Parameter Estimation of Linear Dynamical Systems with Gaussian Noise

Léo Simpson

February 17, 2023

Overview

(1) Problem Statement
(2) Description of the method
(3) Open questions

44 The important particular case of linear time invariant systems (optional)

General introduction

- This Ph.D. is part of the ELO-X program, an E.U. grant for Ph.D. programs in control coupled with learning.

General introduction

- This Ph.D. is part of the ELO-X program, an E.U. grant for Ph.D. programs in control coupled with learning.
- The project is hosted by Tool-Temp: a company in Switzerland manufacturing Temperature Control Units.

General introduction

- This Ph.D. is part of the ELO-X program, an E.U. grant for Ph.D. programs in control coupled with learning.
- The project is hosted by Tool-Temp: a company in Switzerland manufacturing Temperature Control Units.

ELO-
 Tr TOOLTEMP

General introduction

- This Ph.D. is part of the ELO-X program, an E.U. grant for Ph.D. programs in control coupled with learning.

ELO-

- The project is hosted by Tool-Temp: a company in Switzerland manufacturing Temperature Control Units.
- This project led to the submission of a paper for ECC 2023. ${ }^{1}$

[^0]
Problem Statement

(1) Problem Statement
(2) Description of the method
(3) Open questions

4 The important particular case of linear time invariant systems (optional)

Parametric model

Parametric Linear Dynamical Model with Gaussian Noise

Dynamical model:

$$
\begin{aligned}
x_{k+1} & =A_{k}(\alpha) x_{k}+b_{k}(\alpha)+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =C_{k}(\alpha) x_{k}+v_{k}, & & k=0, \ldots, N,
\end{aligned}
$$

Probabilistic model:

$$
\begin{aligned}
w_{k} & \sim \mathcal{N}\left(0_{n_{x}}, Q_{k}(\beta)\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, R_{k}(\beta)\right), & & k=0, \ldots, N,
\end{aligned}
$$

Parametric model

Parametric Linear Dynamical Model with Gaussian Noise

Dynamical model:

$$
\begin{aligned}
x_{k+1} & =A_{k}(\alpha) x_{k}+b_{k}(\alpha)+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =C_{k}(\alpha) x_{k}+v_{k}, & & k=0, \ldots, N,
\end{aligned}
$$

Probabilistic model:

$$
\begin{aligned}
w_{k} & \sim \mathcal{N}\left(0_{n_{x}}, Q_{k}(\beta)\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, R_{k}(\beta)\right), & & k=0, \ldots, N, \\
x_{0} & \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right) & &
\end{aligned}
$$

- The functions $A_{k}(\cdot), b_{k}(\cdot)$ and $C_{k}(\cdot)$ are known functions that parameterize the model.

Parametric model

Parametric Linear Dynamical Model with Gaussian Noise

Dynamical model:

$$
\begin{aligned}
x_{k+1} & =A_{k}(\alpha) x_{k}+b_{k}(\alpha)+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =C_{k}(\alpha) x_{k}+v_{k}, & & k=0, \ldots, N,
\end{aligned}
$$

Probabilistic model:

$$
\begin{aligned}
w_{k} & \sim \mathcal{N}\left(0_{n_{x}}, Q_{k}(\beta)\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, R_{k}(\beta)\right), & & k=0, \ldots, N, \\
x_{0} & \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right) & &
\end{aligned}
$$

- The functions $A_{k}(\cdot), b_{k}(\cdot)$ and $C_{k}(\cdot)$ are known functions that parameterize the model.
- The functions $Q_{k}(\cdot)$ and $R_{k}(\cdot)$ parameterize the uncertainty model.

Parametric model

Parametric Linear Dynamical Model with Gaussian Noise

Dynamical model:

$$
\begin{aligned}
x_{k+1} & =A_{k}(\alpha) x_{k}+b_{k}(\alpha)+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =C_{k}(\alpha) x_{k}+v_{k}, & & k=0, \ldots, N,
\end{aligned}
$$

Probabilistic model:

$$
\begin{aligned}
w_{k} & \sim \mathcal{N}\left(0_{n_{x}}, Q_{k}(\beta)\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, R_{k}(\beta)\right), & & k=0, \ldots, N, \\
x_{0} & \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right) & &
\end{aligned}
$$

- The functions $A_{k}(\cdot), b_{k}(\cdot)$ and $C_{k}(\cdot)$ are known functions that parameterize the model.
- The functions $Q_{k}(\cdot)$ and $R_{k}(\cdot)$ parameterize the uncertainty model.
- Prior knowledge in the form $h(\alpha, \beta) \geq 0$.

Parametric model

Parametric Linear Dynamical Model with Gaussian Noise

Dynamical model:

$$
\begin{aligned}
x_{k+1} & =A_{k}(\alpha) x_{k}+b_{k}(\alpha)+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =C_{k}(\alpha) x_{k}+v_{k}, & & k=0, \ldots, N,
\end{aligned}
$$

Probabilistic model:

$$
\begin{aligned}
w_{k} & \sim \mathcal{N}\left(0_{n_{x}}, Q_{k}(\beta)\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, R_{k}(\beta)\right), & & k=0, \ldots, N, \\
x_{0} & \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right) & &
\end{aligned}
$$

- The functions $A_{k}(\cdot), b_{k}(\cdot)$ and $C_{k}(\cdot)$ are known functions that parameterize the model.
- The functions $Q_{k}(\cdot)$ and $R_{k}(\cdot)$ parameterize the uncertainty model.
- Prior knowledge in the form $h(\alpha, \beta) \geq 0$.
\Rightarrow Goal: estimate the parameters $\theta:=(\alpha, \beta) \in \mathbb{R}^{n_{\alpha}+n_{\beta}}$ from measurement data $y_{0}, \ldots, \underline{\underline{\underline{y}}} \underline{\underline{y}}_{N}$.

