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System model1

We consider systems of the form

x+ = f (x , u)

where the state x lies in X ⊆ Rn and the control (input) u lies in
U ⊆ Rm;

In this formulation x and u denote, respectively, the current state and
control, and x+ the successor state.

We assume in the sequel that the function f : X× U → X is
continuous, and the sets X and U are closed.

Let
ϕ(k ; x ,u)

denote the solution of x+ = f (x , u) at time k if the initial state is
x(0) = x and the control sequence is u = (u(0), u(1), u(2), . . .);

The solution exists and is unique.
1Most of this preliminary material is taken from Rawlings, Mayne, and Diehl (2020,

Appendix B). Downloadable from engineering.ucsb.edu/~jbraw/mpc.
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Existence of solutions to model

If a state-feedback control law u = κ(x) has been chosen, the
closed-loop system is described by x+ = f (x , κ(x)).

Let ϕ(k ; x , κ(·)) denote the solution of this difference equation at
time k if the initial state at time 0 is x(0) = x ; the solution exists and
is unique (even if κ(·) is discontinuous).
If κ(·) is not continuous, as may be the case when κ(·) is a model
predictive control (MPC) law, then f ((·), κ(·)) may not be continuous.

In this case we assume that f ((·), κ(·)) is locally bounded.

Definition 1 (Locally bounded)

A function f : X → X is locally bounded if, for any x ∈ X , there exists a
neighborhood N of x such that f (N ) is a bounded set, i.e., if there exists
a M > 0 such that |f (x)| ≤ M for all x ∈ N .
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Stability and equilibrium point

We would like to be sure that the controlled system is “stable”, i.e., that
small perturbations of the initial state do not cause large variations in the
subsequent behavior of the system, and that the state converges to a
desired state or, if this is impossible due to disturbances, to a desired set
of states.
If convergence to a specified state, x∗ say, is sought, it is desirable for this
state to be an equilibrium point:

Definition 2 (Equilibrium point)

A point x∗ is an equilibrium point of x+ = f (x) if x(0) = x∗ implies
x(k) = ϕ(k ; x∗) = x∗ for all k ≥ 0. Hence x∗ is an equilibrium point if it
satisfies

x∗ = f (x∗)
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Positive invariant set

In other situations, for example when studying the stability properties of
an oscillator, convergence to a specified closed set A ⊂ X is sought.
If convergence to a set A is sought, it is desirable for the set A to be
positive invariant:

Definition 3 (Positive invariant set)

A set A is positive invariant for the system x+ = f (x) if x ∈ A implies
f (x) ∈ A.

Clearly, any solution of x+ = f (x) with initial state in A, remains in A.
The (closed) set A = {x∗} consisting of a (single) equilibrium point is a
special case; x ∈ A (x = x∗) implies f (x) ∈ A (f (x) = x∗).
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Distance to a set; set addition

Define distance from point x to set A

|x |A := inf
z∈A

|x − z |

If A = {x∗}, then |x |A = |x − x∗| which reduces to |x | when x∗ = 0.

Set addition: A⊕ B := {a+ b | a ∈ A, b ∈ B}.
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K, K∞, KL functions

Definition 4

A function σ : R≥0 → R≥0 belongs to class K if it is continuous, zero
at zero, and strictly increasing;

σ : R≥0 → R≥0 belongs to class K∞ if it is a class K and unbounded
(σ(s) → ∞ as s → ∞).

A function β : R≥0 × I≥0 → R≥0 belongs to class KL if it is
continuous and if, for each t ≥ 0, β(·, t) is a class K function and for
each s ≥ 0, β(s, ·) is nonincreasing and satisfies limt→∞ β(s, t) = 0.
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Some useful properties of K functions

The following useful properties of these functions are established in Khalil
(2002, Lemma 4.2):

if α1(·) and α2(·) are K functions (K∞ functions), then α−1
1 (·) and

(α1 ◦ α2)(·) := α1(α2(·)) are K functions (K∞ functions).

Moreover, if α1(·) and α2(·) are K functions and β(·) is a KL
function, then σ(r , s) = α1(β(α2(r), s)) is a KL function.
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Stability—Definitions

Definition 5 ((Classic) Asymptotic stability (constrained))

Suppose X ⊂ Rn is positive invariant for x+ = f (x), that A ⊂ X is closed
and positive invariant for x+ = f (x). Then A is

1 locally stable in X if, for each ε > 0, there exists a δ = δ(ε) > 0 such
that x ∈ X ∩ (A⊕ δB), implies |ϕ(i ; x)|A < ε for all i ∈ I≥0.

a

2 locally attractive in X if there exists a η > 0 such that
x ∈ X ∩ (A⊕ ηB) implies |ϕ(i ; x)|A → 0 as i → ∞.

