

Stochastic Model Predictive Control for Smart Grid Applications

Arne Groß PHD Thesis Defence Freiburg, 13.03.2023 www.ise.fraunhofer.de

Control of Residential PV Battery Systems under Uncertainties Introduction

Fade-out of fossil-based electricity generation

Less controllable renewable sources

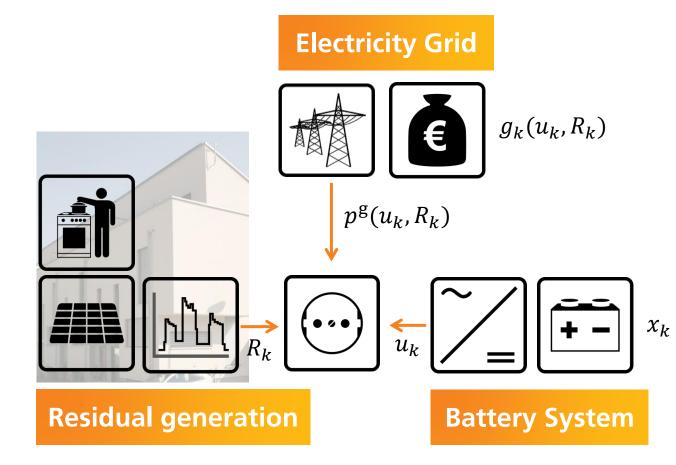
 \rightarrow Use decentralized flexibilities

Control of Residential PV Battery Systems under Uncertainties Introduction

Fade-out of fossil-based electricity generation

Less controllable renewable sources

 \rightarrow Use decentralized flexibilities



Control of Residential PV Battery Systems under Uncertainties Introduction

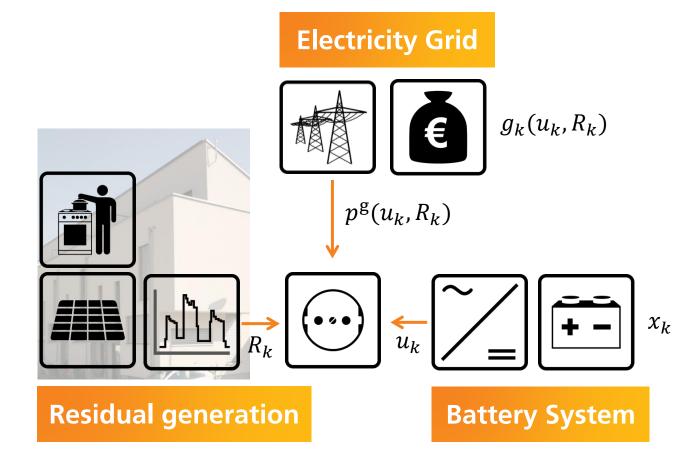
Fade-out of fossil-based electricity generation

Less controllable renewable sources

 \rightarrow Use decentralized flexibilities

Control storage optimally while ...

- mitigating uncertainties in forecasts
- navigating a complex economic environment
- considering efficiencies of the system



4

Thesis Goal and Contributions

Introduction

Development of a Stochastic Control Algorithm Applied to Smart Grid System

Stochastic Control

Stochastic modeling

System modeling

Applications

- Gro
 ß, A., Wittwer, C., and Diehl, M. Stochastic model predictive control of photovoltaic battery systems using a probabilistic forecast model. European Journal of Control 56 (Nov. 2020), 254–264
- Groß, A., Wittwer, C., Lenders, A., Zech, T., and Diehl, M. Using Probabilistic Forecasts in Stochastic Optimization. In The 16th International Conference on Probabilistic Methods Applied to Power Systems (2020)
- Groß, A., Lenders, A., Schwenker, F., Braun, D. A., and Fischer, D. Comparison of short-term electrical load forecasting methods for different building types. Energy Informatics 4, 3 (Sept. 2021), 13
- Groß, A., Wille-Haussmann, B., Wittwer, C., Achzet, B., and Diehl, M. Stochastic Nonlinear Model Predictive Control for a Switched Photovoltaic Battery System. IEEE Transactions on Control Systems Technology (2022)
- Groß, A., Schumann, J., Marchand, S., Mittelsdorf, M., Kohrs, R., and Diehl, M. Electric Vehicle Charge Management taking into account Grid State and Forecast Uncertainties of Photovoltaic Generation. In EVS33 (Sept. 2020)