Typical use-case

Parametric model for off-set free MPC

$$
\begin{aligned}
x_{k+1} & =A\left(u_{k} ; \alpha\right) x_{k}+b\left(u_{k} ; \alpha\right)+w_{k}^{x}, & & k=0, \ldots, N-1, \\
d_{k+1} & =d_{k}+w_{k}^{d}, & & k=0, \ldots, N-1, \\
y_{k} & =C(\alpha) x_{k}+d_{k}+v_{k}, & & k=0, \ldots, N, \\
{\left[\begin{array}{c}
w_{k}^{x} \\
w_{k}^{d}
\end{array}\right] } & \sim \mathcal{N}\left(\left[\begin{array}{c}
0_{n_{x}} \\
0_{n_{y}}
\end{array}\right],\left[\begin{array}{cc}
\beta_{1} I_{n_{x}} & 0 \\
0 & \beta_{2} I_{n_{y}}
\end{array}\right]\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, \beta_{3} I_{n_{y}}\right), & & k=0, \ldots, N,
\end{aligned}
$$

Typical use-case

Parametric model for off-set free MPC

$$
\begin{aligned}
& x_{k+1}=A\left(u_{k} ; \alpha\right) x_{k}+b\left(u_{k} ; \alpha\right)+w_{k}^{\times}, \quad k=0, \ldots, N-1, \\
& d_{k+1}=d_{k}+w_{k}^{d} \text {, } \\
& y_{k}=C(\alpha) x_{k}+d_{k}+v_{k}, \\
& k=0, \ldots, N \text {, } \\
& {\left[\begin{array}{l}
w_{k}^{\times} \\
w_{k}^{d}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{l}
0_{n_{x}} \\
0_{n_{y}}
\end{array}\right],\left[\begin{array}{cc}
\beta_{1} I_{n_{x}} & 0 \\
0 & \beta_{2} I_{n_{y}}
\end{array}\right]\right),} \\
& k=0, \ldots, N-1, \\
& v_{k} \sim \mathcal{N}\left(0_{n_{y}}, \beta_{3} I_{n_{y}}\right), \\
& x_{0} \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right) \\
& k=0, \ldots, N-1 \text {, } \\
& k=0, \ldots, N,
\end{aligned}
$$

- To perform MPC, some parameter of the model often needs to be tuned.

Typical use-case

Parametric model for off-set free MPC

$$
\begin{aligned}
x_{k+1} & =A\left(u_{k} ; \alpha\right) x_{k}+b\left(u_{k} ; \alpha\right)+w_{k}^{x}, & & k=0, \ldots, N-1, \\
d_{k+1} & =d_{k}+w_{k}^{d}, & & k=0, \ldots, N-1, \\
y_{k} & =C(\alpha) x_{k}+d_{k}+v_{k}, & & k=0, \ldots, N, \\
{\left[\begin{array}{l}
w_{k}^{x} \\
w_{k}^{d}
\end{array}\right] } & \sim \mathcal{N}\left(\left[\begin{array}{c}
0_{n_{x}} \\
0_{n_{y}}
\end{array}\right],\left[\begin{array}{cc}
\beta_{1} I_{n_{x}} & 0 \\
0 & \beta_{2} I_{n_{y}}
\end{array}\right]\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, \beta_{3} I_{n_{y}}\right), & & k=0, \ldots, N, \\
x_{0} & \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right) & &
\end{aligned}
$$

- To perform MPC, some parameter of the model often needs to be tuned.
- A disturbance model is also often needed to design a state estimator, espacially for offset-free MPC.

Random walk model

$$
\begin{aligned}
x_{k+1} & =x_{k}+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =x_{k}+v_{k}, & & k=0, \ldots, N, \\
w_{k} & \sim \mathcal{N}(0, q), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}(0, r), & & k=0, \ldots, N, \\
x_{0} & =0, & & \\
\beta & =\left[\begin{array}{ll}
q & r
\end{array}\right] & &
\end{aligned}
$$

Two examples: the random walk model

Random walk model

$$
\begin{array}{rlrl}
x_{k+1} & =x_{k}+w_{k}, & k=0, \ldots, N-1, \\
y_{k} & =x_{k}+v_{k}, & & k=0, \ldots, N, \\
w_{k} & \sim \mathcal{N}(0, q), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}(0, r), & k=0, \ldots, N, \\
x_{0} & =0, & & \\
\beta & =\left[\begin{array}{ll}
q & r
\end{array}\right] & &
\end{array}
$$

Two examples: the random walk model

Random walk model

$$
\begin{aligned}
x_{k+1} & =x_{k}+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =x_{k}+v_{k}, & & k=0, \ldots, N, \\
w_{k} & \sim \mathcal{N}(0, q), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}(0, r), & & k=0, \ldots, N, \\
x_{0} & =0, & & \\
\beta & =\left[\begin{array}{ll}
q & r
\end{array}\right] & &
\end{aligned}
$$

Simulation of random walk for $\mathrm{Q}=0.1, \mathrm{R}=0.9$

Simulation of random walk for $\mathrm{Q}=0.8, \mathrm{R}=0.2$

Two examples: a heat transfer system

A heat transfer system

$$
\begin{aligned}
x_{1}{ }^{+} & =\left(1-1 / \tau_{1}\right) x_{1}+b / \tau_{1} u+w, \\
x_{2}{ }^{+} & =\left(1-2 / \tau_{2}\right) x_{2}+2 / \tau_{2} x_{1}, \\
x_{3}{ }^{+} & =\left(1-2 / \tau_{2}\right) x_{3}+2 / \tau_{2} x_{2}, \\
y & =x_{3}+v, \\
w & \sim \mathcal{N}\left(0,10^{-3}\right), \\
v & \sim \mathcal{N}\left(0,10^{-3}\right), \\
x_{0} & =0, \\
\alpha & =\left[\begin{array}{lll}
1 / \tau_{1} & 2 / \tau_{2} & b / \tau_{1}
\end{array}\right]
\end{aligned}
$$

Two examples: a heat transfer system

A heat transfer system

$$
\begin{aligned}
x_{1}{ }^{+} & =\left(1-1 / \tau_{1}\right) x_{1}+b / \tau_{1} u+w, \\
x_{2}{ }^{+} & =\left(1-2 / \tau_{2}\right) x_{2}+2 / \tau_{2} x_{1}, \\
x_{3}{ }^{+} & =\left(1-2 / \tau_{2}\right) x_{3}+2 / \tau_{2} x_{2}, \\
y & =x_{3}+v, \\
w & \sim \mathcal{N}\left(0,10^{-3}\right), \\
v & \sim \mathcal{N}\left(0,10^{-3}\right), \\
x_{0} & =0, \\
\alpha & =\left[\begin{array}{lll}
1 / \tau_{1} & 2 / \tau_{2} & b / \tau_{1}
\end{array}\right]
\end{aligned}
$$

Remark: the transfer function is $G(s)=\frac{b}{1+\tau_{1} s} \frac{1}{\left(1+\frac{\tau_{2}}{m} s\right)^{m}}$ with $m=2$.

