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Optimizing process economics
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Model predictive control

Measurement

MH Estimate

MPC control

Forecast

t time

Reconcile the past Forecast the future

sensors
y

actuators
u

min
u(t)

∫ T

0
|ysp − g(x , u)|2Q + |usp − u|2R dt

ẋ = f (x , u)

x(0) = x0 (given)

y = g(x , u)
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Optimizing economics: current industrial practice

Validation

Planning and Scheduling

Reconciliation

Model UpdateOptimization
Steady State

Plant

Controller

1 Two layer structure
▶ Steady-state layer

⋆ RTO optimizes steady
state model

⋆ Optimal setpoints passed
to dynamic layer

▶ Dynamic layer
⋆ Controller tracks the

setpoints
⋆ Linear MPC
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Optimizing economics: current industrial practice

Validation

Planning and Scheduling

Reconciliation

Model UpdateOptimization
Steady State

Plant

Controller

1 Two layer structure
2 Drawbacks

▶ Inconsistent models
▶ Re-identify linear model as

setpoint changes
▶ Time scale separation may not

hold
▶ Economics unavailable in

dynamic layer
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Steady-state optimization problem definition

Stage cost: ℓ(x , u)

Optimization:

(xs , us) = argmin
x ,u

ℓ(x , u)

subject to: x = f (x , u), (x , u) ∈ Z

Freiburg–2022 Economic MPC 7 / 64



Tracking MPC problem definition

Stage cost:

ℓt(x , u) = |x − xs |2Q + |u − us |2R +
∣∣u − u−

∣∣2
S

Optimization:

min
u

VN(x ,u) =
N−1∑
k=0

ℓt(x(k), u(k))

subject to


x+ = f (x , u)
(x(k), u(k)) ∈ Z k ∈ I0:N−1

x(N) = xs x(0) = x

Control law: u = κN(x)

Admissible set: XN
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Closed-loop stability of tracking MPC

Assumption: Model, cost and admissible set

1 The model f (·) and stage cost ℓ(·) are continuous. The admissible set
XN contains xs in its interior.

2 There exists a set Xf containing xs in its interior and K∞-function
γ(·) such that V 0

N(x) ≤ γ(|x − xs |) for x ∈ Xf .

Theorem: Stability of tracking MPC with terminal constraint

The steady-state target (xs , us) is an asymptotically stable equilibrium
point of the closed-loop system

x+ = f (x , κN(x))

with region of attraction XN .
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What closed-loop behavior is desirable? Fast tracking

xsp

xsx

k

x(0)

x(0)
Q ≫ R (fast tracking)

Freiburg–2022 Economic MPC 10 / 64



What closed-loop behavior is desirable? Slow tracking

xsp

xsx

k

x(0)
Q ≪ R (slow tracking)

x(0)
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What closed-loop behavior is desirable? Asymmetric
tracking

xsp

xsx

k

x(0)
Q ≫ R (fast tracking)

x(0)

This desirable (profitable) asymmetric behavior is not a standard tracking
problem
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Economic MPC: motivating the idea
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Figure 1: Cost function and steady-state slice.
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Economic MPC definition (with terminal constraint)

Economic stage cost: ℓ(x , u)

Optimization:

min
u

VN,e(x ,u) =
N−1∑
k=0

ℓ(x(k), u(k))

subject to


x+ = f (x , u) x(0) = x
(x(k), u(k)) ∈ Z k ∈ [0 : N − 1]
x(N) = xs

(1)

Control law: u = κN,e(x)

Admissible set: XN,e
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Linear example

x+ = Ax + Bu

A =

[
0.857 0.884

−0.0147 −0.0151

]
B =

[
8.565

0.88418

]
Input constraint: −1 ≤ u ≤ 1

ℓ(x , u) = α′x + β′u

α =
[
−3 −2

]′
β = −2

ℓt(x , u) = |x − xs |2Q + |u − us |2R
Q = 2I2 R = 2

xs =
[
60 0

]′
us = 1
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Cost contours and phase portrait
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Figure 2: Cost contours and phase portrait for economic MPC (blue) vs. tracking MPC
(red). Darker shading shows lower cost.
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States and inputs versus time
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Figure 3: Economic MPC versus tracking MPC for a linear system.
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Economic MPC Assumptions

Assumption 1 (Continuity of system and cost)

The functions f : Z → Rn and ℓ : Z → R≥0 are continuous. Vf (·) = 0.
There exists at least one point (xs , us) ∈ Z satisfying xs = f (xs , us).