Notation Deterministic MPC

Stochastic Control

Deterministic Optimal Control Problem (OCP)

$$\min_{\mathbf{x},\mathbf{u}} \quad J(\mathbf{x},\mathbf{u}|\mathbf{R}) = \sum_{k=0}^{N-1} g_k(x_k,u_k,R_k) + g_N(x_N)$$

s.t. $x_k \in \mathbb{X} \quad \forall k = 0,\dots,N,$
 $u_k \in \mathbb{U}(x_k) \quad \forall k = 0,\dots,N-1,$
 $x_{k+1} = f^x(x_k,u_k,R_k) \quad \forall k = 0,\dots,N-1,$
 $x_0 = x^{\text{init}}$

Where

 x_k : State of charge (SoC) of battery system

 u_k : Control input i.e., battery power

 $R_k = p^{pv} - p^{load}$:Residual generation

 $g_k(x_k, u_k, R_k)$: stage costs (supply price, feed-in tariff)

 $g_N(x_N)$: terminal costs (final battery SoC)

 $f^{x}(x_{k}, u_{k}, R_{k})$: state transition (charging / discharging / losses)

Stochastic Control

Define new state variable residual generation

 $R_{k+1} = f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) \ \varepsilon_k \sim \mathcal{F}_k$

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

7

Multi-stage OCP – residual generation model

Stochastic Modeling

Define new state variable residual generation

$$R_{k+1} = f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) \ \varepsilon_k \sim \mathcal{F}_k$$

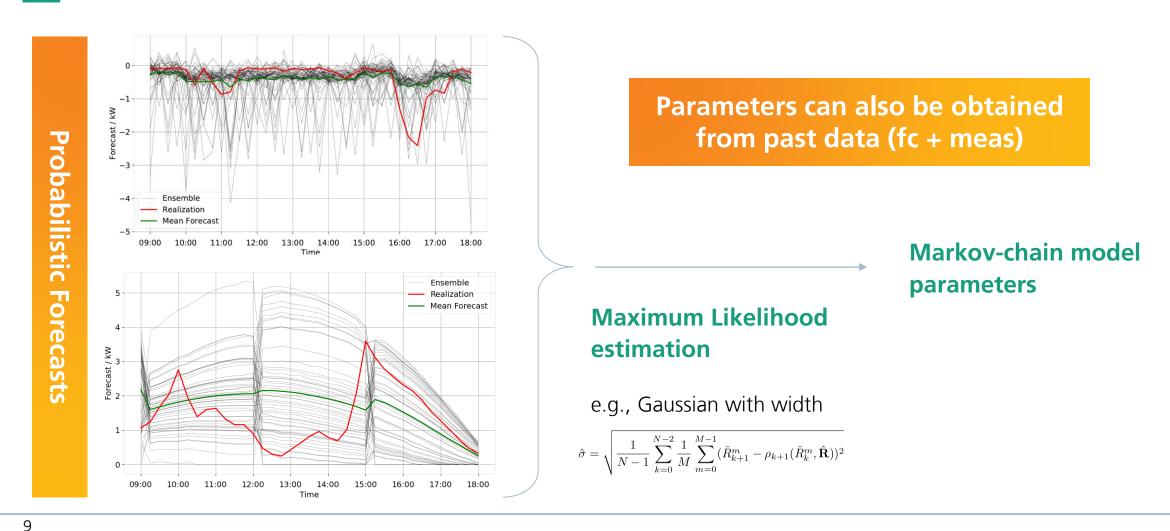
Markov-Chain instead of deterministic forecast

$$R_{k+1} = f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) = \bar{R}_{k+1} + \tau(R_k - \bar{R}_k) + \varepsilon_k$$