Two examples: a heat transfer system

A heat transfer system

$$
\begin{aligned}
x_{1}^{+} & =\left(1-1 / \tau_{1}\right) x_{1}+b / \tau_{1} u+w, \\
x_{2}{ }^{+} & =\left(1-2 / \tau_{2}\right) x_{2}+2 / \tau_{2} x_{1}, \\
x_{3}{ }^{+} & =\left(1-2 / \tau_{2}\right) x_{3}+2 / \tau_{2} x_{2}, \\
y & =x_{3}+v, \\
w & \sim \mathcal{N}\left(0,10^{-3}\right), \\
v & \sim \mathcal{N}\left(0,10^{-3}\right), \\
x_{0} & =0, \\
\alpha & =\left[\begin{array}{lll}
1 / \tau_{1} & 2 / \tau_{2} & b / \tau_{1}
\end{array}\right]
\end{aligned}
$$

Remark: the transfer function is $G(s)=\frac{b}{1+\tau_{1} s} \frac{1}{\left(1+\frac{\tau_{2}}{m} s\right)^{m}}$ with $m=2$.

Two examples: a heat transfer system

A heat transfer system

$$
\begin{aligned}
x_{1}^{+} & =\left(1-1 / \tau_{1}\right) x_{1}+b / \tau_{1} u+w, \\
x_{2}^{+} & =\left(1-2 / \tau_{2}\right) x_{2}+2 / \tau_{2} x_{1}, \\
x_{3}^{+} & =\left(1-2 / \tau_{2}\right) x_{3}+2 / \tau_{2} x_{2}, \\
y & =x_{3}+v, \\
w & \sim \mathcal{N}\left(0,10^{-3}\right), \\
v & \sim \mathcal{N}\left(0,10^{-3}\right), \\
x_{0} & =0, \\
\alpha & =\left[\begin{array}{lll}
1 / \tau_{1} & 2 / \tau_{2} & b / \tau_{1}
\end{array}\right]
\end{aligned}
$$

Remark: the transfer function is $G(s)=\frac{b}{1+\tau_{1} s} \frac{1}{\left(1+\frac{\tau_{2}}{m} s\right)^{m}}$ with $m=2$.

Description of the method

(1) Problem Statement

(2) Description of the method
(3) Open questions

4 The important particular case of linear time invariant systems (optional)

The Kalman Filter

(1) Problem Statement

(2) Description of the method

- The Kalman Filter
- The optimization problem
- Relation with maximum likelihood estimation
- Comparison with Trajectory Optimization
- A small benchmark
(3) Open questions

4) The important particular case of linear time invariant systems (optional)

The Kalman Filter (KF)

- A KF provides state predictions $\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}$ given past measurements y_{0}, \ldots, y_{k}.
- The conditional probability law $\left(x_{k+1} \mid y_{0}, \ldots, y_{k}\right) \sim \mathcal{N}\left(\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}\right)$ holds.

The Kalman Filter (KF)

- A KF provides state predictions $\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}$ given past measurements y_{0}, \ldots, y_{k}.
- The conditional probability law $\left(x_{k+1} \mid y_{0}, \ldots, y_{k}\right) \sim \mathcal{N}\left(\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}\right)$ holds.

The equations of the Kalman Filter

$$
\begin{aligned}
S_{k} & =C P_{k \mid k-1} C^{\top}+R_{k}(\beta), & & k=0, \ldots, N, \\
K_{k} & =P_{k \mid k-1} C^{\top} S_{k}^{-1}, & & k=0, \ldots, N, \\
\hat{x}_{k \mid k} & =\hat{x}_{k \mid k-1}+K_{k}\left(y_{k}-C \hat{x}_{k \mid k-1}\right), & & k=0, \ldots, N, \\
P_{k \mid k} & =P_{k \mid k-1}-K_{k} S_{k} K_{k}^{\top}, & & k=0, \ldots, N, \\
\hat{x}_{k+1 \mid k} & =A_{k}(\alpha) \hat{x}_{k \mid k}+b_{k}(\alpha), & & k=0, \ldots, N-1, \\
P_{k+1 \mid k} & =A_{k}(\alpha) P_{k \mid k-1} A_{k}(\alpha)^{\top}+Q_{k}(\beta), & & k=0, \ldots, N-1 .
\end{aligned}
$$

The Kalman Filter (KF)

- A KF provides state predictions $\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}$ given past measurements y_{0}, \ldots, y_{k}.
- The conditional probability law $\left(x_{k+1} \mid y_{0}, \ldots, y_{k}\right) \sim \mathcal{N}\left(\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}\right)$ holds.

The equations of the Kalman Filter (different formuation)

$$
\begin{aligned}
S_{k} & =C P_{k \mid k-1} C^{\top}+R_{k}(\beta), & & k=0, \ldots, N, \\
L_{k} & =A_{k}(\alpha) P_{k \mid k-1} C^{\top} S_{k}^{-1}, & & k=0, \ldots, N, \\
\hat{x}_{k+1 \mid k} & =\left(A_{k}(\alpha)-L_{k} C\right) \hat{x}_{k \mid k-1}+L_{k} y_{k}+b_{k}(\alpha), & & k=0, \ldots, N-1, \\
P_{k+1 \mid k} & =A_{k}(\alpha) P_{k \mid k-1} A_{k}(\alpha)^{\top}-L_{k} S_{k} L_{k}^{\top}+Q_{k}(\beta), & & k=0, \ldots, N-1 .
\end{aligned}
$$

The Kalman Filter (KF)

- A KF provides state predictions $\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}$ given past measurements y_{0}, \ldots, y_{k}.
- The conditional probability law $\left(x_{k+1} \mid y_{0}, \ldots, y_{k}\right) \sim \mathcal{N}\left(\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}\right)$ holds.