Assumption 2 (Properties of constraint sets)

The set Z is closed. If there are control constraints, the set U(x) is
compact and is uniformly bounded in X.
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The economic stage cost

Thebiggest change is that we do not assume here that the stage cost
ℓ(x , u) is positive definite with respect to the optimal steady state, only
that it is lower bounded.

Assumption 3 (Cost lower bound)

1 The terminal set is a single point, Xf = {xs}.
2 The stage cost ℓ(x , u) is lower bounded for (x , u) ∈ Z.

For clarity in this discussion, we do not assume that (xs , us) has been
shifted to the origin.
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Asymptotic Average Performance

We already have enough structure in this simple problem to establish that
the average cost of economic MPC is better, i.e., not worse, than any
steady-state performance ℓ(xs , us).

Proposition 4 (Asymptotic average performance)

Let Assumptions 1, 2, and 3 hold. Then for every x ∈ XN , the following
holds

lim sup
t→∞

t−1∑
k=0

ℓ(x(k), u(k))

t
≤ ℓ(xs , us)

in which x(k) is the closed-loop solution to x+ = f (x , κN(x)) with initial
condition x .
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Why does this hold?

Proof.

Because of the terminal constraint, we have that

V 0
N

(
f (x , κN(x))

)
≤ V 0

N(x)− ℓ(x , κN(x)) + ℓ(xs , us) (2)

Performing a sum on this inequality gives (first telescoping sum)

t=1∑
k=0

ℓ(x(k), u(k))

t
≤ ℓ(xs , us) + (1/t)(V 0

N(x(0))− V 0
N(x(t)))

The left-hand side may not have a limit (why not?), so we take lim sup of
both sides.
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Why does this hold?

Proof (cont.).

Note that from Assumption 3.2, ℓ(x , u) is lower bounded for (x , u) ∈ Z,
hence so is VN(x , u) for (x , u) ∈ Z, and V 0

N(x) for x ∈ XN .
Denote this bound by M, so V 0

N(x) ≥ M. Then

lim
t→∞

(1/t)V 0
N(x(t)) ≥ lim

t→∞
M/t = 0

and we have that

lim sup
t→∞

t=1∑
k=0

ℓ(x(k), u(k))

t
≤ ℓ(xs , us)
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Comments

This result does not imply that the economic MPC controller
stabilizes the steady state (xs , us), only that the average closed-loop
performance is better than the best steady-state performance.

There are many examples of nonlinear systems for which the
time-average of an oscillation is better than the steady state.

For such systems, we would expect an optimizing controller to
destabilize even a stable steady state to obtain the performance
improvement offered by cycling the system.

Note also that the appearance in (2) of the term
−ℓ(x , κN(x)) + ℓ(xs , us), which is sign indeterminate, destroys the
cost decrease property of V 0

N(·) so it no longer can serve as a
Lyapunov function in a closed-loop stability argument.