Forecast next step Persistence term uncertainty

© Fraunhofer ISE FHK-SK: ISE-INTERNAL

Use Probabilistic Forecasts to Determine Short-term Model Stochastic Modeling



Stochastic Control

Define new state variable residual generation

$$R_{k+1} = f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) \ \varepsilon_k \sim \mathcal{F}_k$$

Summarize

$$y_k = (x_k, R_k)^{\mathrm{T}} \in \mathbb{Y} := \mathbb{X} \times \mathbb{R}$$

With combined state transition

$$y_{k+1} = F(y_k, u_k, \varepsilon_k) \coloneqq \left(\begin{array}{c} f^x(x_k, u_k, R_k) \\ f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) \end{array}\right)$$

10 © Fraunhofer ISE FHK-SK: ISE-INTERNAL

Stochastic Control

Define new state variable residual generation

$$R_{k+1} = f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) \ \varepsilon_k \sim \mathcal{F}_k$$

Summarize

$$y_k = (x_k, R_k)^{\mathrm{T}} \in \mathbb{Y} := \mathbb{X} \times \mathbb{R}$$

With combined state transition

$$y_{k+1} = F(y_k, u_k, \varepsilon_k) \coloneqq \left(\begin{array}{c} f^x(x_k, u_k, R_k) \\ f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) \end{array}\right)$$

Define policies $\mu(y)$ in set of policies

$$\mathbb{M} := \{ \mu : \mu(y) \in \mathbb{U} \land F(y, \mu(y), \varepsilon) \in \mathbb{Y} \quad \forall y \in \mathbb{Y}, \forall \varepsilon \}$$

Iteratively yielding state trajectories

$$y_{k+1}(\mu, \hat{y}, \varepsilon) \coloneqq F(y_k(\mu, \hat{y}, \varepsilon), \mu_k(y(\mu, \hat{y}, \varepsilon)), \varepsilon_k)$$

Stochastic Control

Define new state variable residual generation

$$R_{k+1} = f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) \quad \varepsilon_k \sim \mathcal{F}_k$$

Summarize

$$y_k = (x_k, R_k)^{\mathrm{T}} \in \mathbb{Y} := \mathbb{X} \times \mathbb{R}$$

With combined state transition

$$y_{k+1} = F(y_k, u_k, \varepsilon_k) \coloneqq \left(\begin{array}{c} f^x(x_k, u_k, R_k) \\ f^R(R_k, \bar{\mathbf{R}}, \varepsilon_k) \end{array}\right)$$

Define policies $\mu(y)$ in set of policies

$$\mathbb{M} \coloneqq \{\mu : \mu(y) \in \mathbb{U} \land F(y, \mu(y), \varepsilon) \in \mathbb{Y} \quad \forall y \in \mathbb{Y}, \forall \varepsilon\}$$

Iteratively yielding state trajectories

$$y_{k+1}(\mu, \hat{y}, \varepsilon) \coloneqq F(y_k(\mu, \hat{y}, \varepsilon), \mu_k(y(\mu, \hat{y}, \varepsilon)), \varepsilon_k)$$

Arriving at the stochastic multi-stage OCP for the optimal policies

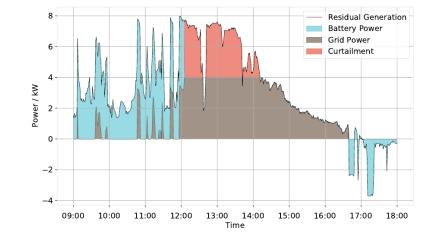
$$\min_{\mu \in \mathbb{M}^N \varepsilon \sim \mathcal{F}} \left[\sum_{k=0}^{N-1} g_k(\mu_k(y_k(\mu, \hat{y}, \varepsilon)), y_k(\mu, \hat{y}, \varepsilon)) + g_N(y_N(\mu, \hat{y}, \varepsilon)) \right]$$