The equations of the Kalman Filter (different formuation)

$$
\begin{aligned}
S_{k} & =C P_{k \mid k-1} C^{\top}+R_{k}(\beta), & & k=0, \ldots, N, \\
L_{k} & =A_{k}(\alpha) P_{k \mid k-1} C^{\top} S_{k}^{-1}, & & k=0, \ldots, N, \\
\hat{x}_{k+1 \mid k} & =\left(A_{k}(\alpha)-L_{k} C\right) \hat{x}_{k \mid k-1}+L_{k} y_{k}+b_{k}(\alpha), & & k=0, \ldots, N-1, \\
P_{k+1 \mid k} & =A_{k}(\alpha) P_{k \mid k-1} A_{k}(\alpha)^{\top}-L_{k} S_{k} L_{k}^{\top}+Q_{k}(\beta), & & k=0, \ldots, N-1 .
\end{aligned}
$$

We define the functions " $\hat{y}_{k \mid k-1}(\theta):=C \hat{x}_{k \mid k-1}$ " and " $S_{k}(\theta):=S_{k}$ ", with $\theta:=(\alpha, \beta)$.

The Kalman Filter (KF)

- A KF provides state predictions $\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}$ given past measurements y_{0}, \ldots, y_{k}.
- The conditional probability law $\left(x_{k+1} \mid y_{0}, \ldots, y_{k}\right) \sim \mathcal{N}\left(\hat{x}_{k+1 \mid k}, P_{k+1 \mid k}\right)$ holds.

The equations of the Kalman Filter (different formuation)

$$
\begin{aligned}
S_{k} & =C P_{k \mid k-1} C^{\top}+R_{k}(\beta), & & k=0, \ldots, N, \\
L_{k} & =A_{k}(\alpha) P_{k \mid k-1} C^{\top} S_{k}^{-1}, & & k=0, \ldots, N, \\
\hat{x}_{k+1 \mid k} & =\left(A_{k}(\alpha)-L_{k} C\right) \hat{x}_{k \mid k-1}+L_{k} y_{k}+b_{k}(\alpha), & & k=0, \ldots, N-1, \\
P_{k+1 \mid k} & =A_{k}(\alpha) P_{k \mid k-1} A_{k}(\alpha)^{\top}-L_{k} S_{k} L_{k}^{\top}+Q_{k}(\beta), & & k=0, \ldots, N-1 .
\end{aligned}
$$

We define the functions " $\hat{y}_{k \mid k-1}(\theta):=C \hat{x}_{k \mid k-1}$ " and " $S_{k}(\theta):=S_{k}$ ", with $\theta:=(\alpha, \beta)$.
\Rightarrow Conditional probability law: $\left(y_{k} \mid y_{0}, \ldots, y_{k-1}, \theta\right) \sim \mathcal{N}\left(\hat{y}_{k \mid k-1}(\theta), S_{k}(\theta)\right)$

The Kalman Filter in the random walk model example

- We generate data with the random walk model, with covariances $q^{*}=0.3$ and $r^{*}=0.7$
- We apply a KF with other values of Q and R.

Random walk model

$$
\begin{aligned}
x_{k+1} & =x_{k}+w_{k}, \\
y_{k} & =x_{k}+v_{k}, \\
w_{k} & \sim \mathcal{N}(0, q), \\
v_{k} & \sim \mathcal{N}(0, r), \\
x_{0} & =0
\end{aligned}
$$

The Kalman Filter in the random walk model example

- We generate data with the random walk model, with covariances $q^{*}=0.3$ and $r^{*}=0.7$
- We apply a KF with other values of Q and R.

Random walk model

$$
\begin{aligned}
x_{k+1} & =x_{k}+w_{k}, \\
y_{k} & =x_{k}+v_{k}, \\
w_{k} & \sim \mathcal{N}(0, q), \\
v_{k} & \sim \mathcal{N}(0, r), \\
x_{0} & =0
\end{aligned}
$$

Kalman Filter for random walk with $q=0.9, r=0.1$.

The Kalman Filter in the heat transfer example

- We generate data with the heat transfer model, with parameters $\tau_{1}^{*}=20$ and $\tau_{2}^{*}=20$ and $b^{*}=1.0$
- We apply a KF with other values of τ_{1} and τ_{2} and b.

Simulation for parameters $\tau_{1}=20, \tau_{2}=20, b=1.0$

The Kalman Filter in the heat transfer example

- We generate data with the heat transfer model, with parameters $\tau_{1}^{*}=20$ and $\tau_{2}^{*}=20$ and $b^{*}=1.0$
- We apply a KF with other values of τ_{1} and τ_{2} and b.

Kalman for filter for parameters $\tau_{1}=20, \tau_{2}=2, b=0.9$

The Kalman Filter in the heat transfer example

- We generate data with the heat transfer model, with parameters $\tau_{1}^{*}=20$ and $\tau_{2}^{*}=20$ and $b^{*}=1.0$
- We apply a KF with other values of τ_{1} and τ_{2} and b.

Kalman for filter for parameters $\tau_{1}=20, \tau_{2}=2, b=0.9$

The optimization problem

(1) Problem Statement

(2) Description of the method

- The Kalman Filter
- The optimization problem
- Relation with maximum likelihood estimation
- Comparison with Trajectory Optimization
- A small benchmark
(3) Open questions

4 The important particular case of linear time invariant systems (optional)

Qualitative description

- One can apply a Kalman Filter to the measurement data for estimated parameters α, β.

Qualitative description

- One can apply a Kalman Filter to the measurement data for estimated parameters α, β.
- We seek for the parameters resulting in the "best KF".

Qualitative description

- One can apply a Kalman Filter to the measurement data for estimated parameters α, β.
- We seek for the parameters resulting in the "best KF".
- We measure the quality of the KF with the prediction error $y_{k}-C \hat{x}_{k \mid k-1}$.

Qualitative description

- One can apply a Kalman Filter to the measurement data for estimated parameters α, β.
- We seek for the parameters resulting in the "best KF".
- We measure the quality of the KF with the prediction error $y_{k}-C \hat{X}_{k \mid k-1}$.
- This can be refined by considering not only the prediction error, but also its estimated covariance S_{k}.

