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State Estimation

Now turn to the general problem of estimating the state of a noisy
dynamic system given noisy measurements:

x+ = f (x ,w)

y = h(x) + v (1)

in which the process disturbance, w , measurement disturbance, v , and
system initial state, x(0), are independent random variables with
stationary probability densities.

Can consider constraints on state, measurement, process disturbance, and
measurement disturbance.

x ∈ X, y ∈ Y, w ∈ W, v ∈ V
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Full Information Estimation

Full information estimation will prove to have the best theoretical
properties in terms of stability and optimality.

Unfortunately, it will also prove to be computationally intractable
except for the simplest cases, such as a linear system model.

One method for practical estimator design therefore is to come as
close as possible to the properties of full information estimation while
maintaining a tractable online computation (MHE).
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Variables

Notation required to distinguish the system variables from the estimator
variables:

System Decision Optimal
variable variable decision

state x χ x̂
process disturbance w ω ŵ
measured output y η ŷ
measurement disturbance v ν v̂

The relationships between these variables:

x+ = f (x ,w) y = h(x) + v

χ+ = f (χ, ω) y = h(χ) + ν η = h(χ)

x̂+ = f (x̂ , ŵ) y = h(x̂) + v̂ ŷ = h(x̂)

Note that h(x)− h(x̂) = −(v − v̂) (useful later)
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Full Information Estimation

The full information objective function is

VT (χ(0),ω) = ℓx
(
χ(0)− x0

)
+

T−1∑
i=0

ℓi (ω(i), ν(i)) (2)

subject to
χ+ = f (χ, ω) y = h(χ) + ν

in which T is the current time, y(i) is the measurement at time i , and x0
is the prior information on the initial state.
The full information estimator is then defined as the solution to

min
χ(0),ω

VT (χ(0),ω) (3)
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Constraints

For estimation problem, some physically known facts should also be
enforced such as:

▶ Concentrations of impurities must be nonnegative,
▶ Fluxes of mass must have the correct sign given concentration

gradients.
▶ Fluxes of energy must have the correct sign given temperature

gradients.
▶ ...

However, unlike the regulator, the estimator has no way to enforce
these constraints on the system.

It is important that any constraints imposed on the estimator are
satisfied by the system generating the measurements.
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Motivational Example—Is online optimization useful?

MHE Performance

Consider the following set of reversible reactions taking place in a
well-stirred, isothermal, gas-phase batch reactor

A
k1−−⇀↽−−
k−1

B + C 2B
k2−−⇀↽−−
k−2

+C

The states are the concentrations of species in mol/L and the
measurement is the reactor pressure in atm

x =

cAcB
cC

 y = RT
[
1 1 1

]
x

We assume the ideal gas law in modeling the pressure
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Material balances

Material balances lead to the following nonlinear state space model:

d

dt

cAcB
cC

 =

−1 0
1 −2
1 1

[
k1cA − k−1cBcC
k2c

2
B − k−2cC

]
dx

dt
= fc(x)

Note that cBcC and c2B are the only nonlinearities
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Discrete time model

Model the system plus disturbances with the following discrete time model

x+ = f (x) + w

y = Cx + v

in which f is the solution of the ODEs over the sample time, ∆, i.e, if
s(t, x0) is the solution of dx

dt = fc(x) with initial condition x(0) = x0 at
t = 0, then f (x) = s(∆, x).

The state and measurement disturbances, w and v , are assumed to be
zero-mean independent normals with constant covariances Q and R.
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Parameter values

The following parameter values are used in the simulations

RT = 32.84mol · atm/L

∆ = 0.25 k1 = 0.5 k−1 = 0.05 k2 = 0.2 k−2 = 0.01

P(0) = (0.5)2I Q = (0.001)2I R = (0.25)2

x̄(0) =

10
4

 x(0) =

 0.5
0.05
0


The prior density for the initial state, N(x(0),P(0)), is deliberately chosen
to poorly represent the actual initial state to model a large initial
disturbance to the system.