We next examine the stability question.
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Asymptotic stability and EMPC

Steady operation often desired by practitioners
▶ Equipment not designed for strongly unsteady operation
▶ Operator acceptance issue for unsteady operation

Stability analysis
▶ Check that stability is consistent with the process model and control

objectives
▶ Or modify the control objectives (stage cost) given the process model
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Stabilizing assumption for EMPC

Storage: λ(x)

System: x+ = f (x , u)

Supply rate: s(x , u) Dissipation

Assumption: Dissipativity

The system x+ = f (x , u) is dissipative with respect to the supply rate
s : Z → R if there exists a function λ : X → R such that:

λ(f (x , u))− λ(x) ≤ s(x , u)

for all (x , u) ∈ Z. If ρ : X → R≥0 positive definite exists such that:

λ(f (x , u))− λ(x) ≤ −ρ(x) + s(x , u)

then the system is said to be strictly dissipative.
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Stability theorem for EMPC

Theorem: Stability of EMPC Angeli, Amrit, and Rawlings (2012)

If the system
x+ = f (x , u) (x , u) ∈ Z

is strictly dissipative with respect to the supply rate

s(x , u) = ℓ(x , u)− ℓ(xs , us)

then xs is an asymptotically stable equilibrium point of the closed-loop
system with region of attraction XN,e .

Nominal average asymptotic performance not worse than steady
operation is always implied by stability
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Sketch of proof

Lyapunov-based proof, with rotated stage cost (Diehl, Amrit, and
Rawlings, 2011):

ℓ̃(x , u) := ℓ(x , u)− ℓ(xs , us) + λ(x)− λ(f (x , u))

Consider the rotated cost function

ṼN(x ,u) =
N−1∑
k=0

ℓ̃(x(k), u(k))

=
N−1∑
k=0

ℓ(x(k), u(k))− ℓ(xs , us)︸ ︷︷ ︸
VN(x ,u)−Nℓ(xs ,us)

+
N−1∑
k=0

λ(x(k))− λ(x(k + 1))︸ ︷︷ ︸
telescoping sum
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Optimal cost

(Second) telescoping sum

N−1∑
k=0

λ(x(k))− λ(x(k + 1)) =

[
λ(x(0))−λ(x(1))

]
+

[
λ(x(1))−λ(x(2))

]
+
[
· · ·

]
+
[
λ(x(N − 1))−λ(x(N))

]
= λ(x(0))− λ(x(N))

ṼN(x ,u) = VN(x ,u)−Nℓ(xs , us) + λ(x(0))− λ(xs)︸ ︷︷ ︸
does not depend on u

Optimal control is unaffected by cost rotation!

argmin
u

ṼN(x ,u) = argmin
u

VN(x ,u)
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Sketch of proof (cont.)

Under dissipativity assumption rotated cost fulfills standard MPC
conditions (positive semi-definite):

ℓ̃(x , u) := ℓ(x , u)− ℓ(xs , us) + λ(x)− λ(f (x , u))

= s(x , u) + λ(x)− λ(f (x , u))

≥ 0

In addition, under strict dissipativity, the rotated cost is positive
definite:

ℓ̃(x , u) ≥ ρ(x)

Rotated optimal cost can be used as a candidate Lyapunov function

Ṽ 0
N(x) := min

u

N−1∑
k=0

ℓ̃(x(k), u(k))

subject to initial, terminal and dynamic model constraints.
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Check cost decrease

Consider optimal solution at state x with cost Ṽ 0
N(x) and first stage

cost ℓ̃(x , κN,e(x)).

Define the candidate control sequence for successor state x+

ũ = (u(1; x), u(2; x), . . . , u(N − 1; x), us)

This candidate is feasible since it satisfies the terminal constraint
f (xs , us) = xs .

Therefore

ṼN(x
+, ũ) = Ṽ 0

N(x)− ℓ̃(x , κN,e(x)) + ℓ̃(xs , us)

Note that by construction ℓ̃(xs , us) = 0, and optimize to obtain

Ṽ 0
N(x

+) ≤ Ṽ 0
N(x)− ℓ̃(x , κN,e(x))

≤ Ṽ 0
N(x)− ρ(x)

establishing the cost decrease for the rotated cost function.
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Exercise: CSTR

Consider an isothermal CSTR with A → B first order (rate r = kcA). The
continuous-time model is (Diehl et al., 2011):

dcA
dt

=
Q

V
(cAf − cA)− kcA

dcB
dt

=
Q

V
(cBf − cB) + kcA

We define two stage costs:

ℓecon(cA, cB ,Q) = −(2QcB − 0.5Q)

ℓregularized(cA, cB ,Q) = −(2QcB − 0.5Q) + |cA − 0.5|2QA

+ |cB − 0.5|2QB
+ |Q − 12|2R

ℓregularized is strongly-dual, while ℓnormal is not.
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Duality Check

We can check strong duality by looking at contours of the Lagrangian for
the steady-state problem.