Qualitative description

- One can apply a Kalman Filter to the measurement data for estimated parameters α, β.
- We seek for the parameters resulting in the "best KF".
- We measure the quality of the KF with the prediction error $y_{k}-C \hat{x}_{k \mid k-1}$.
- This can be refined by considering not only the prediction error, but also its estimated covariance S_{k}.
- This method belongs to the class of prediction error estimation methods ${ }^{2}$, formulated for a state-space model ${ }^{3}$.

[^1]
A first optimization problem

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{minimize}} & \sum_{k=0}^{N}\left\|y_{k}-\hat{y}_{k \mid k-1}(\theta)\right\|^{2} \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

A first optimization problem

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{minimize}} & \sum_{k=0}^{N}\left\|y_{k}-\hat{y}_{k \mid k-1}(\theta)\right\|^{2} \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

Lifted form:

$$
\begin{array}{rll}
\underset{\alpha, \beta, S, L, x, P}{\operatorname{minimize}} & \sum_{k=0}^{N}\left\|y_{k}-C \hat{x}_{k \mid k-1}\right\|^{2} & \\
\text { subject to } & S_{k}=C P_{k \mid k-1} C^{\top}+R_{k}(\beta), & k=0, \ldots, N, \\
& L_{k}=A_{k}(\alpha) P_{k \mid k-1} C^{\top} S_{k}^{-1}, & k=0, \ldots, N, \\
& \hat{x}_{k+1 \mid k}=\left(A_{k}(\alpha)-C L_{k}\right) \hat{x}_{k \mid k-1}+L_{k} y_{k}+b_{k}(\alpha), & k=0, \ldots, N-1, \\
& P_{k+1 \mid k}=A_{k}(\alpha) P_{k \mid k-1} A_{k}(\alpha)^{\top}-L_{k} S_{k} L_{k}^{\top}+Q_{k}(\beta), & k=0, \ldots, N-1, \\
& h(\alpha, \beta) \geq 0 . &
\end{array}
$$

A more accurate optimization problem

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{minimize}} & \sum_{k=0}^{N}\left\|y_{k}-\hat{y}_{k \mid k-1}(\theta)\right\|_{S_{k}(\theta)^{-1}}^{2}+\log \left|S_{k}(\theta)\right| \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

A more accurate optimization problem

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{minimize}} & \sum_{k=0}^{N}\left\|y_{k}-\hat{y}_{k \mid k-1}(\theta)\right\|_{S_{k}(\theta)^{-1}}^{2}+\log \left|S_{k}(\theta)\right| \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

Notations:
$\|x\|_{M}:=x^{\top} M x$
$|M|:=\operatorname{det}(M)$

A more accurate optimization problem

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{minimize}} & \sum_{k=0}^{N}\left\|y_{k}-\hat{y}_{k \mid k-1}(\theta)\right\|_{S_{k}(\theta)^{-1}}^{2}+\log \left|S_{k}(\theta)\right| \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

Notations:

$$
\begin{aligned}
& \|x\|_{M}:=x^{\top} M x \\
& |M|:=\operatorname{det}(M)
\end{aligned}
$$

Lifted form:

$$
\underset{\alpha, \beta, S, L, x, P}{\operatorname{minimize}} \sum_{k=0}^{N}\left\|y_{k}-C \hat{x}_{k \mid k-1}\right\|_{S_{k}-1}^{2}+\log \left|S_{k}\right|
$$

subject to

$$
\begin{array}{ll}
S_{k}=C P_{k \mid k-1} C^{\top}+R_{k}(\beta), & k=0, \ldots, N, \\
L_{k}=A_{k}(\alpha) P_{k \mid k-1} C^{\top} S_{k}^{-1}, & k=0, \ldots, N, \\
\hat{x}_{k+1 \mid k}=\left(A_{k}(\alpha)-L_{k} C\right) \hat{x}_{k \mid k-1}+L_{k} y_{k}+b_{k}(\alpha), & k=0, \ldots, N-1, \\
P_{k+1 \mid k}=A_{k}(\alpha) P_{k \mid k-1} A_{k}(\alpha)^{\top}-L_{k} S_{k} L_{k}^{\top}+Q_{k}(\beta), & k=0, \ldots, N-1, \\
h(\alpha, \beta) \geq 0 . &
\end{array}
$$

Some optimization steps in the heat transfer example

- We generate data with the heat transfer model, with parameters $\tau_{1}^{*}=20$ and $\tau_{2}^{*}=20$ and $b^{*}=1.0$
- We apply a KF with other values of τ_{1} and τ_{2} and b.

Kalman for filter for parameters $\tau_{1}=5.0, \tau_{2}=2.0, b=0.9$

Some optimization steps in the heat transfer example

- We generate data with the heat transfer model, with parameters $\tau_{1}^{*}=20$ and $\tau_{2}^{*}=20$ and $b^{*}=1.0$
- We apply a KF with other values of τ_{1} and τ_{2} and b.

Kalman for filter for parameters $\tau_{1}=9.5, \tau_{2}=7.4, b=0.9$

Some optimization steps in the heat transfer example

- We generate data with the heat transfer model, with parameters $\tau_{1}^{*}=20$ and $\tau_{2}^{*}=20$ and $b^{*}=1.0$
- We apply a KF with other values of τ_{1} and τ_{2} and b.

Kalman for filter for parameters $\tau_{1}=15.5, \tau_{2}=14.6, b=1.0$

Some optimization steps in the heat transfer example

- We generate data with the heat transfer model, with parameters $\tau_{1}^{*}=20$ and $\tau_{2}^{*}=20$ and $b^{*}=1.0$
- We apply a KF with other values of τ_{1} and τ_{2} and b.

Kalman for filter for parameters $\tau_{1}=18.5, \tau_{2}=18.2, b=1.0$

Some optimization steps in the heat transfer example

- We generate data with the heat transfer model, with parameters $\tau_{1}^{*}=20$ and $\tau_{2}^{*}=20$ and $b^{*}=1.0$
- We apply a KF with other values of τ_{1} and τ_{2} and b.