Sample Case: PV Battery System with curtailment limit System Modeling

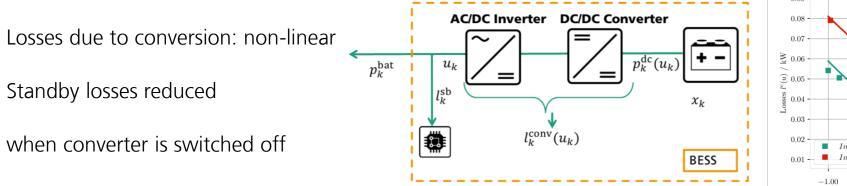
Standard control: Charge battery with excess PV

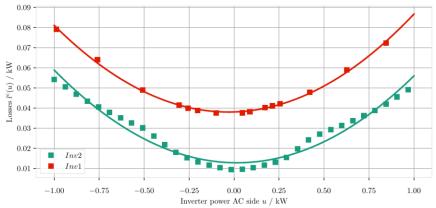
Maximizes self-sufficiency

Feed-in is limited to 50% of nominal power \rightarrow curtailment



Inverter modeling





Sample Case Optimal Policies

System Modeling

Policy evaluation maps measurement to control

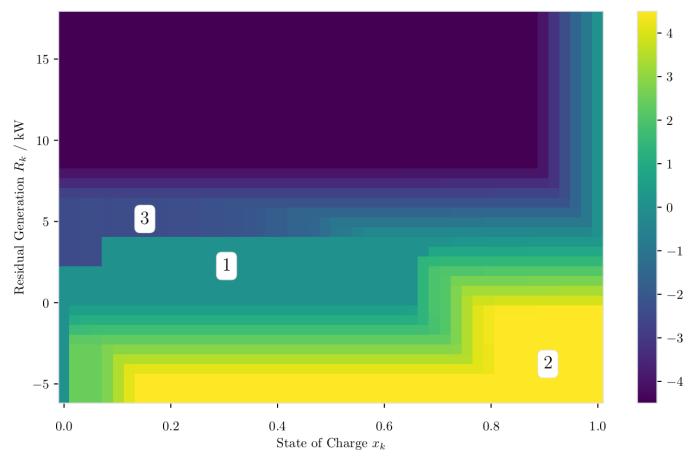
Legend

Yellow: Discharging

Dark Blue: Charging

Exemplary rules for a sunny morning

Charge Battery before curtailment (3) Do not Charge at low powers (1) Supply Load from battery (2)



Policy with 8 kWp PV, 4 kW feed-in limit, 9 kWh battery

/ kW

Battery Power u^\ast

Sample Case: Operation on one day

System Modeling

Curtailment can be reduced

8 -**Residual Generation** 8 **Residual Generation** Battery Power Battery Power Grid Power Grid Power 6 6 Curtailment Curtailment Power / kW Power / kW 2 2 0 0 -2 -2 -4 13:00 10:00 12:00 15:00 16:00 16:00 17:00 09:00 11:00 13:00 14:00 17:00 18:00 09:00 10:00 11:00 12:00 14:00 15:00 18:00 Time Time

More PV-energy can be integrated into the grid without grid reinforcements

FHK-SK: ISE-INTERNAL

Simulation Setup & Parameter Tuning

Perform a simulation on 4 load / PV combinations

1 kWh battery, 1 kWp PV installation per 1 MWh yearly load

Calculating costs of yearly operation using method X

 \rightarrow Defining exploited potential

 $\Pi^{\exp}(X) = \frac{C^{\mathrm{el}}(\mathrm{Standard}) - C^{\mathrm{el}}(\mathrm{X})}{C^{\mathrm{el}}(\mathrm{Standard}) - C^{\mathrm{el}}(\mathrm{Ideal})}$