11.0 11.5 12.0 12.5 13.0
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Figure 4: Slice of regularized objective is consistent with strong duality, while slice of
normal objective shows lack of strong duality.
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Continuous vs. Discrete Objective

Economic cost function:

ℓecon(x , u) = −(2QcB − 0.5Q)

Discrete objective (not strongly dual):

Vdiscrete =
N−1∑
k=0

ℓecon(xk , uk)

Continuous objective (strongly dual):

Vcontinuous =

∫ N∆

0
ℓecon(x(t), u(t)) dt

=
n−1∑
k=0

(∫ ∆

0
ℓecon(ϕ(t; xk , uk), uk) dt

)
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Regularized Objective

With the regularized objective, rotated cost is a Lyapunov function.
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Figure 5: Closed-loop trajectories using regularized (strongly dual) objective.
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Economic Objective

Without regularization, system is still asymptotically stable, but rotated
cost is not a Lyapunov function.

0.2 0.4 0.6 0.8
cA (mol/L)

0.2

0.4

0.6

0.8

1.0

c B
(m

ol
/L

)

0 1 2 3 4

80

85

90

95

E
co

no
m

ic
C

os
t

Economic Objective

0 1 2 3 4
Time

89.25

89.50

89.75

90.00

R
ot

at
ed

C
os

t

Figure 6: Closed-loop trajectories using normal economic (not strongly dual) objective.
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Outperforming the best steady operation

Terminal constraint instrumental in:
1 guaranteeing recursive feasibility
2 providing bound to asymptotic performance

Any feasible trajectory may be used as a terminal constraint

Idea:

Replace best equilibrium by best feasible periodic solution with chosen
period
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EMPC with periodic constraint

Let the sequences (xp,up) denote a given q-periodic solution to a periodic
nonlinear system

xp(i + 1) = f (xp(i), up(i), i)

xp(i + q) = xp(i), up(i + q) = up(i)

In this problem, we assume a periodic solution is available, but
change the controller’s goal from stabilization of the periodic solution
(tracking) to optimization of economic performance.

The periodic solution then serves as a useful end constraint for the
economic optimization problem.

The stage cost ℓ(x , u) is free to be chosen as an economic profit
function and has no connection to distance from (xp, up) as in the
tracking case.
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Setup for economic MPC with periodic constraint

xp(i + 1)

xp(i)

(x , t)

XN(i)

xp(i + q − 1)

xp(i + N)

Figure 7: The periodic solution xp(i) as end constraint for economic MPC problem for a
system with initial condition (x , t), i = t mod q, and N = 2.
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Average performance with periodic end constraint

Let V 0
N(x , t) be the optimal cost to go

(note: time-varying Lyapunov function now)

V 0
N(x , t) = min

u

N−1∑
k=0

ℓ(x(k), u(k))

subject to:

x+ = f (x , u), x(0) = x , x(N) = xs(t mod q)

(x(k), u(k)) ∈ Z, k ∈ {0, 1, . . . ,N − 1}

Along closed-loop solution

V 0
N(x(t + 1), t + 1) ≤ V 0

N(x(t), t)

− ℓ(x(t), u(t)) + ℓ(xs(t mod q), us(t mod q))

Freiburg–2022 Economic MPC 39 / 64



Average performance with periodic end constraint

Taking sums between 0 and T − 1 (third telescoping sum) and
dividing by T yields:

lim sup
T→+∞

∑T−1
k=0 ℓ(x(k), u(k))