Kalman for filter for parameters $\tau_{1}=20.0, \tau_{2}=20.0, b=1.0$

Relation with Maximum Likelihood Estimation

(1) Problem Statement

(2) Description of the method

- The Kalman Filter
- The optimization problem
- Relation with maximum likelihood estimation
- Comparison with Trajectory Optimization
- A small benchmark
(3) Open questions

4 The important particular case of linear time invariant systems (optional)

Relation with maximum likelihood estimation

Maximum likelihood estimation

Theorem: The former optimization problem is equivalent to the following

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{maximize}} & p\left(y_{0}, \ldots, y_{N} \mid \theta\right) \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

Relation with maximum likelihood estimation

Maximum likelihood estimation

Theorem: The former optimization problem is equivalent to the following

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{maximize}} & p\left(y_{0}, \ldots, y_{N} \mid \theta\right) \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

Remark:

For a given prior knowledge on θ, this can easily be related to the Maximum A posteriori Probability (MAP):

$$
\begin{aligned}
& \underset{\theta}{\operatorname{maximize}} p\left(\theta \mid y_{0}, \ldots, y_{N}\right) \quad=p(\theta) \times p\left(y_{0}, \ldots, y_{N} \mid \theta\right) \\
& \text { subject to } h(\theta) \geq 0
\end{aligned}
$$

Relation with maximum likelihood estimation

Maximum likelihood estimation

Theorem: The former optimization problem is equivalent to the following

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{maximize}} & p\left(y_{0}, \ldots, y_{N} \mid \theta\right) \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

Remark:
For a given prior knowledge on θ, this can easily be related to the Maximum A posteriori Probability (MAP):

$$
\begin{aligned}
& \underset{\theta}{\operatorname{maximize}} p\left(\theta \mid y_{0}, \ldots, y_{N}\right) \quad=p(\theta) \times p\left(y_{0}, \ldots, y_{N} \mid \theta\right) \\
& \text { subject to } h(\theta) \geq 0
\end{aligned}
$$

Furthermore, these two problems are equivalent for a non-informative prior i.e. a prior with uniform distribution on the set $\left\{\theta \in \mathbb{R}^{n_{\alpha}+n_{\beta}}\right.$ such that $\left.h(\theta) \geq 0\right\}$ (if bounded)

Relation with maximum likelihood estimation

Maximum likelihood estimation

Theorem: The former optimization problem is equivalent to the following

$$
\begin{array}{ll}
\underset{\theta}{\operatorname{maximize}} & p\left(y_{0}, \ldots, y_{N} \mid \theta\right) \\
\text { subject to } & h(\theta) \geq 0
\end{array}
$$

Proof:

$$
p\left(y_{0}, \ldots, y_{N} \mid \theta\right)=\prod_{k=0}^{N} p\left(y_{k} \mid y_{0}, \ldots, y_{k-1}, \theta\right)=\prod_{k=0}^{N} f_{\text {Gauss }}\left(y_{k} ; \hat{y}_{k \mid k-1}(\theta), S_{k}(\theta)\right)
$$

with $f_{\text {Gauss }}(x ; \mu, S)=:(2 \pi|S|)^{-1 / 2} e^{-\frac{1}{2}\|x-\mu\|_{S^{-1}}}$. Hence the following holds

$$
-2 \log \left(p\left(y_{0}, \ldots, y_{N} \mid \theta\right)\right)=\sum_{k=0}^{N}\left\|y_{k}-\hat{y}_{k \mid k-1}(\theta)\right\|_{S_{k}(\theta)^{-1}}^{2}+\log \left|S_{k}(\theta)\right|+(N+1) n_{y} \log (2 \pi)
$$

Comparison with Trajectory Optimization

(1) Problem Statement

(2) Description of the method

- The Kalman Filter
- The optimization problem
- Relation with maximum likelihood estimation
- Comparison with Trajectory Optimization
- A small benchmark
(3) Open questions

4 The important particular case of linear time invariant systems (optional)

Comparison with Trajectory Optimization

Prediction error methods

$\operatorname{minimize}_{\alpha, \beta, S, L, x, P} \sum_{k=0}^{N}\left\|y_{k}-C \hat{x}_{k \mid k-1}\right\|_{S_{k}-1}^{2}+\log \left|S_{k}\right|$
subject to
$S_{k}=C P_{k \mid k-1} C^{\top}+R(\beta)$,
$L_{k}=A_{k}(\alpha) P_{k \mid k-1} C^{\top} S_{k}^{-1}$,
$\hat{x}_{k+1 \mid k}=\left(A_{k}(\alpha)-L_{k} C\right) \hat{x}_{k \mid k-1}+L_{k} y_{k}+b_{k}(\alpha)$,
$P_{k+1 \mid k}=A_{k}(\alpha) P_{k \mid k} A_{k}(\alpha)^{\top}-L_{k} S_{k} L_{k}^{\top}+Q(\beta)$, $h(\alpha, \beta) \geq 0$.

Trajectory optimization methods

$\operatorname{minimize}_{\alpha, \boldsymbol{x}, w, v} \sum_{k=0}^{N}\left\|w_{k}\right\|_{Q(\beta)^{-1}}^{2}+\left\|v_{k}\right\|_{R(\beta)^{-1}}^{2}$
subject to

$$
\begin{aligned}
& x_{k+1}=A_{k}(\alpha) x_{k}+b_{k}(\alpha)+w_{k} \\
& y_{k}=C x_{k}+v_{k} \\
& h(\alpha, \beta) \geq 0
\end{aligned}
$$

Comparison with Trajectory Optimization

Prediction error methods

Pros

- Can find the noise covariances Q, R,
- Almost surely convergence theorems,
- Is the maximum likelihood estimator,
- "Single shooting" formulation is possible

Cons

- Designed for linear systems.
- State or disturbance constraints are impossible.

Derived from

$\underset{\theta}{\operatorname{maximize}} \quad p\left(\theta \mid y_{0}, \ldots, y_{N}\right)$

Counter example with Trajectory Optimization

Why would Trajectory Optimization fail to estimate β ?

