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Setpoint tracking

In this section we show how to use the MPC regulator and MHE
estimator to handle different kinds of control problems, including
setpoint tracking and rejecting nonzero disturbances.

It is a standard objective in applications to use a feedback controller
to move the measured outputs of a system to a specified and
constant setpoint. This problem is known as setpoint tracking.

In nonlinear MPC theory we can consider the case in which the
system is nonlinear and constrained, but here we consider linear
model MPC in which ysp is an arbitrary constant.
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Deviation variables

In the regulation problem we assumed that the goal was to take the
state of the system to the origin. Such a regulator can be used to
treat the setpoint tracking problem with a coordinate transformation.

Denote the desired output setpoint as ysp. Denote a steady state of
the system model as (xs , us). The steady state satisfies

[
I − A −B

] [xs
us

]
= 0

For unconstrained systems, we also impose the requirement that the
steady state satisfies Cxs = ysp for the tracking problem, giving the
set of equations [

I − A −B
C 0

] [
xs
us

]
=

[
0
ysp

]
(1)
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Deviation variables

If this set of equations has a solution, we can then define deviation
variables

x̃(k) = x(k)− xs

ũ(k) = u(k)− us

They satisfy the dynamic model

x̃(k + 1) = x(k + 1)− xs

= Ax(k) + Bu(k)− (Axs + Bus)

x̃(k + 1) = Ax̃(k) + Bũ(k)

The deviation variables satisfy the same model equation as the
original variables! This feature holds only for linear models.
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Deviation variables

The zero regulation problem applied to the system in deviation
variables finds ũ(k) that takes x̃(k) to zero, or, equivalently, which
takes x(k) to xs , so that at steady state, Cx(k) = Cxs = ysp, which is
the goal of the setpoint tracking problem.

After solving the regulation problem in deviation variables, the input
applied to the system is

u(k) = ũ(k) + us

We next discuss when we can solve (1). We also note that for
constrained systems, we must impose the constraints on the steady
state (xs , us).
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More outputs than inputs: controlled variables

The matrix in (1) is a (n + p)× (n +m) matrix. For (1) to have a
solution for all ysp, it is sufficient that the rows of the matrix are
linearly independent.

That requires p ≤ m: we require at least as many inputs as outputs
with setpoints. But it is not uncommon in applications to have many
more measured outputs than manipulated inputs.

To handle these more general situations, we choose a matrix H and
denote a new variable r = Hy as a selection of linear combinations of
the measured outputs. The variable r ∈ Rnc is known as the
controlled variable.

For cases in which p > m, we choose some set of outputs nc ≤ m, as
controlled variables, and assign setpoints to r , denoted rsp.
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More inputs than outputs: input targets

We also wish to treat systems with more inputs than outputs, m > p.
For these cases, the solution to (1) may exist for some choice of H
and rsp, but cannot be unique.

If we wish to obtain a unique steady state, then we also must provide
desired values for the steady inputs, usp.

To handle constrained systems, we simply impose the constraints on
(xs , us).
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Steady-state target problem

Our candidate optimization problem is therefore

min
xs ,us

1

2

(
|us − usp|2Rs

+ |Cxs − ysp|2Qs

)
(2a)

subject to: [
I − A −B
HC 0

] [
xs
us

]
=

[
0
rsp

]
(2b)

Eus ≤ e (2c)

FCxs ≤ f (2d)
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Steady-state target problem

We make the following assumptions:

Assumption 1 (Target feasibility and uniqueness)

1 The target problem is feasible for the controlled variable setpoints of
interest rsp.

2 The steady-state input penalty Rs is positive definite.

Assumption 1.1 ensures that the solution (xs , us) exists

Assumption 1.2 ensures that the solution is unique.

If one chooses nc = 0, then no controlled variables are required to be
at setpoint, and the problem is feasible for any (usp, ysp) because
(xs , us) = (0, 0) is a feasible point.
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Some exercises on the target problem

Exercises 1.56 and 1.57 explore the connection between feasibility of
the equality constraints and the number of controlled variables
relative to the number of inputs and outputs.

One restriction is that the number of controlled variables chosen to be
offset free must be less than or equal to the number of manipulated
variables and the number of measurements, nc ≤ m and nc ≤ p.
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Dynamic regulation problem

Given the steady-state solution, we define the following multistage
objective function

V (x̃(0), ũ) =
1

2

N−1∑
k=0

|x̃(k)|2Q + |ũ(k)|2R s.t. x̃+ = Ax̃ + Bũ

The initial state is
x̃(0) = x̂(k)− xs

i.e., the initial condition for the regulation problem comes from the
state estimate shifted by the steady-state xs .
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Dynamic regulation problem

The regulator solves the following dynamic, zero-state regulation problem

min
ũ

V (x̃(0), ũ)

subject to

Eũ ≤ e − Eus

FCx̃ ≤ f − FCxs

in which the constraints also are shifted by the steady state (xs , us).
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Dynamic regulation problem — control law

The optimal cost and solution are V 0(x̃(0)) and ũ0(x̃(0)).