3 attractive in X if |ϕ(i ; x)|A → 0 as i → ∞ for all x ∈ X .

4 asymptotically stable with a region of attraction X if it is locally
stable in X and attractive in X .

aB denotes the unit ball in Rn.
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Asymptotic stability—stronger definition

Definition 6 (Asymptotic stability (constrained – KL versoin))

Suppose X ⊂ Rn is positive invariant for x+ = f (x), that the origin is an
equilibrium of x+ = f (x), and that the origin is in X . The origin is
asymptotically stable in X for x+ = f (x) if there exists a KL function β(·)
such that, for each x ∈ X

|ϕ(i ; x)| ≤ β(|x | , i) ∀i ≥ 0 (1)

See Teel and Zaccarian (2006) and the “Notes on Recent MPC
Literature” link on: engineering.ucsb.edu/~jbraw/mpc for further
discussion of the differences in the two definitions.
If f (·) is continuous, the two definitions are equivalent.
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Lyapunov function

Definition 7 (Lyapunov function (constrained))

Suppose that X is positive invariant and the origin is an equilibrium for
x+ = f (x). A function V : X → R≥0 is said to be a Lyapunov function in
X for the system x+ = f (x) if there exist functions α1, α2, α3 ∈ K∞ such
that for any x ∈ X

α1(|x |) ≤ V (x) ≤ α2(|x |)
V (f (x))− V (x) ≤ −α3(|x |)
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Lyapunov stability theorem

Theorem 8 (Lyapunov stability theorem—constrained case)

Suppose that X is positive invariant and the origin is an equilibrium for
x+ = f (x). If there exists a Lyapunov function in X for the system
x+ = f (x) then the origin is asymptotically stable in X for x+ = f (x).

In other words, we don’t have to analyze closed-loop stability of MPC on a
case-by-case basis.
We instead establish that the optimal MPC cost function is a Lyapunov
function for the closed-loop system!
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Converse theorem for exponential stability

Exercise B.3: A converse theorem for exponential stability
a Assume that the origin is globally exponentially stable (GES) for the

system
x+ = f (x)

in which f is Lipschitz continuous. Show that there exists a Lipschitz
continuous Lyapunov function V (·) for the system satisfying for all
x ∈ Rn

a1 |x |σ ≤ V (x) ≤ a2 |x |σ

V (f (x))− V (x) ≤ −a3 |x |σ

in which a1, a2, a3, σ > 0.
Hint: Consider summing the solution |ϕ(i ; x)| on i as a candidate
Lyapunov function V (x).

b Establish also that in the Lyapunov function defined above, any σ > 0
is valid, and the constant a3 can be chosen as large as one wishes.
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The basic nonlinear, constrained MPC problem

The system model is
x+ = f (x , u) (2)

Both state and input are subject to constraints

x(k) ∈ X , u(k) ∈ U for all k ∈ I≥0

Given an integer N (referred to as the finite horizon), and an input
sequence u of length N, u = (u(0), u(1), . . . , u(N − 1)), let ϕ(k ; x ,u)
denote the solution of (2) at time k for a given initial state x(0) = x .

Terminal constraint (and penalty)

ϕ(N; x ,u) ∈ Xf ⊆ X
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Feasible sets

For an initial x , the corresponding set of feasible inputsequences is

UN(x) = {u | u(k) ∈ U, ϕ(k; x ,u) ∈ X for all k ∈ I0:N−1,

and ϕ(N; x ,u) ∈ Xf }

The set of feasible initial states is

XN = {x ∈ X | UN(x) ̸= ∅} (3)
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Cost function and control problem

For any state x ∈ X and input sequence u ∈ UN , we define

VN(x ,u) =
N−1∑
k=0

ℓ(ϕ(k; x ,u), u(k)) + Vf (ϕ(N; x ,u))

ℓ(x , u) is the stage cost; Vf (x(N)) is the terminal cost

Consider the finite horizon optimal control problem

PN(x) : min
u∈UN

VN(x ,u)
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Control law and closed-loop system

The control law is
κN(x) = u0(0; x)

The optimum may not be unique; then κN(·) is a point-to-set map

Closed-loop system

x+ = f (x , κN(x)) difference equation

x+ ∈ f (x , κN(x)) difference inclusion

Nominal closed-loop stability question; is the origin stable?

If yes, what is the region of attraction? All of XN?
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Basic MPC assumptions

Assumption 9 (Continuity of system and cost)

The functions f : X× U → X, ℓ : X× U → R≥0 and Vf : Xf → R≥0 are
continuous, f (0, 0) = 0, ℓ(0, 0) = 0, and Vf (0) = 0.

