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Dual control

» In general, the choice of trajectory affects the information gain (dual control effect)
» For uncertain systems there are two types of conflicting control goals

Exploring: Gathering information to reduce uncertainty
Exploiting: Bringing the system into an actually desired state (greedily)

» How do we find the optimal trade-off?
» How do we define the optimal trade-off?

» \We have a performance-based objective, which is what we actually care about.
» Information is only relevant in as much as it advances this objective.
» We can model how we will obtain information.
» We can model how we will use this information.
— Optimal Control Problem (OCP)



Overview

Part I: Defining the ideal optimal control problem
» Output-feedback stochastic OCP.
» This is the problem we would like to solve.

» |t will turn out that this problem is intractable.

Part Il: Deriving a tractable approximation
» Using linearization and normal distributions

> Preserving the dual control effect (implicit dual
control)



Partially observed stochastic nonlinear system

zo = po(&o),
Tr1 = fr(Th, uk, w), k=0,....,N -1,
Ykt1 = Gt 1 (Tht1, Vhg1), k=0,...,N,
» initial state uncertainty &, process noise w = (wy, ..., wy—1) and output noise

v=(vy,...,un_1), distributed as & = (&, w,v) ~ N(0,1).

» Pick control uy at time k based on information vector
I = (uo,y1), I = (Ip-1,up-1,9), k=2,...,N

» Aim: find policy 7 = (@, m1(+), ... 7n-1(+))
Defining how we react to future information
ug = g, up=mp(lg), k=1,...,N—1



OCP components

» Denote by z] (§), uf(€) the simulation of the system under ().

> Incurred cost J™(€) = S0 o' L (@ (€), uf (€)) + In (27 (£))
Stochastic — not a well-defined objective function
Choose deterministic criterion, e.g., expected value

» Constraints hy(z7(€),ul(§)) <0, k=0,...,N—1, hy(z%()) <0,
In general impossible to enforce for all values of £ (unbounded support)
Option A: Chance constraints

ha (2 (€),uf(€)) <0, k=0,...,N—1,
P{ & ha (25 (6) < 0, }Z boe

Option B: Penalize constraint violation and add to objective



Constraint treatment

» Constraint h(z) <0 > Expected penalty
» Consider n = h(x) ~ N (i, 0?) -
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The ideal dual OCP

Output-feedback stochastic nonlinear OCP

;ﬂ(i.r)l Eenron {Jﬂ(f) + zh: ¢?(h§r(§))}

with ¢ (1) := p; max(0,n) and h™(§) = (ho(xF (€),uF (£)),- .-, hn (25 (€)))

» Models how future information is obtained, and how to react to it
= Perfectly encodes explore-exploit trade-off as induced by objective
» Expectation over nonlinear transformation of £

» Optimization over general policies in infinite-dimensional function space



Overview

Part I: Defining the ideal optimal control problem
» Output-feedback stochastic OCP.
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Implicit vs explicit dual control

The ideal OCP is intractable and needs to be approximated.

Two types of approximation

Implicit dual control Explicit dual control
» Dual control effect is (qualitatively) » Dual control effect is lost

preserved > Heuristics to encourage uncertainty
» Explore-exploit tradeoff remains reduction

implicitly encoded



Linearize with respect to uncertainty

» Nominal trajectory with open-loop controls @ = (g, ..., un—1).
Zo :po(O),
Trr1 = [u(Th, Ug, 0), k=0,...,N—1,
Uk = g (7, 0), k=1,...,N—1,

» Linearize in stochastic variables, at nominal trajectory

xo — To = Py,
Tht1 — Thp1 = A(Tr, k) (@ — Tk) + Be(Tw, k) (ue — k) + D1 (Te, Tr) wi,

Yk — Uk =~ Cp(ZTr)(xx — T) + Di (T ),



Kalman filter and linear feedback law

» We now have a linear uncertain system around a nonlinear nominal trajectory
Linear system matrices Ak, Bk, I'x, Ck, Di depend on nominal trajectory (Z, @)
Explicit dependency dropped for notational simplicity
» With respect to the linearized system...
..the information vectors I can be (w.r.t. to the linearized system) perfectly summarized by
Kalman estimate zj, P, with Kalman gain Kj:

&0 — o = —Fyo,
Tot1 — 41 = (I — Kk+1ck+1)Ak(ik — ) + (KIH—lCIH—l —DI'ywy + Kk+1Dk+1Uk+1-

... the future KF means Z are uncertain, but the covariances Pk are perfectly predictable
... the covariances are independent of the linear system trajectory: no dual control effect in
a linear system.