Examine how MHE recovers from this large unmodeled disturbance.
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Example Results
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Figure 1: Example results for MHE on batch reactor system.
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EKF Performance
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Figure 2: Poor performance of EKF on batch reactor system.
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EKF Performance with Clipping
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Figure 3: Poor performance of EKF with clipping on batch reactor system. Any negative
concentration estimates are clipped to 0.
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UKF Performance
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Figure 4: Poor performance of UKF on batch reactor system.
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UKF Performance with Scaling
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Figure 5: Mediocre performance of UKF with scaling on batch reactor system. When
possible, negative concentrations at sigma points are scaled to be nonnegative.
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Let’s back up and review the linear theory

Linear model, x+ = Ax + Gw , y = Cx + v .
Full information estimation is equivalent to the Kalman filter.

If (A,C ) is detectable and (A,G ) is stabilizable, Q,R > 0, then there
exists P− ≥ 0 satisfying the discrete algebraic Riccati equation
(DARE)

P− = G ′QG + AP−A′ − AP−C ′(CP−C ′ + R)−1CP−A′

The matrix A− L̃C is a stable matrix

L̃ = AP−C ′(CP−C ′ + R)−1

The steady-state estimator takes the form

x̂+ = Ax̂ + L̃(y − Cx̂) x̂(0) = x0
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Estimate error

Subtract the estimator from the system

x+ = Ax + Gw y = Cx + v

x̂+ = Ax̂ + L̃(y − Cx̂)

(x − x̂)+ = A(x − x̂) + Gw − L̃(Cx + v − Cx̂)

(x − x̂)+ = (A− L̃C )(x − x̂) + Gw − L̃v

x̃+ = ALx̃ + Gw − L̃v x̃(0) = x(0)− x0

and AL = A− L̃C is a stable matrix.

Solve the linear system for estimate error

x̃(k) = Ak
L(x(0)− x0) +

k−1∑
j=0

Ak−j−1
L (Gw(j)− Lv(j))
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Bound on estimate error—Linear case

Since AL is stable, there exist c > 0, λ < 1∣∣∣Ak
L

∣∣∣ ≤ cλk for all k ≥ 0

Take norm of estimate error solution

|x̃(k)| ≤ cλk |x(0)− x0|+ c
k−1∑
j=0

(|G | |w(j)|+ |L| |v(j)|)λk−j−1

Taking the largest disturbance terms outside and performing the sum
then gives

|x̃(k)| ≤ cλk |x(0)− x0|+
c

1− λ

[
|G | ∥w∥0:k−1 + |L| ∥v∥0:k−1

]
using the sup norm over the sequence, ∥w∥0:k−1 := maxj∈0:k−1 |w(j)|

|x̃(k)| ≤ cλk |x(0)− x0|+ cw ∥w∥0:k−1 + cv ∥v∥0:k−1
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What happens in the nonlinear theory?

Linear model → nonlinear model, x+ = f (x ,w) y = h(x) + v

Detectable (A,C ) → i-IOSS (Sontag and Wang, 1997)

Stabilizable (A,G ) → incremental stabilizability

w ′Q−1w + v ′R−1v → ℓ(w , v)

Q,R > 0 → stage cost: ℓ(w , v) underbounded by K -function

Establishing the linear system’s bound on estimate error →
Establishing the RGAS property for the nonlinear system

Freiburg–2022 NMHE 20 / 52



Robust global asymptotic stability

Definition 1 (Robustly globally asymptotically stable estimation)

The estimate is based on the noisy measurement y = h(x(x0,w)) + v .
The estimate is RGAS if there exist functions α(·) ∈ KL and δw (·) ∈ K
such that for all x0 and x0, and bounded (w , v), the following holds for all
k ∈ I≥0

|x(k ; x0,w)− x(k ; x̂(0|k), ŵk)| ≤ α(|x0 − x0| , k)+δw (∥(w , v)∥0:k−1)