T
≤

∑q−1
k=0 ℓ(xs(k), us(k))

q

Average performance at least as good as optimal q-periodic solution

q and N may be different from each other and unrelated

The closed-loop system need not be asymptotically stable to the
optimal q-periodic solution

The optimal q-periodic solution need not be an equilibrium of the
closed-loop system
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Example: Simplified Building Cooling

Zone, T

Ambientqamb Tamb

Chiller 1

Chiller 2
qch − qtank Tank, s

dT

dt
= −k(T − Tamb) + qamb

+ qch − qtank

ds

dt
= −σs + qtank

vqmin ≤ q ≤ vqmax

qtank ≤ qch, v ∈ {0, 1, 2}

x := (T , s)

u := (qch, qtank, v)

d := (Tamb, qamb)

Temperature must be maintained within preset bounds.

Each chiller can be on or off.

When on, chillers have minimum and maximum capacity.
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Parameters

Stage Costs

ℓecon(x , u, t) := ρ(t)q(t)

ℓtrack(x , u, t) := |x(t)− xp(t)|2Q
+ |u(t)− up(t)|2R

Horizon N = 24

Periodic ρ, Tamb, qamb

Weights Q = R = I

0 6 12 18 24
0

5
ρ

0 6 12 18 24
0

2

Tamb

0 6 12 18 24
Time

0

2

qamb

Figure 8: Parameters for building cooling
example
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Optimal Periodic Solution

0 6 12 18 24

−2
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Economic Cost: 127.79
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4

qch

0 6 12 18 24
Time

0

5s

Figure 9: Periodic solution for building cooling that can serve
as end constraint

Precooling
reduces cooling
during peak price
hours.

“Bounds” on q
are determined
by the (integral)
value of v .
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Tracking MPC

0 6 12 18 24

−2

0

2

T

Economic Cost: 167.43

0 6 12 18 24

0

2

4

qch

0 6 12 18 24
Time

0

5s

Figure 10: Closed-loop tracking MPC using optimal periodic
solution

Initial condition
T (0) = 2,
s(0) = 0.

Stage cost
penalizes changes
in T , s, qch,
qtank, and v .
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Economic MPC
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0 6 12 18 24

0

2

4

qch

0 6 12 18 24
Time

0

5s

Figure 11: Closed-loop economic MPC with optimal periodic
solution as the terminal constraint

Controller
aggressively
pursues lower
cost

Deviation in u is
not penalized
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Moving the needle on total national energy use—Buildings

In 2009, energy use in buildings accounted for 41% of total primary
energy consumption and 18% of carbon emissions in the US.

Commercial buildings consumed 19× 1018 J of primary energy in
2009, accounting for roughly $200 billion a year in primary energy
expenditures.

Large, complex control problem usually decomposed into water side
(chilling) and air side (temperature control) subproblems. Discrete
decisions (chillers on/off) are critical in this application.

Bob Turney of Johnson Controls convinced me to take a look at this
problem. “If MPC can control chemical plants, why not buildings. . . ”

We’re combining discrete actuators with economic MPC for this class
of applications.

First large-scale implementation: Stanford Energy System Innovations
(SESI) project (completed 2015).

Freiburg–2022 Economic MPC 46 / 64



The $485-million Stanford Energy System Innovations (SESI) project;
replaced an aging 50-MW natural-gas-fired cogeneration plant with a new
heat-recovery system to provide heating and cooling to the campus.
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A new 80-megavolt-ampere electrical substation brings electricity from the
grid. Crews also converted 155 campus buildings from steam to hot-water
distribution and installed a 22-mile-long network of new pipe.
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The star of the show: three heat-recovery chillers—the largest in the
U.S.—that strip waste heat from 155 campus buildings.
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Johnson Controls developed the Central Energy Plant Optimization Model
(CEPOM); the algorithm optimizes a 10-day forecast every 15 minutes,
considering campus loads, weather patterns, price of electricity, available
equipment and many other factors.
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Large-scale commercial application