Assumption 10 (Properties of constraint sets)

The set U is compact and contains the origin. The sets X and Xf are
closed and contain the origin in their interiors, Xf ⊆ X.
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Basic MPC assumptions

Assumption 11 (Lower bound on stage cost)

The stage cost ℓ(·) satisfies

ℓ(x , u) ≥ α1(|x |) ∀x ∈ XN , ∀u ∈ U

in which α1(·) is a K∞ function.

Remark 12 (Upper bound on terminal cost)

Because Vf (·) is continuous and Vf (0) = 0, we also have that

Vf (x) ≤ α2(|x |) ∀x ∈ Xf

in which α2(·) is a K∞ function.
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Basic MPC assumptions

Assumption 13 (Basic stability assumption)

For any x ∈ Xf there exists u := κf (x) ∈ U such that f (x , u) ∈ Xf and
Vf (f (x , u)) ≤ Vf (x)− ℓ(x , u).

Note: understanding this requirement created a big research challenge for
the development of nonlinear MPC.
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The MPC problem in pictures

XN

x(0)
Xf

κf (·)

Assumption 13: Vf (f (x , κf (x))) ≤ Vf (x)− ℓ(x , κf (x))
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Optimal MPC cost function as Lyapunov function

We show that the optimal cost V 0
N(·) is a Lyapunov function for the

closed-loop system. We require three properties.
Lower bound.

V 0
N(x) ≥ α1(|x |) for all x ∈ XN

Given the definition of VN(x ,u) as a sum of stage costs, we have using
Assumption 11

VN(x ,u) ≥ ℓ(x , u(0; x)) ≥ α1(|x |) for all x ∈ XN ,u ∈ UN

so the first property is established.
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MPC cost function as Lyapunov function – cost decrease

Next we require the cost decrease

V 0
N(f (x , κN(x))) ≤ V 0

N(x)− α3(|x |) for all x ∈ XN

At state x ∈ XN , consider the optimal sequence
u0(x) = (u(0; x), u(1; x), . . . , u(N − 1; x)), and generate a candidate
sequence for the successor state, x+ := f (x , κN(x))

ũ = (u(1; x), u(2; x), . . . , u(N − 1; x), κf (x(N)))

with x(N) := ϕ(N; x ,u). This candidate is feasible for x+ because Xf is
control invariant under control law κf (·) (Assumption 13).
The cost is

VN(x
+, ũ) = V 0

N(x)− ℓ(x , u(0; x))

− Vf (x(N)) + ℓ(x(N), κf (x(N))) + Vf (f (x(N), κf (x(N))))︸ ︷︷ ︸
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Cost decrease (cont.)

But by Assumption 13

Vf (f (x , κf (x)))− Vf (x) + ℓ(x , κf (x)) ≤ 0 for all x ∈ Xf

so we have that

VN(x
+, ũ) ≤ V 0

N(x)− ℓ(x , u(0; x))

The optimal cost is certainly no worse, giving

V 0
N(x

+) ≤ V 0
N(x)− ℓ(x , u(0; x))

V 0
N(x

+) ≤ V 0
N(x)− α1(|x |) for all x ∈ XN

which is the desired cost decrease with the choice α3(·) = α1(·).
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Upper bound

Finally we require the upper bound.

V 0
N(x) ≤ α2(|x |) for all x ∈ XN

Surprisingly, this one turns out to be the most involved.
First, we have the bound from Assumption 11

Vf (x) ≤ α2(|x |) for all x ∈ Xf

Next we show that V 0
N(x) ≤ Vf (x) for x ∈ Xf , N ≥ 1.

Consider N = 1,

V 0
1 (x) = min

u∈U
{ℓ(x , u) + Vf (f (x , u)) | f (x , u) ∈ Xf }

= ℓ(x , κ1(x)) + Vf (f (x , κ1(x))) x ∈ X1

≤ ℓ(x , κf (x)) + Vf (f (x , κf (x))) x ∈ Xf

≤ Vf (x) x ∈ Xf (by Assumption 13)
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Dynamic programming recursion

Next consider N = 2, and optimal control law κ2(·)

V 0
2 (x) = min

u∈U
{ℓ(x , u) + V 0

1 (f (x , u)) | f (x , u) ∈ X1} x ∈ X2

= ℓ(x , κ2(x)) + V 0
1 (f (x , κ2(x))) x ∈ X2

≤ ℓ(x , κ1(x)) + V 0
1 ( f (x , κ1(x))︸ ︷︷ ︸

∈Xf

) x ∈ X1

≤ ℓ(x , κ1(x)) + Vf (f (x , κ1(x))) x ∈ X1

= V 0
1 (x) x ∈ X1

Therefore
V 0
2 (x) ≤ Vf (x) x ∈ Xf

Continuing this recursion gives for all N ≥ 1

V 0
N(x) ≤ Vf (x) ≤ α2(|x |) x ∈ Xf
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Extending the upper bound from Xf to XN

Question: When can we extend this bound from Xf to the (possibly
unbounded!) set XN? Recall that V 0

N(·) is not necessarily continuous.