Compare the linear system result

|x̃(k)| ≤ cλk |x(0)− x0|+ cw ∥w∥0:k−1 + cv ∥v∥0:k−1
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Recall the on-line optimization problem

The full information objective function is

VT (χ(0),ω) = ℓx
(
χ(0)− x0

)
+

T−1∑
i=0

ℓi (ω(i), ν(i)) (4)

subject to
χ+ = f (χ, ω) y = h(χ) + ν

The full information estimator is then defined as the solution to

min
χ(0),ω

VT (χ(0),ω) (5)
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What class of nonlinear models?

Assumption 2 (Continuity)

The functions f (·), h(·), ℓx(·), and ℓ(·) are continuous, ℓx(0) = 0, and
ℓ(0, 0) = 0. The sets X and W are closed.
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Detectability of nonlinear systems and i-IOSS

What class of systems have a stable state estimator?

Assume system observability?
Too restrictive for even linear systems (recall the definition of
detectability).

We need a similar detectability definition for nonlinear systems –
i-IOSS:

Definition 3 (i-IOSS)

The system x+ = f (x ,w), y = h(x) is incrementally input/output-to-state
stable (i-IOSS) if there exists some β(·) ∈ KL and γ1(·), γ2(·) ∈ K such
that for every two initial states z1 and z2, and any two disturbance
sequences w1 and w2

|x(k ; z1,w1)− x(k; z2,w2)| ≤ β(|z1 − z2| , k)+
γ1
(
∥w1 − w2∥0:k−1

)
+ γ2

(
∥h(x1)− h(x2)∥0:k

)
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Stabilizability of nonlinear systems

Definition 4 (Incremental Stabilizability with respect to stage cost
L(·))
A nonlinear system x+ = f (x , u) is said to be incrementally stabilizable
with respect to stage cost L(·) if there exists K-function α such that for
every two initial conditions x1, x2 ∈ X and control sequence w1 ∈ W∞,
another control sequence w2 ∈ W∞ exists such that

∞∑
k=0

L(x1(k), x2(k),w1(k),w2(k)) ≤ α(|x1 − x2|)
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System stabilizability and detectability

Assumption 5 (Stabilizability)

The system (1) is stabilizable with respect to the stage cost
L(x1, x2,w1,w2) := ℓ(w2 − w1, h(x1)− h(x2)).

Assumption 6 (Detectability)

The system (1) is i-IOSS.
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What stage and initial cost?

Assumption 7 (Positive-definite stage cost)

The stage cost ℓ(·) satisfies

σw (|ω|) + σv (|ν|) ≤ ℓ(ω, ν) ≤ σw (|ω|) + σv (|ν|)

for all ω ∈ W, ν ∈ V for some K∞-functions σw and σv .
a

Furthermore, we have that

σx(|χ− x0|) ≤ ℓx(χ− x0) ≤ σx(|χ− x0|)

for all χ, x0 ∈ X for some K∞-functions σx and σx .

aNote: the lower bounding K∞-functions σw and σv come from the i-IOSS Lyapunov
function implied by assuming i-IOSS.
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Stability

Zero error system

First consider the zero estimate error solution for all k ≥ 0 (initial state is
equal to the estimator’s prior and zero disturbances). In this case, the
optimal solution is:

x̂(0|T ) = x0

ŵ(i |T ) = 0 for all 0 ≤ i ≤ T ,T ≥ 1

h(x̂(i |T )) = y(i) for all 0 ≤ i ≤ T ,T ≥ 1

The perturbation to this solution are: the system’s initial state (distance
from x0), and the process and measurement disturbances.
We next define stability properties so that:

asymptotic stability considers the case x0 ̸= x0 with zero disturbances.

robust stability considers the case in which (w(i), v(i)) ̸= 0.
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Nominal estimator stability—zero disturbances

Theorem 8 (Stability of full information estimation)

Let Assumptions 2, 7, 5, and 6 hold. Then full information estimation is
GAS.