The moving horizon control law uses the first move of this optimal
sequence, ũ0(x̃(0)) = ũ0(0; x̃(0)), so the controller output is

u(k) = ũ0(x̃(0)) + us

The control law is more complex than the PID control law, but the
control is a function of the estimated state, and the estimated state
depends on the measurements. That’s the feedback in MPC!

Designing the state estimator is crucial to good closed-loop control
performance.
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The assembly so far

xs

us

x̂

estimator

target

selector

x̃+ = Ax̃ + Bũ

(Q,R)

u y

ysp, usp, rsp

(Qs ,Rs)

regulator plant

x̂
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Disturbances and zero offset

Another common objective in applications is to use a feedback
controller to compensate for an unmeasured disturbance to the
system with the input so the disturbance’s effect on the controlled
variable is mitigated.

This problem is known as disturbance rejection. We may wish to
design a feedback controller that compensates for nonzero
disturbances such that the selected controlled variables asymptotically
approach their setpoints without offset.

This property is known as zero offset. In this section we show a simple
method for constructing an MPC controller to achieve zero offset.
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Disturbances and zero offset

We will ensure that if the system is stabilized in the presence of the
disturbance, then there is zero offset.

This more limited objective is similar to what one achieves when using
the integral mode in proportional-integral-derivative (PID) control of
an unconstrained system: either there is zero steady offset, or the
system trajectory is unbounded.

In a constrained system, the statement is amended to: either there is
zero steady offset, or the system trajectory is unbounded, or the
system constraints are active at steady state.

In both constrained and unconstrained systems, the zero-offset
property precludes one undesirable possibility: the system settles at
an unconstrained steady state, and the steady state displays offset in
the controlled variables.
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So why does the PI controller have zero offset?

Here’s the control law

u(t) = kc

(
e(t) +

1

τI

∫ t

0
e(t ′)dt ′

)
, e = ysp − y

If the tracking error goes to a (nonzero) constant, e(t) → es , then
u(t) → ∞ as t → ∞ because of the integral term.

If we turn off the integrator

us = kces

and we expect offset with a proportional controller.

In PI, we obtain zero offset by integrating the tracking error. In MPC
we will not integrate the tracking error. But we will integrate instead
the model error.

We can show that is also sufficient to remove offset. And we won’t
have windup when inputs saturate.
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Disturbance model

A simple method to compensate for an unmeasured disturbance is to
1 model the disturbance
2 use the measurements and model to estimate the disturbance
3 find the inputs that minimize the effect of the disturbance on the

controlled variables.

The choice of disturbance model is motivated by the zero-offset goal.
To achieve offset-free performance we augment the system state with
an integrating disturbance d driven by the process noise w

d(k + 1) = d(k) + w(k) (3)

d integrates the driving noise w

d(k) = w(0) + w(1) + · · ·+ w(k − 1)
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A little history on disturbance models

This choice is motivated by the works of Davison and Smith (1971,
1974); Qiu and Davison (1993) and the Internal Model Principle of
Francis and Wonham (1976).

To remove offset, one designs a control system that can remove
asymptotically constant, nonzero disturbances (Davison and Smith,
1971), (Kwakernaak and Sivan, 1972, p.278).

To accomplish this end, the original system is augmented with a
replicate of the constant, nonzero disturbance model, (3). Thus the
states of the original system are moved to cancel the effect of the
disturbance on the controlled variables.

Freiburg–2022 Tracking, disturbances, offset 20 / 53



System plus disturbance model

The augmented system model used for the state estimator is given by[
x
d

]+
=

[
A Bd

0 I

] [
x
d

]
+

[
B
0

]
u + w (4a)

y =
[
C Cd

] [x
d

]
+ v (4b)

We are free to choose how the integrating disturbance affects the
states and measured outputs through the choice of Bd and Cd .

