q_{1}\right)+\mathcal{E}\left(Q_{2}\right)$
- More general: Find Q such that $\mathcal{E}(Q) \supseteq \sum_{k=1}^{N} \mathcal{E}\left(Q_{k}\right)$

Overapproximating sum of ellipsoids by ellipsoid

- Aim: find Q such that $\mathcal{E}(Q) \supseteq \mathcal{E}\left(Q_{1}\right)+\mathcal{E}\left(Q_{2}\right)$
- More general: Find Q such that $\mathcal{E}(Q) \supseteq \sum_{k=1}^{N} \mathcal{E}\left(Q_{k}\right)$
- Construct family of outer approximations parametrized by $\alpha \in \mathbb{R}_{++}^{K N}$

$$
Q(\alpha)=\sum_{k=1}^{N} \frac{1}{\alpha_{k}} Q_{k} \quad \Rightarrow \quad \mathcal{E}(Q(\alpha)) \supseteq \sum_{k=1}^{N} \mathcal{E}\left(Q_{k}\right) \quad \forall \alpha \in \mathbb{R}_{++}^{N} \quad \text { with } \quad \sum_{k=1}^{N} \alpha_{k}=1
$$

Overapproximating sum of ellipsoids by ellipsoid

- Aim: find Q such that $\mathcal{E}(Q) \supseteq \mathcal{E}\left(Q_{1}\right)+\mathcal{E}\left(Q_{2}\right)$
- More general: Find Q such that $\mathcal{E}(Q) \supseteq \sum_{k=1}^{N} \mathcal{E}\left(Q_{k}\right)$
- Construct family of outer approximations parametrized by $\alpha \in \mathbb{R}_{++}^{K N}$

$$
Q(\alpha)=\sum_{k=1}^{N} \frac{1}{\alpha_{k}} Q_{k} \quad \Rightarrow \quad \mathcal{E}(Q(\alpha)) \supseteq \sum_{k=1}^{N} \mathcal{E}\left(Q_{k}\right) \quad \forall \alpha \in \mathbb{R}_{++}^{N} \quad \text { with } \quad \sum_{k=1}^{N} \alpha_{k}=1
$$

- Denote set of feasible α by \mathcal{A}^{N} (basically a simplex)
- Parametrized outer approximation is tight (but not complete)

$$
\bigcap_{\alpha \in \mathcal{A}^{N}} \mathcal{E}(Q(\alpha))=\sum_{k=1}^{N} \mathcal{E}\left(Q_{k}\right)
$$

Overapproximating sum of ellipsoids by ellipsoid (cont.)

- In general: Choose α according to some criterion
- e.g., such that $\mathcal{E}(Q(\alpha))$ has minimal size, e.g., $\min _{\alpha \in \mathcal{A}^{N}} \operatorname{Tr}(Q(\alpha))$
- or $\mathcal{E}(Q(\alpha))$ tight in a given direction $g \in \mathbb{R}^{n}$ (approximation touches true sum)

$$
\min _{\alpha \in \mathcal{A}^{N}}\left(\max _{x \in \mathbb{R}^{n}} g^{\top} x \quad \text { s.t. } \quad x \in \mathcal{E}(Q(\alpha))\right)=\min _{\alpha \in \mathcal{A}^{N}} \sqrt{g^{\top} Q(\alpha) g} \hat{=} \min _{\alpha \in \mathcal{A}^{N}} \operatorname{Tr}\left(g g^{\top} Q(\alpha)\right)
$$

Overapproximating sum of ellipsoids by ellipsoid（cont．）

－In general：Choose α according to some criterion
$>$ e．g．，such that $\mathcal{E}(Q(\alpha))$ has minimal size，e．g．， $\min _{\alpha \in \mathcal{A}^{N}} \operatorname{Tr}(Q(\alpha))$
\Rightarrow or $\mathcal{E}(Q(\alpha))$ tight in a given direction $g \in \mathbb{R}^{n}$（approximation touches true sum）

$$
\min _{\alpha \in \mathcal{A}^{N}}\left(\max _{x \in \mathbb{R}^{n}} g^{\top} x \quad \text { s.t. } \quad x \in \mathcal{E}(Q(\alpha))\right)=\min _{\alpha \in \mathcal{A}^{N}} \sqrt{g^{\top} Q(\alpha) g} \hat{=} \min _{\alpha \in \mathcal{A}^{N}} \operatorname{Tr}\left(g g^{\top} Q(\alpha)\right)
$$