Parametric model for off-set free MPC

$$
\begin{aligned}
x^{+} & =A(u ; \alpha) x+b(u ; \alpha)+w_{x}, \\
d^{+} & =d+w_{d}, \\
y & =C(\alpha) x+d+v, \\
w_{x} & \sim \mathcal{N}\left(0_{n_{x}}, \sigma_{x}^{2} I_{n_{x}}\right), \\
w_{d} & \sim \mathcal{N}\left(0_{n_{y}}, \sigma_{d}^{2} I_{n_{y}}\right), \\
v & \sim \mathcal{N}\left(0_{n_{y}}, \sigma_{y}^{2} I_{n_{y}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& x^{+}=A(u ; \alpha) x+b(u ; \alpha)+w_{x}, \\
& \tilde{d}^{+}=\tilde{d}+\tilde{w}_{d}, \\
& y=C(\alpha) x+\sigma_{d} \tilde{d}+v, \\
& w_{x} \sim \mathcal{N}\left(0_{n_{x}}, \sigma_{x}^{2} I_{n_{x}}\right) \quad \mathrm{CdV}: \\
& \tilde{w}_{d} \sim \mathcal{N}\left(0_{n_{y}}, I_{n_{y}}\right) \quad \tilde{d}=\sigma_{d}{ }^{-1} d, \\
& v \sim \mathcal{N}\left(0_{n_{y}}, \sigma_{y}^{2} I_{n_{y}}\right) . \quad \tilde{w}_{d}=\sigma_{d}{ }^{-1} w_{d}
\end{aligned}
$$

Counter example with Trajectory Optimization

Why would Trajectory Optimization fail to estimate β ?

Parametric model for off-set free MPC

$$
\begin{aligned}
x^{+} & =A(u ; \alpha) x+b(u ; \alpha)+w_{x}, \\
d^{+} & =d+w_{d}, \\
y & =C(\alpha) x+d+v, \\
w_{x} & \sim \mathcal{N}\left(0_{n_{x}}, \sigma_{x}^{2} I_{n_{x}}\right), \\
w_{d} & \sim \mathcal{N}\left(0_{n_{y}}, \sigma_{d}^{2} I_{n_{y}}\right), \\
v & \sim \mathcal{N}\left(0_{n_{y}}, \sigma_{y}^{2} I_{n_{y}}\right) .
\end{aligned}
$$

$$
\begin{aligned}
x^{+} & =A(u ; \alpha) x+b(u ; \alpha)+w_{x}, \\
\tilde{d}^{+} & =\tilde{d}+\tilde{w}_{d}, \\
y & =C(\alpha) x+\sigma_{d} \tilde{d}+v, \\
w_{x} & \sim \mathcal{N}\left(0_{n_{x}}, \sigma_{x}^{2} I_{n_{x}}\right) \quad \frac{\mathrm{CdV}:}{\tilde{d}=\sigma_{d}{ }^{-1} d,} \\
\tilde{w}_{d} & \sim \mathcal{N}\left(0_{n_{y}}, I_{n_{y}}\right) \quad \tilde{w}_{d}={\sigma_{d}}^{-1} w_{d} \\
v & \sim \mathcal{N}\left(0_{n_{y}}, \sigma_{y}^{2} I_{n_{y}}\right) . \quad
\end{aligned}
$$

\Rightarrow Solution of Trajectory optimization:

$$
\sigma_{d} \tilde{d} \approx y \quad \tilde{d}^{+}-\tilde{d} \approx 0 \quad \sigma_{d} \approx+\infty
$$

A small benchmark

(1) Problem Statement

(2) Description of the method

- The Kalman Filter
- The optimization problem
- Relation with maximum likelihood estimation
- Comparison with Trajectory Optimization
- A small benchmark
(3) Open questions

4 The important particular case of linear time invariant systems (optional)

Convergence of the estimator in the random walk model example

- We generate 100 of different values of $\beta^{*}:=\left(q^{*}, r^{*}\right)$.
- For each sample, we simulate the random walk model to get measurements y_{0}, \ldots, y_{N}.
- For each sample, we use our method to estimate β from the measurements
- We compute the MSE, i.e. $\left\|\beta-\beta^{*}\right\|^{2}$ over the sample.
- We repeat these for different values of N.

Convergence of the estimator in the random walk model example

- We generate 100 of different values of $\beta^{*}:=\left(q^{*}, r^{*}\right)$.
- For each sample, we simulate the random walk model to get measurements y_{0}, \ldots, y_{N}.
- For each sample, we use our method to estimate β from the measurements
- We compute the MSE, i.e. $\left\|\beta-\beta^{*}\right\|^{2}$ over the sample.
- We repeat these for different values of N.

Convergence plot

Convergence of the estimator in the heat transfer example

- We repeat the same procedure for the heat transfer system, for $\alpha:=\left[\begin{array}{lll}1 / \tau_{1} & 2 / \tau_{2} & b / \tau_{1}\end{array}\right]$
- We only generate 40 values of α.

Convergence of the estimator in the heat transfer example

- We repeat the same procedure for the heat transfer system, for $\alpha:=\left[\begin{array}{lll}1 / \tau_{1} & 2 / \tau_{2} & b / \tau_{1}\end{array}\right]$
- We only generate 40 values of α.

Open questions

(1) Problem Statement

(2) Description of the method
(3) Open questions

4 The important particular case of linear time invariant systems (optional)

An open question of optimization

How to keep maximum degrees of freedom regarding $Q(\cdot)$ and $R(\cdot)$?

An open question of optimization

How to keep maximum degrees of freedom regarding $Q(\cdot)$ and $R(\cdot)$?

More precisely, how to deal with the following type of optimization problem ?

$$
\begin{aligned}
\underset{\alpha, L, S, P}{\operatorname{minimize}} & F(\alpha, L, S) \\
\text { subject to } & P \succ 0, \\
& L=A(\alpha) P C^{\top} S^{-1}, \\
& S \succ C P C^{\top}, \\
& P+L S L^{\top} \succ A(\alpha) P A(\alpha)^{\top}
\end{aligned}
$$

An open question of MPC Stability

Parametric model for off-set free MPC

$$
\begin{aligned}
x^{+} & =A(u ; \alpha) x+b(u ; \alpha)+w_{x}, \\
d^{+} & =d+w_{d}, \\
y & =C(\alpha) x+d+v, \\
w & \sim \mathcal{N}\left(0_{n_{x}}, Q(\beta)\right), \\
v & \sim \mathcal{N}\left(0_{n_{y}}, R(\beta)\right) .
\end{aligned}
$$

An open question of MPC Stability

Parametric model for off-set free MPC

$$
\begin{aligned}
x^{+} & =A(u ; \alpha) x+b(u ; \alpha)+w_{x}, \\
d^{+} & =d+w_{d}, \\
y & =C(\alpha) x+d+v, \\
w & \sim \mathcal{N}\left(0_{n_{x}}, Q(\beta)\right), \\
v & \sim \mathcal{N}\left(0_{n_{y}}, R(\beta)\right) .
\end{aligned}
$$

- The presented model provides an estimate for the parameter β that will provide the best predictions.
- What we actually want is an estimate for β that will provide the best closed-loop control performance.
- For example, $\operatorname{Cov}\left(w_{k}^{d}\right)$ plays an important role: if it is too high, the controller might destabilize the system, but if it is 0 , offsets might remain in regulation problems.