Answer: The K∞ upper bound of a function valid near the origin can
be extended from Xf to the entire set XN if and only if the function
is locally bounded on XN .

2

We know from continuity of f (·) (Assumption 9) that VN(x ,u) is a
continuous function, hence locally bounded, and therefore so is
V 0
N(x).

Therefore, there exists β(·) ∈ K∞ such that

V 0
N(x) ≤ β(|x |) for all x ∈ XN

Be aware that the MPC literature has been confused about the
requirements for this last result.

2See Proposition 11 of “Notes on Recent MPC Literature” link on:
engineering.ucsb.edu/~jbraw/mpc. Thanks also to Andy Teel.

Freiburg–2022 NMPC regulation 28 / 82

engineering.ucsb.edu/~jbraw/mpc


Asymptotic stability of constrained nonlinear MPC

Why you want a Lyapunov function

We have established that the optimal cost V 0
N(·) is a Lyapunov

function on XN for the closed-loop system.

Therefore, the origin is asymptotically stable (KL version) with region
of attraction XN .

We can also establish robust stability, but we’ll do that later.

If we strengthen the properties of ℓ(·), we can strengthen the
conclusion to exponential stability.

Notice the essential role that V 0
N(·) plays in the stability analysis of

MPC.

In economic MPC we lose this Lyapunov function and have to do
some work to bring it back.
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A nice example (Example 2.6)

System is linear (unstable, scalar)

x+ = f (x , u) := x + u

The stage cost and terminal cost are

ℓ(x , u) := (1/2)(x2 + u2) Vf (x) := (1/2)x2

The control constraint is

u ∈ U = [−1, 1]

The horizon is N = 2. The feasible set is U2 = U× U.
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Nice example

The cost function

VN(x ,u) = (1/2)
(
x2 + (x + u(0))2 + (x + u(0) + u(1))2+

u(0)2 + u(1)2
)

= (3/2)x2 +
[
2x x

]
u + (1/2)u ′Hu

in which

H =

[
3 1
1 2

]
The optimal control problem

min
u∈U2

VN(x ,u)

The optimal control problem is a quadratic program
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The quadratic program as x varies

−5 −4 −3 −2 −1 0 1
u0

−3

−2

−1

0

1

u1

U

a(x)

x = 9/2
x = 3

x = 9/4

x = 5/3

x = 0

Figure 1: Feasible region U2, elliptical cost contours, and ellipse center, a(x), and
constrained minimizers for different values of x .
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The simplest possible constrained control law

The control law is piecewise affine (u = Kx + b) and continuous

There are three regions: −5/3 ≤ x , −5/3 ≤ x ≤ 5/3, 5/3 ≤ x

−3 −2 −1 0 1 2 3
x

−1.0

−0.5

0.0

0.5

1.0

u κN(x)

Figure 2: The optimal control law for x+ = x + u, N = 2, Q = R = 1, u ∈ [−1, 1].
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The constrained control law can be complex

−3 −2 −1 0 1 2 3
x1

−2

−1

0

1

2

x2

Figure 3: Regions with
different linear (affine)
control laws for a
second-order example.
(Rawlings et al., 2020,
p.462)

The number of regions increases exponentially with system order n,
number of inputs, m, and horizon length N.

Another example of Bellman’s curse of dimensionality. It’s difficult to
store κN(x), x ∈ Rn, as n increases.
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A troublesome example (Example 2.8)

x+ = f (x , u)[
x1
x2

]+
=

[
x1
x2

]
+

[
u
u3

]
Two state, single input example. The origin is the desired steady
state: u = 0 at x = 0.

Cannot be stabilized with continuous feedback u = κ(x).

Because (u, u3) have the same sign, must use negative u to stabilize
first quadrant.

Must use positive u to stabilize third quadrant.

But u cannot pass through zero or that point is a closed-loop steady
state.

Therefore discontinuous feedback.

Freiburg–2022 NMPC regulation 35 / 82



And its troubled history

Introduced by Meadows, Henson, Eaton, and Rawlings (1995) to
show MPC control law and optimal cost can be discontinuous.

Based on a CT example by Coron (1990).