－Special case $N=2$
$\Rightarrow Q(\alpha)=\frac{1}{\alpha_{1}} Q_{1}+\frac{1}{\alpha_{2}} Q_{2}$ with $\alpha_{1}+\alpha_{2}=1$
\Rightarrow Reparametrize：$\alpha_{2}=1-\alpha_{1}, \beta=\frac{1}{1-\alpha_{1}}>0$
$\Rightarrow \tilde{Q}(\beta)=\left(1+\frac{1}{\beta}\right) Q_{1}+(1+\beta) Q_{2}$
－Inclusion－minimal（contains all the＂best＂overapproximations）

$$
\arg \min _{\beta>0} \operatorname{Tr} \tilde{Q}(\beta)=\arg \min _{\beta>0}\left(1+\frac{1}{\beta}\right) \operatorname{Tr} Q_{1}+(1+\beta) \operatorname{Tr} Q_{2}=\sqrt{\frac{\operatorname{Tr} Q_{1}}{\operatorname{Tr} Q_{2}}}
$$

Overapproximations of sum of two ellipsoids

—— minkowski sum
 _— tight overapprox
 tight overapprox

—— $\mathcal{E}\left(Q_{0}\right)$
— $\mathcal{E}\left(Q_{1}\right)$

- min trace overapprox

Overapproximations of sum of three ellipsoids

$=$	$\mathcal{E}\left(Q_{0}\right)$
$=$	$\mathcal{E}\left(Q_{1}\right)$
$=$	$\mathcal{E}\left(Q_{2}\right)$
$=$	$\mathcal{E}\left(Q_{0}\right)+\mathcal{E}\left(Q_{1}\right)+\mathcal{E}\left(Q_{2}\right)$
$=$	min trace overapprox

$\square=$	minkowski sum
$=$	tight overapprox
tight overapprox	

Uncertain linear dynamical systems

$$
x_{k+1}=A x_{k}+\Gamma w_{k}
$$

- Reachable set

$$
\begin{gathered}
x_{k} \in \mathcal{E}\left(P_{k}\right), w_{k} \in \mathcal{E}(W) \\
\Rightarrow x_{k+1} \in \mathcal{E}\left(A P_{k} A^{\top}\right)+\mathcal{E}\left(\Gamma W \Gamma^{\top}\right)
\end{gathered}
$$

Uncertain linear dynamical systems

$$
x_{k+1}=A x_{k}+\Gamma w_{k}
$$

- Reachable set

$$
\begin{gathered}
x_{k} \in \mathcal{E}\left(P_{k}\right), w_{k} \in \mathcal{E}(W) \\
\Rightarrow x_{k+1} \in \mathcal{E}\left(A P_{k} A^{\top}\right)+\mathcal{E}\left(\Gamma W \Gamma^{\top}\right)
\end{gathered}
$$

- Uncertainty set not ellipsoidal :(
- Overapproximate by ellipsoid

Uncertain linear dynamical systems

$$
x_{k+1}=A x_{k}+\Gamma w_{k}
$$

- Reachable set

$$
\begin{gathered}
x_{k} \in \mathcal{E}\left(P_{k}\right), w_{k} \in \mathcal{E}(W) \\
\Rightarrow x_{k+1} \in \mathcal{E}\left(A P_{k} A^{\top}\right)+\mathcal{E}\left(\Gamma W \Gamma^{\top}\right)
\end{gathered}
$$