The only restriction is that the augmented system is detectable. That
restriction can be easily checked using the following result.
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Restrictions on the disturbance model

Lemma 2 (Detectability of the augmented system)

The augmented system (4) is detectable if and only if the nonaugmented
system (A,C ) is detectable, and the following condition holds:

rank

[
I − A −Bd

C Cd

]
= n + nd (5)

Corollary 3 (Dimension of the disturbance)

The maximal dimension of the disturbance d in (4) such that the
augmented system is detectable is equal to the number of measurements,
that is

nd ≤ p

A pair of matrices (Bd ,Cd) such that (5) is satisfied always exists.

Freiburg–2022 Tracking, disturbances, offset 22 / 53



Estimate state plus disturbance

The state and the additional integrating disturbance are estimated
from the plant measurement using a Kalman filter designed for the
augmented system.

The variances of the stochastic disturbances w and v may be treated
as adjustable parameters or found from input-output
measurements (Odelson, Rajamani, and Rawlings, 2006).
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Overview of the final assembly

[
x̂

d̂

]+
=

[
ABd

0 I

] [
x̂

d̂

]
+

[
B
0

]
u+[

Lx
Ld

](
y −

[
C Cd

] [x̂
d̂

])
x̂

d̂

xs

us

x̂

estimator

target

selector

x̃+ = Ax̃ + Bũ

(Q,R)

u y

ysp, usp, rsp

(Qs ,Rs)

regulator plant
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Forecast of the disturbance

The estimator provides x̂(k) and d̂(k) at each time k .

The best forecast of the steady-state disturbance using (3) is simply

d̂s = d̂(k)
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The nonzero disturbance affects the steady-state target

The steady-state target problem is therefore modified to account for the
nonzero disturbance d̂s

min
xs ,us

1

2

(
|us − usp|2Rs

+
∣∣∣Cxs + Cd d̂s − ysp

∣∣∣2
Qs

)
(6a)

subject to: [
I − A −B
HC 0

] [
xs
us

]
=

[
Bd d̂s

rsp − HCd d̂s

]
(6b)

Eus ≤ e (6c)

FCxs ≤ f − FCd d̂s (6d)
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Effect of the disturbance

Comparing (2) to (6), we see the disturbance model affects the
steady-state target determination in four places.

1 The output target is modified in (6a) to account for the effect of the
disturbance on the measured output (ysp → ysp − Cd d̂s).

2 The output constraint in (6d) is similarly modified (f → f − FCd d̂s).

3 The system steady-state relation in (6b) is modified to account for
the effect of the disturbance on the state evolution (0 → Bd d̂s).

4 The controlled variable target in (6b) is modified to account for the
effect of the disturbance on the controlled variable
(rsp → rsp − HCd d̂s).
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No change to the regulation problem, only the target!

Given the steady-state target, the same dynamic regulation problem
as presented in the tracking section is used for the regulator.

In other words, the regulator is based on the deterministic system
(A,B) in which the current state is x̂(k)− xs and the goal is to take
the system to the origin.
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Offset-free control property of the control system

Lemma 4 (Offset-free control)

Consider a system controlled by the MPC algorithm as shown in the
figure. The target problem (6) is assumed feasible. Augment the system
model with a number of integrating disturbances equal to the number of
measurements (nd = p); choose any Bd ∈ Rn×p, Cd ∈ Rp×p such that

rank

[
I − A −Bd

C Cd

]
= n + p

If the plant output y(k) goes to steady state ys , the closed-loop system is
stable, and constraints are not active at steady state, then there is zero
offset in the controlled variables, that is

Hys = rsp
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Remarks on offset

The proof of this lemma is given in Pannocchia and Rawlings (2003).

It may seem surprising that the number of integrating disturbances
must be equal to the number of measurements used for feedback
rather than the number of controlled variables to guarantee
offset-free control.

To gain insight into the reason, consider the disturbance part (bottom
half) of the Kalman filter equations shown in the figure

d̂+ = d̂ + Ld

(
y −

[
C Cd

] [x̂
d̂

])
Because of the integrator, the disturbance estimate cannot converge
until

Ld

(
y −

[
C Cd

] [x̂
d̂

])
= 0
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Number of disturbances equals number of measurements

Let the output prediction error be

Lde = 0 e = y −
[
C Cd

] [x̂
d̂

]
nd

p[
Ld

]
If we choose nd = nc < p, then the number of columns of Ld is
greater than the number of rows and Lde = 0 does not force e = 0.

In general, we require the output prediction error to be zero to
achieve zero offset independently of the regulator tuning.

For Lde = 0 to force e = 0, we require nd ≥ p.

Since we also know nd ≤ p from Corollary 3, we conclude nd = p.
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Also removes offset due to model error!