Building 7Building 5Building 3

AHU 1

AHU 4

AHU 2

AHU 3

AHU 5

Building 1

Zones

Building 2 Building 4 Building 6

Chillers

Boilers

Heat Recovery

Chillers

Thermal Energy

Storage Tanks

Cooling

Towers

WatersideAirside
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Control Decomposition

High Level

Low-Level
Waterside

Airside
Subsystem

1

Airside
Subsystem

n

Airside
Subsystem

2

Waterside
PID

Airside
PID 1

Airside
PID 2

Airside
PID n

· · ·

· · ·

Disturbance Forecasts,
Electricity Pricing

Low-Level
Airside

Disturbance
Estimate

Cooling
Load

Aggregate
System Curve

Demand
Profile

Measurements
Temperature

Setpoints
Measurements

Equipment
Setpoints
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The disturbance forecast: weather and electricity prices
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High-level problem: Optimal production and average
building temperatures

0 1 2 3 4 5 6 7

−50

0

50

C
o

ol
in

g
L

oa
d

(M
W

)

Demand Production Storage Unmet

0 1 2 3 4 5 6 7

Time (days)

20

21

22

23

A
vg

.
T

em
p

.
(◦

C
)

Freiburg–2022 Economic MPC 54 / 64



Low level airside: Optimal zone temperatures and setpoints
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Low level waterside: Gantt chart for central plant
equipment
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Real-time computational requirements

The optimizations were solved using Gurobi 6.0 via Matlab R2016b
on a machine with 8GB RAM and 2.66GHz Intel Core 2 Quad
Processor Q8400.

The high-level problem took 35 seconds to solve.

The low-level airside subproblems took about 15 seconds each to
solve.

The low-level waterside subproblem was given two minutes of
computation time, after which the incumbent solution (with an
optimality gap of 0.2%) was accepted.

Since control executions occur every 15 minutes, this decomposition
can easily be implemented online.

Solution times can be further decreased by using a horizon shorter
than one week (Risbeck, Maravelias, Rawlings, and Turney, 2016).
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SESI operation summary

In operation since December 2015 (Wenzel, Turney, and Drees, 2016).

The central plant was run in autonomous mode about 90% of the
time (including time off-line for plant maintenance).

Achieved 10% to 15% additional savings in operating costs compared
to control by the best team of trained human operators (Stagner,
2016).

This large-scale implementation demonstrates the significant potential
benefits to applying model-based optimization to large HVAC systems
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Conclusions

The economic objective function of EMPC causes novel behavior
▶ EMPC may be unstable where MPC is stable
▶ Using a terminal penalty or terminal equality constraint guarantees

asymptotic average profit not worse than best steady state
▶ Stability of EMPC requires dissipativity of process/stage cost

Many techniques from MPC can be applied to EMPC
▶ Terminal penalty formulation
▶ Average constraints
▶ Periodic terminal constraints
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Open research issues

Remove terminal constraints and costs by choosing sufficient N. See
Grüne (2012, 2013) for recent results in this direction.

Generalized terminal state constraint. Terminate on the steady-state
manifold and move the end location dynamically to the best steady
state (Fagiano and Teel, 2012; Ferramosca, Limon, Alvarado, Alamo,
and Camacho, 2009)

Analyzing closed-loop performance
▶ What can be proven about net closed-loop performance of tracking

MPC relative to EMPC?
▶ What is observed about differences in net closed-loop performance in

simulations?
▶ What model, stage cost and disturbance characteristics cause large

performance differences between MPC and EMPC?
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Open research issues

Tuning EMPC and robustness
▶ For nondissipative process/stage costs, how should the stage cost be

modified?
▶ How robust is EMPC to model errors and disturbances?
▶ How can economic risk be incorporated into the controller?

Computational methods for implementing EMPC; strategies for
adapting existing control hierarchies
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