In other words

|x(k ; x0, 0)− x(k ; x̂(0|k), ŵk)| ≤ α(|x0 − x0| , k)

for all x0, x0 ∈ X and k ≥ 0. Note: (w , v) = 0.
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Effect of disturbances on stability of FIE

We adjust the assumption on the stage cost and stabilizability assumption
to account for the nonzero (w , v) (Rawlings, Mayne, and Diehl, 2020, p.
284). We then have the following result

Theorem 9 (Robust stability of full information estimation)

1 Let Assumptions 2, 6, and modified stage cost and incremental
stabilizability assumptions hold. Then full information estimation is
RGAS.

2 Let Assumptions 2 and exponential versions of stage cost,
stabilizability, and detectability assumptions hold. Then full
information estimation is RGES.

The proof for RGES is given in (Allan and Rawlings, 2021, Theorem 3.16).
The considerably more involved proof for RGAS is given in (Allan, 2020,
Theorem 5.18).
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From full information to MHE

The full information problem becomes intractable as time T increases.

So we use a moving horizon approximation with horizon N to bound
the computation.

TT − N0

x(T )

moving horizon

full information

x(T − N)

y(T )y(T − N)
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MHE problem statement

In MHE we consider only the N most recent measurements,
yN(T ) = (y(T − N), y(T − N + 1), . . . y(T − 1)).

For T > N, the MHE problem is defined to be:

min
χ(T−N),ω

V̂T (χ(T −N),ω) = ΓT−N(χ(T −N))+
T−1∑

i=T−N

ℓi (ω(i), ν(i))

(6)
subject to:

χ+ = f (χ, ω)

y = h(χ) + ν

ω = (ω(T − N), . . . , ω(T − 1))
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Prior Information

The designer chooses the prior weighting Γk(·) for k > N until the
data horizon is full.

For times T ≤ N, we generally define the MHE problem to be the
full information problem.

Zero Prior Weighting

When we choose Γi (·) = 0 for all i ≥ N:

V̂T (χ(T − N),ω) =
T−1∑

i=T−N

ℓi (w(i), v(i))

Because it discounts the past data completely, this form of MHE
must be able to asymptotically reconstruct the state using only the
most recent N measurements.
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Nonzero Prior Weighting

There are two drawbacks to zero prior weighting:

The system has to be assumed observable rather than detectable to
ensure existence of the solution to the MHE problem.

A large horizon N may be required to obtain performance comparable
to full information estimation.

We address these disadvantages by using nonzero prior weighting:

min
χ(T−N),ω

V̂T (χ(T − N),ω) = ΓT−N(χ(T − N)) +
T−1∑

i=T−N

ℓi (ω(i), ν(i))
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Full information arrival cost

Definition 10 (Full information arrival cost)

The full information arrival cost is defined as

ZT (p) = min
χ(0),ω

VT (χ(0),ω) (7)

subject to

χ+ = f (χ, ω) y = h(χ) + ν χ(T ;χ(0),ω) = p

Here forward DP is used to decompose the full information problem
exactly into the MHE problem (6) in which Γ(·) is chosen as arrival cost.

Lemma 11 (MHE and full information estimation)

The MHE problem (6) is equivalent to the full information problem (5) for
the choice Γk(·) = Zk(·) for all k > N and N ≥ 1.
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Prior weighting

Assumption 12 (MHE Prior weighting bounds)

We assume that Γk(·) is continuous and satisfies the following upper and
lower bounds uniformly in k for all χ, x̂(k |k) ∈ X

cΓ |p − x̂(k|k)|σ ≤ Γk(p) ≤ cΓ |p − x̂(k |k)|σ (8)

in which σ ≥ 1
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Prior weighting—Sufficient condition for stability

p
x̂(k)

Γk(p)

Zk(p)

Zero weighting (RGAS)V̂ 0
k

MHE (RGAS)

Full information (RGAS)
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Robust stability of MHE—Recent results

Theorem 13 (MHE is RGES)

Let Assumptions 2 and exponential versions of stage cost, stabilizability,
and detectability assumptions hold. Let Assumption 12 on the prior
weighting hold.
Then there exists a horizon length N such that MHE is RGES for all
N ≥ N.