Grimm, Messina, Tuna, and Teel (2005) established robustness for
MPC with horizon N ≥ 4 with a terminal cost and no terminal region
constraint.
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MPC with terminal equality constraint

Because we do not know even a local controller, we try a terminal
constraint x(N) = 0 in the MPC controller.

For what initial x is this constraint feasible?

(x1(1), x2(1)) = (x1(0), x2(0)) + (u0, u
3
0)

(x1(2), x2(2)) = (x1(1), x2(1)) + (u1, u
3
1)

(x1(3), x2(3)) = (x1(2), x2(2)) + (u2, u
3
2)

For N = 1, the feasible set X1 is only the line x2 = x31 .

For N = 2, to have real roots u0, u1, we require −x41 + 4x1x2 ≥ 0
which defines X2

For N = 3, we have X3 is all of R2.

So the shortest horizon that can globally stabilize the system is N = 3.
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Feasibility sets X1, X2, and X3

−1.0 −0.5 0.0 0.5 1.0
x1

−0.2

−0.1

0.0

0.1

0.2

x2

X3

X2

X1

Figure 4: Feasibility sets XN for N = 1, 2, 3.
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Structure of Feasibility Sets

XN

XN−2 XN−1

Xf

The feasibility sets are nested: XN ⊇ XN−1 ⊇ XN−2 · · · ⊇ Xf

The set XN is forward invariant. Important for recursive feasibility of
controller.

The set XN−1 is also forward invariant!

The sets XN−2,XN−3, . . . ,Xf are not necessarily forward invariant.
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Optimal MPC with N = 3

−π −π/2 0 π/2 π

θ

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

u

Figure 5: The control constraint set UN(x) and optimal control κN(x) for x on the unit
circle (Rawlings et al., 2020, p. 106).
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Optimal cost function with N = 3

−π −π/2 0 π/2 π

θ

5

10

15

20

V 0

Figure 6: The discontinuity in the optimal cost for x on the unit circle
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Discontinuities in optimal solution and value function

Optimal solution and parameter dependence

Consider the general constrained optimization problem with
parameter x

min
u∈U(x)

V (u, x)

and optimal solution and value function

u0(x) V 0(x)

What does it take for u0(x) to be discontinuous?

What does it take for V 0(x) to be discontinuous?
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Discontinuous optimal solution u0(x)

It is easy to generate a smooth V (x , u) and continuous constraint set
U(x) that has a discontinuous solution u0(x) (but continuous optimal
value function V 0(x)). Consider the following nonconvex V (x , u) with the
constant constraint set U(x) = R.

−4 −3 −2 −1 0 1 2 3 4
u

0.0

2.5

5.0

7.5

10.0

12.5

15.0

V (x , u)

x = 0.20

x = 0.10

x = 0.00

x = −0.10

x = −0.20

Figure 7: Smooth, nonconvex value function V (x , u). There are two branches of local
solutions and the optimal solution changes branches at x = 0.
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Discontinuous optimal solution u0(x)

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20

0

2V 0

−0.20 −0.15 −0.10 −0.05 0.00 0.05 0.10 0.15 0.20
x

−2

0

2

u0

Figure 8: Smooth example with discontinuous solution and continuous value function.
Note that the derivative of V 0(x) is discontinuous.
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Discontinuous optimal value function V 0(x)

To obtain a discontinuous optimal value function from a smooth V (x , u),
we have to make the constraint set U(x) discontinuous. The objective
function V (x , u) can be convex in this case. Consider

U(x) = {u | 1 ≤ u ≤ 3, or max(x ,−1) ≤ u ≤ min(−x , 1)}

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
x

−1

0

1

2

3

U(x)

Figure 9: Discontinuous constraint set U(x). Note that U(x) at x = 0+ contains no
value near the point 0 ∈ U(x) at x = 0.
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Discontinuous optimal value function V 0(x)

−2 0 2 4
u

0

2

4

6

8

V (x , u)

x = 1

x = 0

x = −1

x = −2

−2 −1 0 1
0

1

2

3

4

V 0

−2 −1 0 1
x

−3
−2
−1

0
1
2

u0

Figure 10: Smooth, convex value function V (x , u) (left) and discontinuous optimal value
function V 0(x) and solution u0(x) (right).
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So far so good; now is the stability robust?

Consider disturbances to the process (d) and state measurement (e)

x+ = f (x , κN(x)) nominal system

x+ = f (x , κN(x + e)) + d nominal controller with disturbances

How does the perturbed system behave?

Study of inherent robustness motivated by Teel (2004) who showed
examples for which arbitrarily small perturbations can destabilize the
nominally stabilizing controller.

If we cannot ensure desirable behavior with small disturbances, the
control system will not be useful in practice.