- Overapproximation of reachable set

$$
\begin{aligned}
x_{k} & \in \mathcal{E}\left(P_{k}(\beta)\right), w_{k} \in \mathcal{E}(W) \\
P_{k+1}(\beta) & =\left(1+\beta_{k}\right) A P_{k}(\beta) A^{\top}+\left(1+\frac{1}{\beta_{k}}\right) \Gamma W \Gamma^{\top} \\
\Rightarrow x_{k+1} & \in \mathcal{E}\left(P_{k+1}(\beta)\right)
\end{aligned}
$$

- Uncertainty set not ellipsoidal :(
- Overapproximate by ellipsoid

Uncertain linear dynamical systems

$$
x_{k+1}=A x_{k}+\Gamma w_{k}
$$

- Reachable set

$$
\begin{gathered}
x_{k} \in \mathcal{E}\left(P_{k}\right), w_{k} \in \mathcal{E}(W) \\
\Rightarrow x_{k+1} \in \mathcal{E}\left(A P_{k} A^{\top}\right)+\mathcal{E}\left(\Gamma W \Gamma^{\top}\right)
\end{gathered}
$$

- Overapproximation of reachable set

$$
\begin{aligned}
x_{k} & \in \mathcal{E}\left(P_{k}(\beta)\right), w_{k} \in \mathcal{E}(W) \\
P_{k+1}(\beta) & =\left(1+\beta_{k}\right) A P_{k}(\beta) A^{\top}+\left(1+\frac{1}{\beta_{k}}\right) \Gamma W \Gamma^{\top} \\
\Rightarrow x_{k+1} & \in \mathcal{E}\left(P_{k+1}(\beta)\right)
\end{aligned}
$$

- Uncertainty set not ellipsoidal :(
- Overapproximate by ellipsoid

Overapproximation OCP

$$
\begin{array}{ll}
\underset{\substack{\text { min } \\
\beta_{0}, \ldots, \beta_{N-1} \in \mathbb{R}_{++}, P_{0}, \ldots, P_{N}}}{ } & \sum_{k=0}^{N} \operatorname{Tr} L_{k} P_{k} \\
\text { s.t. } & P_{0}=\bar{P}_{0}, \\
& P_{k+1}=\left(1+\beta_{k}\right) A P_{k} A^{\top}+\left(1+\frac{1}{\beta_{k}}\right) \Gamma W \Gamma^{\top}, \quad k=0, \ldots, N . \tag{1c}
\end{array}
$$

Overapproximation OCP

$$
\begin{array}{cl}
\underset{\substack{\text { min } \\
\beta_{0}, \ldots, \beta_{N-1} \in \mathbb{R}_{++}, P_{0}, \ldots, P_{N}}}{ } & \sum_{k=0}^{N} \operatorname{Tr} L_{k} P_{k} \\
\text { s.t. } & P_{0}=\bar{P}_{0}, \\
& P_{k+1}=\left(1+\beta_{k}\right) A P_{k} A^{\top}+\left(1+\frac{1}{\beta_{k}}\right) \Gamma W \Gamma^{\top}, \quad k=0, \ldots, N .
\end{array}
$$

- Eliminating P_{k} and substituting $\exp \gamma \leftarrow \beta$ results in convex problem
- special case $A=I, L_{0}=\cdots=L_{N-1}=0$ or $A=I, L_{0}=\cdots=L_{N}$
$>$ solve by forward recursion, $\beta_{k}=\sqrt{\frac{\operatorname{Tr} \Gamma W \Gamma^{\top}}{\operatorname{Tr} P_{k}}}$
- Recursive overapproximation of N sums of two ellipsoids
vs. overapproximation of one sum of N ellipsoids?
- No loss of expressiveness (I think)

Example - Linearized Pendulum

$$
x=\left[\begin{array}{c}
\varphi \\
\omega
\end{array}\right], \quad \dot{x}=\left[\begin{array}{c}
\omega \\
-\frac{g}{L} \varphi+\frac{1}{m L} w
\end{array}\right]
$$