See (Allan and Rawlings, 2021, Theorem 4.2) for precise statement and
proof of this result.

Some open questions

Is MHE RGAS if the system is asymptotically (rather than
exponentially) i-IOSS?

What are the best methods to update the MHE initial penalty, Γk(·)
to obtain an accurate estimator with a small horizon N for
computational efficiency?
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State estimation — Why use optimization?

The statistical viewpoint
System model

x+ = f (x ,w) y = h(x) + v

Disturbances, w and v , initial state, x(0), modeled as random
variables. The central limit theorem justifies using (zero mean)
normal distributions for w , v . Obtaining variances part of the
modeling/identification problem!

We observe y(k) := y(0), y(1), . . . , y(T ) and wish to estimate x(k).

Statistically optimal estimate; maximize conditional density

max
x(k)

p(x(k) | y(k))

Computing p usually intractable for nonlinear models
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State estimation — Why use optimization?

The engineering viewpoint
Reduce goal from statistical optimality to practical real time
algorithm.

Choose a merit function

VT (x(0),w) = ℓx
(
x(0)− x0

)
+

T−1∑
i=0

ℓi (w(i), v(i))

subject to model

x+ = f (x ,w) y = h(x) + v

Full information estimator is

min
x(0),w

VT (x(0),w)

Can easily add knowledge (constraints) on w , v , x to the formulation.
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Given all this extra generality, what do we lose?

Lose the analytical, recursive solution.
Least squares problem → nonconvex optimization problem

Lose the strict equivalence between the the full information problem
and its moving horizon approximation.
But expect similar behavior for large horizon, N

Because of this online computational complexity, the big divide in
state estimation is between linear and nonlinear models
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Current status of nonlinear etiimation

The theory perspective
▶ We have reasonable theory for full information estimation.
▶ By extension, we can expect reasonable theoretical properties for MHE.
▶ The “theory” for EKF remains: if the system is (almost) linear, the

EKF works. But the practice is more encouraging.

The practice perspective
▶ Try the EKF! It usually (sometimes, never) works!
▶ If that fails, try MHE, it usually (always, sometimes) works!

But it’s a slog to compute.
▶ If that fails, try full information, it always (usually, sometimes) works!

Good luck managing the computation.
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Another computational example

Predator-Prey Model

Let x1 = number of untagged prey, x2 be number of tagged prey, and x3
number of predator.

dx1
dt

= −ax3x1 + b(x1 + x2)− ux1

dx2
dt

= −ax3x2 + ux1 y = x1/x2

dx3
dt

= cx3(x1 + x2)− dx3

Parameters: predation rate a, prey reproduction rate b, predator
reproduction rate c , and predator death rate d . The control u is the rate
at which prey are tagged.
We measure the fraction of tagged prey that are observed, i.e., not total
number.
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MHE Example Results
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Figure 6: Example results for MHE on predator-prey dynamics.
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EKF Example Results
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Figure 7: Example results for EKF on predator-prey dynamics.
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Recommended exercises

Observability, detectability, i-IOSS. Exercises 4.1, 4.2, 4.3, 4.4, 4.5,
4.8, 4.9, 4.11, 4.14.1

Estimator convergence. Exercises 4.18, 4.19.1

1Rawlings, Mayne, and Diehl (2020, Chapter 4). Downloadable from
engineering.ucsb.edu/~jbraw/mpc.
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Further reading I

D. A. Allan. A Lyapunov-like Function for Analysis of Model Predictive Control and
Moving Horizon Estimation. PhD thesis, University of Wisconsin–Madison, August
2020. URL
https://engineering.ucsb.edu/~jbraw/jbrweb-archives/theses/allan.pdf.