Every control system fails with large disturbances (think Fukushima
nuclear reactor and a tsunami). But the inherent robustness of
feedback control must ensure tolerance to small disturbances.
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Desired behavior with and without disturbance

x0

Nominal System

x+ = f (x , u)

u = κN(x)

x̂0

System with Disturbance

x+ = f (x , u) + d

u = κN(x + e)

d is the process disturbance
e is the measurement disturbance
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How do we define this desired behavior?

Nominal controller with disturbances. Note xm = x + e

x+ ∈ f (x , κN(x + e)) + d

x+m ∈ f (xm − e, κN(xm)) + d + e+

x+ ∈ F (x ,w) w = (d , e) or w = (d , e, e+)

Inherent robustness: is the origin of the closed-loop system
x+ ∈ F (x ,w) input-to-state stable considering disturbance
w = (d , e) as the input?
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Input-to-state stability (ISS)

Why ISS?

Consider a system x+ = f (x ,w) with input w

Definition 14 (Input-to-state stable)

The system x+ = f (x ,w) is (globally) input-to-state stable (ISS) if there
exists a KL function β(·) and a K function σ(·) such that, for each
x0 ∈ Rn, and each bounded disturbance sequence w = (w(0),w(1), . . .)

|x(k ; x0,w)| ≤ β(|x0| , k) + σ(∥w∥0:k−1)

for all k ∈ I≥0, ∥w∥a:b := maxj∈I[a:b] |w(j)|

The main ingredient of robust stability is that the closed-loop system
is ISS considering the disturbance as the input
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Desired behavior with disturbance

x0

σ(∥w∥)

ISS in pictures

x+ ∈ f (x ,w)

|x(k ; x0,w)| ≤ β(|x0| , k) + σ(∥w∥0:k−1)

Note also that ISS implies the desirable behavior that if w(k) → 0 as
k → ∞, then x(k ; x0,w) → 0 also.
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Robust positive invariance

We also require that the system not leave an invariant set due to the
disturbance.

Definition 15 (Robust Positive Invariance)

A set X ⊆ Rn is robustly positive invariant with respect to a difference
inclusion x+ ∈ f (x ,w) if there exists some δ > 0 such that f (x ,w) ⊆ X
for all x ∈ X and all disturbance sequences w satisfying ∥w∥ ≤ δ.
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Robust asymptotic stability

So, we define robust asymptotic stability as input-to-state stability on a
robust positive invariant set.

Definition 16 (Robust Asymptotic Stability)

The origin of a perturbed difference inclusion x+ ∈ f (x ,w) is robustly
asymptotically stable in X if there exists functions β(·) ∈ KL and
γ(·) ∈ K and δ > 0 such that for all x ∈ X and ∥w∥ ≤ δ, X is robustly
positive invariant and all solutions ϕ(k ; x ,w) satisfy

|ϕ(k ; x ,w)| ≤ β(|x | , k) + γ(∥w∥) (4)

for all k ∈ I≥0.
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Input-to-state stability Lyapunov function

In order to establish ISS, we define an ISS Lyapunov function for a
difference inclusion, similar to ISS Lyapunov function defined in Jiang and
Wang (2001) and Lazar, Heemels, and Teel (2013).

Definition 17 (ISS Lyapunov Function)

V (·) is an ISS Lyapunov function in the robust positive invariant set X for
the difference inclusion x+ ∈ f (x ,w) if there exists some δ > 0, functions
α1(·), α2(·), α3(·) ∈ K∞, and function σ(·) ∈ K such that for all x ∈ X
and ∥w∥ ≤ δ

α1(|x |) ≤ V (x) ≤ α2(|x |) (5)

sup
x+∈f (x ,w)

V (x+) ≤ V (x)− α3(|x |) + σ(∥w∥) (6)
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ISS Lyapunov function implies ISS

Proposition 18 (ISS Lyapunov stability theorem)

If a difference inclusion x+ ∈ f (x ,w) admits an ISS Lyapunov function in
a robust positive invariant set X for all ∥w∥ ≤ δ for some δ > 0, then the
origin is robustly asymptotically stable in X for all ∥w∥ ≤ δ.

This is a valuable result to know when trying to establish robustness
of stability.

Let’s skip this proof (hooray!), but it’s not difficult (Jiang and Wang,
2001; Allan, Bates, Risbeck, and Rawlings, 2017).
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Inherent robustness of nominal MPC

Our strategy now is to establish that V 0
N(x) is an ISS Lyapunov

function for the perturbed closed-loop system.