Notice also that Lemma 4 does not require that the plant output be
generated by the model. The theorem applies regardless of what
generates the plant output. If the plant is identical to the system
plus disturbance model assumed in the estimator, then the conclusion
can be strengthened.

In the nominal case without measurement or process noise (w = 0,
v = 0), for a set of plant initial states, the closed-loop system
converges to a steady state and the feasible steady-state target is
achieved leading to zero offset in the controlled variables.

Characterizing the set of initial states in the region of convergence,
and stabilizing the system when the plant and the model differ, are
treated in Chapters 3 and 5 of (Rawlings, Mayne, and Diehl, 2020).

We conclude this section with a nonlinear example that demonstrates
the use of Lemma 4.
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The mpcsim software

Provides a GUI for MPCTools/CasADi

Allows interactive simulation of closed-loop systems

Trending capability is similar to modern MPC implementations

Written in Python/Tkinter, with calls to MPCTools/CasADI
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Simulation exercise: LQG control of an exothermic CSTR

Example 5

We consider a well-stirred chemical reactor as in Pannocchia and Rawlings
(2003). An irreversible, first-order reaction A−→ B occurs in the liquid

phase and the reactor temperature is regulated with external cooling.
F0,T0, c0

Tc

r
F

h

T , c
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Mass and energy balances

Mass and energy balances lead to the following nonlinear state space
model:

dc

dt
=

F0(c0 − c)

πr2h
− k0 exp

(
− E

RT

)
c

dT

dt
=

F0(T0 − T )

πr2h
+

−∆H

ρCp
k0 exp

(
− E

RT

)
c +

2U

rρCp
(Tc − T )

dh

dt
=

F0 − F

πr2
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Steady-state operating point

The controlled variables are h, the level of the tank, and c , the molar
concentration of species A. The additional state variable is T , the
reactor temperature

The manipulated variables are Tc , the coolant liquid temperature,
and F , the outlet flowrate.

Moreover, it is assumed that the inlet flowrate acts as an unmeasured
disturbance.

The open-loop stable steady-state operating conditions are the
following:

cs = 0.878 kmol/m3 T s = 324.5K hs = 0.659m

T s
c = 300K F s = 0.1m3/min

The model parameters in nominal conditions are reported in the
following table.
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Plant parameter values

Parameter Nominal value Units

F0 0.1 m3/min
T0 350 K
c0 1 kmol/m3

r 0.219 m
k0 7.2× 1010 min−1

E/R 8750 K
U 54.94 kJ/min·m2·K
ρ 1000 kg/m3

Cp 0.239 kJ/kg·K
∆H −5× 104 kJ/kmol
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Using a sampling time of 1min, a linearized discrete state space model is obtained
and, assuming that all the states are measured, the state space variables are:

x =

 c − cs

T − T s

h − hs

 u =

[
Tc − T s

c

F − F s

]
y =

 c − cs

T − T s

h − hs

 p = F0 − F s
0

The corresponding linear model is:

x(k + 1) = Ax(k) + Bu(k) + Bpp

y(k) = Cx(k)

in which

A =

0.2681 −0.00338 −0.00728
9.703 0.3279 −25.44
0 0 1

 C =

1 0 0
0 1 0
0 0 1


B =

−0.00537 0.1655
1.297 97.91
0 −6.637

 Bp =

−0.1175
69.74
6.637
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CSTR disturbance model options

We will test a LQG control with three different disturbance models:

1 output disturbances on c and h

Cd =

1 0
0 0
0 1

 Bd = 0

2 output disturbances on c , h, T

Cd =

1 0 0
0 0 1
0 1 0

 Bd = 0

3 output disturbances on c and h, input disturbance on F

Cd =

1 0 0
0 0 0
0 1 0

 Bd =

0 0 0.1655
0 0 97.91
0 0 −6.637
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CSTR disturbance model exercise - LQG control

1 Navigate to /mpcsim, start up Octave and run mpcsim setup.m

2 Run cstr mpcsim.m

3 Toggle the Controller switch to ON and press the Play button

4 Using the CVs menu change the c setpoint to 0.882 kmol/m3. Note
that the control decreases Tc to accomplish the c setpoint change.

5 Using the CVs menu change the h setpoint to 0.70 m. Note that the
control drops F and then brings it back to its original value to
accomplish the h setpoint change. Note also that the control must
increase Tc in order to keep c at its setpoint.

6 Change the c setpoint back to 0.878 kmol/m3 and change the h
setpoint back to 0.66 m. Let the process line out.

7 On the options menu set the Disturbance Model Number to 1 to
select the first disturbance model.
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CSTR disturbance model exercise, continued

1 On the DVs menu select F0 and enter a value of 0.102 m3/min.
Observe how the closed-loop system responds to this unmeasured
disturbance. With this disturbance model is offset-free control
achieved? Note that the disturbance model matrices Bd and Cd and
the result of the rank test and disturbance number test are written to
standard output.