D. A. Allan and J. B. Rawlings. Robust stability of full information estimation. SIAM J.
Cont. Opt., 59(5):3472–3497, 2021.

J. B. Rawlings, D. Q. Mayne, and M. M. Diehl. Model Predictive Control: Theory,
Design, and Computation. Nob Hill Publishing, Santa Barbara, CA, 2nd, paperback
edition, 2020. 770 pages, ISBN 978-0-9759377-5-4.

E. D. Sontag and Y. Wang. Output-to-state stability and detectability of nonlinear
systems. Sys. Cont. Let., 29:279–290, 1997.
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Simulation exercise: Hot air balloon autopilot using
NMHE/NMPC

Example 14

We consider the problem of de-
signing an auto-pilot for a hot-air
balloon. For this problem the MVs
are fuel valve position f (%) and
top vent position p(%). The CVs
are altitude h(m), vertical velocity
v(m/s), and the temperature of
the air inside the balloon T (◦C ).
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Hot air balloon model

Here we use a first-principles hot-air balloon model based on a vertical
force balance, a standard model of the atmosphere, and an energy balance
on the balloon. This model is used to simulate the process and is also used
directly by the NMHE and NMPC algorithms.

mb
d2h

dt2
= (ρs − ρ)Vg −mbg − kd

(
dh

dt

) ∣∣∣∣dhdt
∣∣∣∣

ρ =
MP

RT
;Ts = T0 − ah;

ρs
ρ0

=

(
Ts

T0

)γ−1

;
Ps

P0
=

(
Ts

T0

)γ

ρVCp
dT

dt
= −UA(T − Ts) + ϵ∆Hc f − Cp(T − Ts)kvp
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Hot air balloon exercise - Closed-loop flight

Now we’ll fly the balloon with a NMHE/NMPC autopilot.

1 Start up Octave and run mpcsim setup.m

2 Run hab mpcsim.m

3 Toggle the Controller switch to ON and press the Play button.

4 On the CV menu set the h setpoint to 2000m.

5 Let the simulation run until the altitude stabilizes at the new setpoint.
Note that the autopilot adjusts the fuel valve and the vent valve
simultaneously to achieve the desired altitude setpoint. And note
again that the the fuel valve oscillates to take out the oscillation in h.

6 Increase the h setpoint to 4000m. Note that the fuel required for this
second increment of 2000m in altitude is significantly more than the
fuel required for the first increment. Likewise, the increase in balloon
temperature is significantly higher when going from 2000m to 4000m
than it was when going from the ground to 4000m.
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Hot air balloon exercise - Closed-loop, cont.

1 Increase the h setpoint to 6000m. The autopilot is unable to reach
the new altitude setpoint because the balloon temperature has
reached it’s maximum limit of 120 degC. Note that this limit is now
respected both dynamically and at steady-state. This is one of the
main advantages of using NMHE/NMPC for the autopilot.

2 On the CV menu, set the minimum limit of v to -5m/s. Now try
landing the balloon by entering a h setpoint of 0m. Note that the
autopilot closes the fuel valve f gradually to maintain a constant
descent of -5m/s, followed by a gentle landing.

3 Now try a flight on your own. Happy landings!
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Hot air balloon exercise - Closed-loop, discrete fuel

Now we will try the NMHE/NMPC autopilot with a discrete fuel valve.

1 Start up a fresh copy of the mpcsim hot air balloon simulation

2 On the Options menu, select Fuel increment and enter a value of 1.
This tells the autopilot that the valve can only be fully open or closed.

3 Toggle the Controller switch to ON and press the Play button.

4 As we did before, enter a h setpoint of 2000m.

5 Let the simulation run until the altitude stabilizes at the new
setpoint. Note the discrete nature of the f signal.

6 Continue the flight on your own.
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