We have already established the upper and lower bounding inequalities

α1(|x |) ≤ V 0
N(x) ≤ α2(|x |)

So we require only

sup
x+∈f (x ,w)

V 0
N(x

+) ≤ V 0
N(x)− α3(|x |) + σ(∥w∥)

That plus robust positive invariance, and we’ve established RAS of
the controlled system.
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Picture of the argument we are going to make

ũ

w

e+

f (x̂ , κN(x̂))

x+

x̂+

x̂
x

XN

Xf

XN+1

κf (·)

−e

ũ

We have that x̂+ = f (x̂ − e, κN(x̂)) + w + e+

We next compute difference in cost of red and green using ũ
Note that ũ is feasible also for green, i.e., terminates in Xf := levVf .
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A useful tool for invoking continuity

Continuity in the language of K -functions

The usual ϵ-δ definition of continuity is equivalent to the following
K -function definition (Rawlings and Risbeck, 2015).

Definition 19 (Continuity: K -function)

A function f : Rn → Rm is continuous at x if there exists a K -function
γ(·) (note that the function γ(·) may depend on x) such that

|f (x + p)− f (x)| ≤ γ(|p|) for all |p| ∈ Dom(γ) (7)
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OK, let’s jump in (Allan et al., 2017)

Since VN(x ,u) is a continuous function∣∣VN(x̂
+, ũ)− VN(f (x̂ , κN(x̂)), ũ)

∣∣ ≤ σV (
∣∣x̂+ − f (x̂ , κN(x̂))

∣∣)
with σV (·) ∈ K (note we are not using the possibly discontinuous V 0

N(x)
here). Since f (x , u) is also continuous∣∣x̂+ − f (x̂ , κN(x̂))

∣∣ = ∣∣f (x̂ + e, κN(x̂)) + w + e+ − f (x̂ , κN(x̂))
∣∣

≤ |f (x̂ + e, κN(x̂))− f (x̂ , κN(x̂))|+ |w |+
∣∣e+∣∣

≤ σf (|e|) + |w |+
∣∣e+∣∣

≤ σf (|d |) + 2 |d | ≤ σ̃f (|d |)

with d := (e,w , e+) and σ̃f (·) := σf (·) + 2(·) ∈ K. Therefore∣∣VN(x̂
+, ũ)− VN(f (x̂ , κN(x̂)), ũ)

∣∣ ≤ σV (σ̃f (|d |)) := σ(|d |)
VN(x̂

+, ũ) ≤ VN(f (x̂ , κN(x̂)), ũ) + σ(|d |)

with σ(·) ∈ K.
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Last steps

Note that for the candidate sequence
VN(f (x̂ , κN(x̂)), ũ) ≤ V 0

N(x̂)− ℓ(x̂ , κN(x̂)) so we have that

VN(f (x̂ , κN(x̂)), ũ) ≤ V 0
N(x̂)− α1(|x̂ |)

since α1(|x |) ≤ ℓ(x , κN(x)) for all x . Therefore, we finally have

VN(x̂
+, ũ) ≤ V 0

N(x̂)− α1(|x̂ |) + σ(|d |)
V 0
N(x̂

+) ≤ V 0
N(x̂)− α1(|x̂ |) + σ(∥d∥)

and we have established that V 0
N(·) is an ISS-Lyapunov function!

That plus robust invariance gives robust asymptotic stability of x̂ . Since
x = x̂ + e, that gives also RAS of x .
Notice that neither V 0

N(·) nor κN(·) need be continuous for MPC to be
inherently robust.
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Discrete actuators

In addition to continuous actuators, many process systems also have
discrete actuators that are constrained to be integers.

t

u1

u2

u3

u4

Processes with banks of
furnaces, heaters, chillers,
etc.

Scheduling models with
discrete decisions.

Switched systems with
input-dependent dynamics.

Semi-continuous variables
(e.g. u ∈ {0} ∪ [1, 2]).
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Continuous and mixed continuous-discrete actuators

u1

(a)

u2

u1

(b)

u2

Typical input constraint sets U for (a) continuous actuators and (b) mixed
continuous-discrete actuators; the origin (•) is the equilibrium of interest.
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Example: Driving a manual transmission

State: vehicle velocity v

Inputs: engine RPM ω ∈ [0, ωmax]
gear γ ∈ {1, 2, 3, 4, 5}

dv

dt
= amax(γ)σ (R(γ)ω − v)

z

σ(z)

1

Maximum acceleration amax(γ) decreases for higher gears

Final velocity v = R(γ)ω increases for higher gears

Choose setpoint vsp and use tracking stage cost

ℓ(v , ω, γ) = 20

(
v

vsp
− 1

)2

︸ ︷︷ ︸
Track vsp

+8max

(
0,

ω − ωss

ωmax

)
︸ ︷︷ ︸

Minimize excessive ω

+ (∆γ)2︸ ︷︷ ︸
Restrict
switching
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Example Simulation
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Figure 11: Closed-loop evolution of car system. Optimization performed using Bonmin.