- discretize in time with $T=1.2, N=10$
- uncertainty $w \in[-1,1]$ piecewise constant
- Start at $x_{0}=0$.
- compute reachable set at final time and compare to overapproximations

$$
\min _{\beta>0} \operatorname{Tr} P_{N}(\beta), \quad \min _{\beta>0} \operatorname{Tr}\left(g g^{\top} P_{N}(\beta)\right),
$$

Example - Linearized Pendulum

Uncertain linear dynamical systems

- Now consider controlled system

$$
x_{k+1}=A x_{k}+B u_{k}+\Gamma w_{k}
$$

- plan over feedback law to manipulate the ellipsoids

$$
\begin{aligned}
u_{k}= & \bar{u}_{k}+K_{k}\left(x-\bar{x}_{k}\right) \\
P_{k+1}= & \left(1+\beta_{k}\right)\left(A+B K_{k}\right) P_{k}\left(A+B K_{k}\right)^{\top} \\
& +\left(1+\frac{1}{\beta_{k}}\right) \Gamma W \Gamma^{\top}
\end{aligned}
$$

- Linearize Constraints

$$
\begin{aligned}
h(x) & \leq 0 & \forall x \in \mathcal{E}(P, \bar{x}) \\
\rightarrow & h(\bar{x})+\nabla h(\bar{x})^{\top}(x-\bar{x}) \leq 0 & \forall x \in \mathcal{E}(P, \bar{x})
\end{aligned}
$$

\rightarrow Conservative for concave $h(x)$

Where do I want to go with this?

Robust OCP with optimal overapproximation and feedback, for linear dynamics, and "concave constraints".

$$
\begin{array}{rlrl}
\min _{x, u, \beta, P, K} & \sum_{k=0}^{N-1} l_{k}\left(\bar{x}_{k}, \bar{u}_{k}\right)+l_{N}\left(\bar{x}_{N}\right) \\
\text { s.t. } & \bar{x}_{0} & =\overline{\bar{x}}_{0}, P_{0}=\bar{P}_{0}, \\
\bar{x}_{k+1} & =A_{k} \bar{x}_{k}+B_{k} \bar{u}_{k}, & k=0, \ldots, N-1, \\
P_{k+1} & =\left(1+\beta_{k}\right)\left(A_{k}+B_{k} K_{k}\right) P_{k}\left(A_{k}+B_{k} K_{k}\right)^{\top}+\left(1+\frac{1}{\beta_{k}}\right) \tilde{W}_{k}^{\top}, \quad k=0, \ldots, N-1, \\
0 & \geq h_{k}\left(\bar{x}_{k}, \bar{u}_{k}\right)+\nabla h_{k}\left(\bar{x}_{k}, \bar{u}_{k}\right)^{\top}(x-\bar{x}) \quad \forall z \in \mathcal{E}\left(P_{z}\left(P_{k}, K_{k}\right), \bar{z}\right), k=0, \ldots, N-1, \\
0 & \geq h_{N}\left(\bar{x}_{N}\right)+\nabla h_{N}\left(\bar{x}_{N}\right)^{\top}\left(x-\bar{x}_{N}\right) \quad \forall x \in \mathcal{E}\left(P_{N}\right),
\end{array}
$$

with $z=(x, u)$ and P_{z} the corresponding ellipsoid matrix

Further considerations

- Establish advantage of minimizing over β, K
$>$ vs. precomputing arbitrary LQR gain and choosing β as minimizing trace step-by-step
$>$ feedback \rightarrow small uncertainty \rightarrow choice of β less relevant
- Design taylored algorithm, ZORO / SIRO style (alternate Riccati recursion, "Trace OCP", and nominal OCP with fixed back-off?)
- Find a nice linear system as example
- Alternative: affine-in-state-and-disturbance

$$
x_{k+1}=A\left(u_{k}\right) x_{k}+\Gamma\left(u_{k}\right) w_{k}+b\left(u_{k}\right)
$$

\Rightarrow in this case without feedback-law

- Examples of this system class
- systems with controlled mass-flow-rate (heating)
- ... ?