2 Return the F0 value to 0.100 m3/min.

3 Repeat the disturbance test for the remaining disturbance models 2
and 3.

4 Experiment with other setpoint changes and tuning parameter
settings in the remaining time.
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a Since we have two inputs, Tc and F , we try to remove offset in two
controlled variables, c and h. Model the disturbance with two
integrating output disturbances on the two controlled variables.
Assume that the covariances of the state noises are zero except for
the two integrating states. Assume that the covariances of the three
measurements’ noises are also zero.
Notice that although there are only two controlled variables, this
choice of two integrating disturbances does not follow the prescription
of Lemma 4 for zero offset.
Simulate the response of the controlled system after a 10% increase
in the inlet flowrate F0 at time t = 10min. Use the nonlinear
differential equations for the plant model. Do you have steady offset
in any of the outputs? Which ones?
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b Follow the prescription of Lemma 4 and choose a disturbance model
with three integrating modes. Can you choose three integrating
output disturbances for this plant? If so, prove it. If not, state why
not.

c Again choose a disturbance model with three integrating modes;
choose two integrating output disturbances on the two controlled
variables. Choose one integrating input disturbance on the outlet
flowrate F . Is the augmented system detectable?
Simulate again the response of the controlled system after a 10%
increase in the inlet flowrate F0 at time t = 10min. Again use the
nonlinear differential equations for the plant model. Do you have
steady offset in any of the outputs? Which ones?
Compare and contrast the closed-loop performance for the design with
two integrating disturbances and the design with three integrating
disturbances. Which control system do you recommend and why?
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Solution—two integrating disturbances

Solution
a ▶ Integrating disturbances are added to the two controlled variables (first

and third outputs) by choosing

Cd =

1 0
0 0
0 1

 Bd = 0

▶ The results with two integrating disturbances are shown in the next
figures.

▶ Notice that despite adding integrating disturbances to the two
controlled variables, c and h, both of these controlled variables as well
as the third output, T , all display nonzero offset at steady state.
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System trajectory

Solution

0 10 20 30 40
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)

Figure 1: Outputs and inputs versus time after a step change ininlet flowrate at 10
minutes; nd = 2. Notice the steady-state offset in all three output variables.
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Solution—third integrator at an output

Solution
b ▶ A third integrating disturbance is added to the second output giving

Cd =

1 0 0
0 0 1
0 1 0

 Bd = 0

▶ The augmented system is not detectable with this disturbance model!

The rank of
[
I−A −Bd

C Cd

]
is only 5 instead of 6.

▶ The problem here is that the system level is itself an integrator, and we
cannot distinguish h from the integrating disturbance added to h.
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Solution—third integrator at an input

Solution
c ▶ Next we try three integrating disturbances: two added to the two

controlled variables, and one added to the second manipulated variable

Cd =

1 0 0
0 0 0
0 1 0

 Bd =

0 0 0.1655
0 0 97.91
0 0 −6.637


▶ The augmented system is detectable for this disturbance model.
▶ The results for this choice of three integrating disturbances are shown

in the next figure. Notice that we have zero offset in the two controlled
variables, c and h, and have successfully forced the steady-state effect
of the inlet flowrate disturbance entirely into the second output, T .
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System trajectory

Solution
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Figure 2: Output and inputs versus time after a step change ininlet flowrate at 10
minutes with a good disturbance model; nd = 3.
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Solution

Notice also that the dynamic behavior of all three outputs is superior
to that achieved with the model using two integrating disturbances.

The true disturbance, which is a step at the inlet flowrate, is better
represented by including the integrator in the outlet flowrate. With a
more accurate disturbance model, better overall control is achieved.

The controller uses smaller manipulated variable action and also
achieves better output variable behavior.

An added bonus is that steady offset is removed in the maximum
possible number of outputs. ■
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Further reading II

J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive Control: Theory,
Design, and Computation. Nob Hill Publishing, Madison, WI, 2nd, paperback edition,
2020. 770 pages, ISBN 978-0-9759377-5-4.
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Tracking, disturbances, and zero offset

Review
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Lab Exercises

Exercise 1.56

Exercise 1.57

Exercise 1.58

Exercise 1.60

Reproduce Figure 4 of Rajamani, Rawlings, and Qin (2009)

Reproduce Figure 6 of Rajamani et al. (2009)
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