Freiburg–2022 NMPC regulation 64 / 82



Inherent Robustness—Extension to discrete actuators

The extension to discrete actuators is immediate

The set U need not be convex, connected, etc.—it need only contain
the origin

However, design choices become more striking with discrete actuators:

Theory forbids “large” control action near the setpoint
▶ System must be locally stabilizable using only unsaturated actuators
▶ Discrete actuators are always saturated

Single setpoint stabilization may no longer be an appropriate goal
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Feasible Sets

MPC is stabilizing on XN but XN may not be what you expect

10 15 20 25 30
T1

10

15

20

25

30

T2

Continuous Actuator

10 15 20 25 30
T1

10

15

20

25

30
Discrete Actuator

Xf X1 X2 X3 X4 X5 X6
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Conclusion

We have extended standard MPC theory to handle discrete actuators
for robust stabilization of an equilibrium point

This theory extends to periodic trajectories and economic MPC

Based on these results we offer the following conjecture:

Theorem 20 (Folk theorem)

Any result that holds for standard MPC holds also for MPC with discrete
actuators. (Rawlings and Risbeck, 2017)

Applications include a rich class of commercial building energy
optimization problems

A current challenge is to develop better software tools for efficient,
reliable online solution of the mixed-integer optimal control problems.
See casadi.org
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Nonlinear model predictive control – Regulation

Review
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Recommended exercises

Stability definitions. Exercise B.8.3

Lyapunov functions. Exercise B.2–B.3.3

Dynamic programming. Exercise C.1–C.2.3

MPC stability results. Exercises 2.12, 2.133

3Rawlings et al. (2020, Chapter 2, Appendices B and C). Downloadable from
engineering.ucsb.edu/~jbraw/mpc.
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Computational Exercise

Consider the following system:

d

dt
x = f (x) + g(x)u

d

dt

(
x1
x2

)
=

(
−1 −1
1 1

)(
x1
x2

)
+

(
−x2 0
x1 1

)(
u1
u2

)
(
−1
−1

)
≤

(
u1
u2

)
≤

(
1
1

)
For fixed u1, system is linear.

Far from the origin, system is difficult to stabilize along the x2-axis.
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Exercise

Design a nonlinear MPC controller to regulate the system to the origin.

Cost functions: ℓ(x , u) = 100x ′x + u′u, Pf (x) = 1000x ′x

State is measured.

No disturbances.

Compare results to linear MPC.

Why might linear MPC be a bad idea for this system?

Can linear MPC stabilize the system? Where?
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Hints

Start with the linearized problem.
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Figure 12: Trajectory using linearized system and linear MPC.
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Hints

Adding nonlinearities, you should get something like this:
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x1
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Figure 13: Trajectory using nonlinear MPC.
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Hints

Finally, you can compare both on the same axes:
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Figure 14: Comparison of linear and nonlinear MPC trajectories.
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Computational Exercise 2

Consider the CSTR Example from earlier

Nonlinear CSTR

An irreversible, first-order reaction A→B occurs in the liquid phase and
the reactor temperature is regulated with external cooling.

F0,T0, c0

Tc

r
F

h

T , c
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Computational Exercise 2

Simulation Parameters
1 Initial Condition and Sample Time

x0 =

0.05cs

0.75T s

0.5hs

 ∆ = 0.25min

2 Input Constraints [
0.975T s

c

0.75F s

]
≤ u ≤

[
1.025T s

c

1.25F s

]
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Computational Exercise 2

Reactor Startup

Using the model and parameters provided previously,

1 Simulate the performance of an uncontrolled startup by injecting the
steady-state input into the system. Does the system reach the desired
operating point?

2 Use linear MPC to simulate the same startup. Does the system reach
the desired operating point with a linear controller?

3 Repeat the startup, but with nonlinear MPC. Does the system reach
the desired operating point with a nonlinear controller? Comment on
the performance differences between the various approaches.
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Reactor Startup

The uncontrolled startup does not drive the reactor to the desired steady
state, however both the linear and nonlinear MPC controllers do.
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Figure 15: Solution for Reactor Startup Exercise.
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Ball Maze

0 1 2
x1

0.0
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x2

Figure 16: MPC navigating a ball maze. Although the constraints are nonconvex, we
can still find a local solution.
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Airplane Descent
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Figure 17: MPC for guiding a descending plane. While the goal is to reach a periodic
holding pattern, the optimizer does not find that solution due to nonconvexity.
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