Compared methods

- Deterministic MPC
- Two-stage Stochastic MPC
- Multi-Stage Stochastic MPC (SDP)
- Heuristic

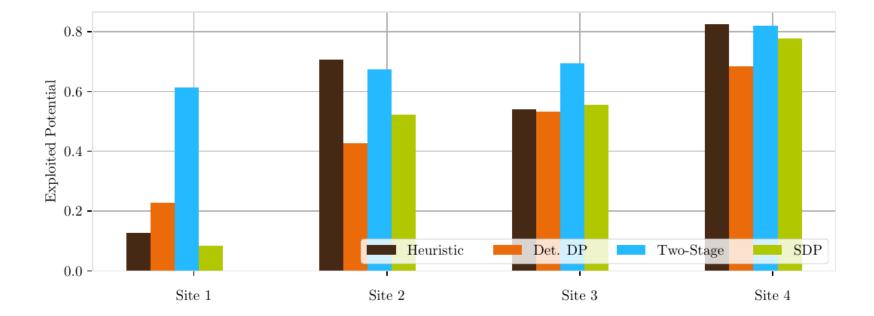
	Site 1	Site 2	Site 3	Site 4
Energy [kWh]	2225	4662	5700	6507
Night Fraction [%]	40.6	47.6	42.5	55.6
Specific PV Yield [kWh / kWp]	1108	1102	1184	1183
Energy above 50% [kWh / kWp]	107	121	160	165

Results of yearlong simulations for 4 households

SDP (green) performs better than deterministic MPC

Simple heuristic better in many cases

Two-stage stochastic MPC performs best in 3/4 cases



Results from two other application cases

Case 2: Switchable Inverter

No feed-in limit, pure self-sufficiency

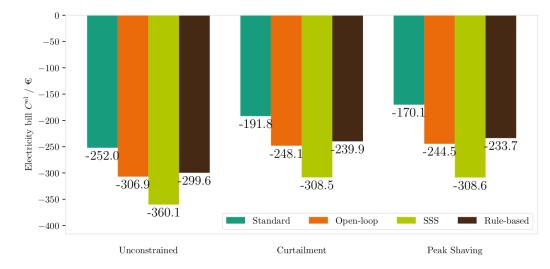
Focus on operation at high inverter efficiency

Considering switching and nonlinear losses increases self-sufficiency and reduces costs.

Case 3: Electric Vehicle Charging

Reach high PV-coverage of charging process

Affected by charge limits, PV power, user requests



SDP shows best results

Summary of Contributions

Forecasts and Stochastic Modeling

Stochastic Markov-chain model for residual generation

Maximum likelihood parameter estimation in data

System Modeling for Optimization

Nonlinear losses of power converters

On-Off switches with downtime

Integration in SDP algorithm

Simulation Studies

Studied three application cases: PV-Battery with and without feed-in limit, residential charging of electric vehicles

Lower cost and more renewable energy harvested with stochastic modeling

Software Integration in Real-life Systems

Implemented SDP algorithm in C++ with interfaces to shell, python, and Java

Field tests for PV-battery system (with Varta Storage) and EVcharging (with other team at ISE) showing proof of concept

Summary of Contributions

Forecasts and Stochastic Modeling

Stochastic Markov-chain model for residual generation

Maximum likelihood parameter estimation in data

System Modeling for Optimization

Nonlinear losses of power converters

On-Off switches with downtime

Integration in SDP algorithm

Simulation Studies

Studied three application cases: PV-Battery with and without feed-in limit, residential charging of electric vehicles

Lower cost and more renewable energy harvested with stochastic modeling

Software Integration in Real-life Systems

Implemented SDP algorithm in C++ with interfaces to shell, python, and Java

Field tests for PV-battery system (with Varta Storage) and EVcharging (with other team at ISE) showing proof of concept

20 © Fraunhofer ISE FHK-SK: ISE-INTERNAL