The important particular case of Linear Time Invariant (LTI) systems

(1) Problem Statement
(2) Description of the method
(3) Open questions
(4) The important particular case of linear time invariant systems (optional)

The important particular case of LTI systems

Parametric LTI with Gaussian Noise

$$
\begin{aligned}
x_{k+1} & =A(\alpha) x_{k}+b_{k}(\alpha)+w_{k}, \\
y_{k} & =C x_{k}+v_{k}, \\
w_{k} & \sim \mathcal{N}\left(0_{n_{x}}, Q(\beta)\right), \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, R(\beta)\right), \\
x_{0} & \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right)
\end{aligned}
$$

The important particular case of LTI systems

Parametric LTI with Gaussian Noise

$$
\begin{aligned}
x_{k+1} & =A(\alpha) x_{k}+b_{k}(\alpha)+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =C x_{k}+v_{k}, & & k=0, \ldots, N, \\
w_{k} & \sim \mathcal{N}\left(0_{n_{x}}, Q(\beta)\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, R(\beta)\right), & & k=0, \ldots, N, \\
x_{0} & \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right) & &
\end{aligned}
$$

In this case, the KF will quickly converge to its stationary state.

The important particular case of LTI systems

Parametric LTI with Gaussian Noise

$$
\begin{aligned}
x_{k+1} & =A(\alpha) x_{k}+b_{k}(\alpha)+w_{k}, & & k=0, \ldots, N-1, \\
y_{k} & =C x_{k}+v_{k}, & & k=0, \ldots, N, \\
w_{k} & \sim \mathcal{N}\left(0_{n_{x}}, Q(\beta)\right), & & k=0, \ldots, N-1, \\
v_{k} & \sim \mathcal{N}\left(0_{n_{y}}, R(\beta)\right), & & k=0, \ldots, N, \\
x_{0} & \sim \mathcal{N}\left(\hat{x}_{0 \mid-1}, P_{0 \mid-1}\right) & &
\end{aligned}
$$

In this case, the KF will quickly converge to its stationary state.
The discrete algebraic Ricatti equation

$$
\begin{aligned}
& S=C P C^{\top}+R(\beta) \\
& L=A(\alpha) P C^{\top} S^{-1} \\
& P=A(\alpha) P A(\alpha)^{\top}-L S L^{\top}+Q(\beta)
\end{aligned}
$$

The important particular case of LTI systems

By approximating the Kalman Filter equations with their stationary equivalents, the method boils down to:

Prediction error method for LTI systems

$$
\begin{aligned}
\operatorname{minimize}_{\alpha, \beta, S, L, P, x} & \frac{1}{N+1} \sum_{k=0}^{N}\left\|y_{k}-C \hat{x}_{k \mid k-1}\right\|_{S^{-1}}^{2}+\log |S| \\
\text { subject to } & \hat{x}_{k+1 \mid k}=(A(\alpha)-L C) \hat{x}_{k \mid k-1}+L y_{k}+b_{k}(\alpha), \quad k=0, \ldots, N-1, \\
& S=C P C^{\top}+R(\beta), \\
& L=A(\alpha) P C^{\top} S^{-1}, \\
& P=A(\alpha) P A(\alpha)^{\top}-L S L^{\top}+Q(\beta), \\
& P \succ 0, \\
& h(\alpha, \beta) \geq 0 .
\end{aligned}
$$

The particular case of single-output LTI

When $n_{y}=1$, more simplifications can be made. Especially we let maximum degrees of freedom in $Q(\cdot)$ and $R(\cdot)$:

Prediction error method for single-output LTI systems

$$
\operatorname{minimize}_{\alpha, L, P, x} \sum_{k=0}^{N}\left(y_{k}-C \hat{x}_{k \mid k-1}\right)^{2}
$$

subject to

$$
\begin{aligned}
& \hat{x}_{k+1 \mid k}=(A(\alpha)-L C) \hat{x}_{k \mid k-1}+L y_{k}+b_{k}(\alpha), \quad k=0, \ldots, N-1, \\
& h(\alpha) \geq 0, \\
& L=A(\alpha) P C^{\top}, \\
& P \succ 0, \\
& P-A(\alpha) P A(\alpha)^{\top}+L S L^{\top} \succ 0, \\
& C P C^{\top} \leq 1 .
\end{aligned}
$$

An open question of optimization

How to keep maximum degrees of freedom regarding $Q(\cdot)$ and $R(\cdot)$?

An open question of optimization

How to keep maximum degrees of freedom regarding $Q(\cdot)$ and $R(\cdot)$?

More precisely, how to deal with the following type of optimization problem ?

$$
\begin{aligned}
\underset{\alpha, L, P}{\operatorname{minimize}} & F(\alpha, L) \\
\text { subject to } & P \succ 0, \\
& L=A(\alpha) P C^{\top}, \\
& C P C^{\top} \leq 1, \\
& P+L L^{\top} \succ A(\alpha) P A(\alpha)^{\top}
\end{aligned}
$$

[^0]: ${ }^{1}$ L. Simpson, A. Ghezzi, J. Asprion and M. Diehl,
 "Parameter Estimation of Linear Dynamical Systems with Gaussian Noise," arXiv preprint arXiv:2211.12302, 2022.

[^1]: ${ }^{2}$ L. Ljung, "Prediction error estimation methods," Circuits, Systems and Signal Processing, vol. 21, no. 1, pp. 11-21, 2002.
 ${ }^{3}$ J.Valluru, P. Lakhmani, S.C. Patwardhan and L.T. Biegler, "Development of moving window state and parameter estimators under maximum likelihood and Bayesian frameworks," Journal of Process Control, vol. 60, pp. 48-67, 2017