(but we retain dual control effect since (Zx, ux) affects the linear system matrices)

> Restrict control policies to linear feedback xj(-) based on the current state estimate:
Up = lik(ﬁk) = U + Kk(fk - .’ik).



Linear Uncertainty dynamics

Augmented linear system
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Resulting dynamics approximation

» We have approximated the evolution of the original system by

1. Propagating a nonlinear nominal trajectory (Z, @)
2. Linearizing w.r.t. to uncertainty, using linear feedback based on a Kalman filter estimate.

Approximated uncertainty dynamics

Ty = o, Zpy1 = [r(Tk, Ug, 0),
%o =30(B), ki1 = Yu(Tk, Uk, Tk, Ki), k=0,...,N—1.

» Approximation retains a mechanism through which

1. the choice of nominal controls @ influences the estimation uncertainty
2. the estimation uncertainty is fed-back into the “real” system...

3. ...and thus impacts the predictive uncertainty of the true state

4. (which will hurt the objective)

= Dual control effect is preserved



Expectation of cost

» State and control distribution approximated as

i B Ye  C T IE B P : k=0,...,N—1, znx~N(Zy,Py)
m g ) Kk Kk: k Kk Kk: ) —Uyeeey ) N Ny LN
—— —

=%k =2k =55 (Zk, Ki)

» We consider quadratic cost functions I;, with Hessian By, := V2[(+)
EszN(Zk,ik){lk(Zk)} = lk(fk) + %TI‘(Bkik),

> Resulting cost approximation (error due to linearized propagation)

N-1

EfNN(O,H) {Jﬂ(g)} ~ Z lk(:fk,ﬂk) + %Tr (Bkik(zk,Kk)) + ZN(LZ'N) + %Tr (BNiN(EN)).
k=0

=:J(z,u,%,K)



Constraints

» Additional linearization of the constraint functions i' ______ a0
E.. w50 106 (M (21))} 5 — zzﬁféi
~E., nzonn (9000 (Z) + VAL (ZR) (2 — 21))} 21 3, 20)
=E, v s iein)}, ; | o
nominal constraint value hi := hi(Zx) 4 2 0 2 4
variance orthogonal to constraint boundary mean /i

Bi = Vhi(z) Sk Vhi(Zk)

» Compute expected constraint penalty analytically

E o (ory {max(0,m)} = opa (£) + 1P (£) = dl,0)

with pas resp. Py the PDF resp. CDF of standard normal distribution




Resulting approximated OCP

Implicit dual OCP

J(z,1,%,K) + ®(h(z,10), B) + r(K)

min
z,u, 3,3, K
s.t. To = &0, Bo = So(By),
Tpt1 = fu(Tk, g, 0), k=0,...,N—1,
Skt1 = Yr(Th, Ug, X, Ki), k=0,...,N —1,
0 > hy(ug), =0,...,N—1,
B>ell,

ﬁk Z Hk(jkvakazkaKk)y k= 07 .. 'aN - 17
BN = Hn(TN,EN),

with trajectory cost J(-), constraint penalty ®(-), regularization r(-), variances in constraint
direction S resp. H(-)



Example problem

X

7“ v cos 6 "
x = (rY s = |vsinO + w, u = i|
o w w 2.5
Yy 2 2.0 1
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. 154
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s.t. To = o,
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Try1 = f(@k,uk,0), k=0,...,N—1,
Sition 7
Umin < Uk < Umax, k:(),...,N—l, position 7
0§T’]€7 kzl,,N



Comparison to non-dual methods
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Summary / Conclusion

» The dual effect can be captured by

Including output-model in OCP
Optimizing over output-feedback policies

The ideal dual OCP implicitly encodes the explore-exploit trade-off ...

>

» ... but is intractable

» We used linearization to derive a tractable OCP ...
| 2

. while preserving the dual control effect.
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