Nonlinear Parametric Optimization

Moritz Diehl

Systems Control and Optimization Laboratory Department of Microsystems Engineering and Department of Mathematics University of Freiburg, Germany

ELO-X Short Course July 19, 2022

Original Optimal Control Problem in Continuous Time

$$\min_{\substack{x(\cdot),u(\cdot)}} \int_0^T L(x,u) dt + E(x(T))$$

s.t. $x(0) = \bar{x}_0$
 $\dot{x}(t) = f(x(t), u(t))$
 $0 \ge h(x(t), u(t)), \ t \in [0, T]$
 $0 \ge r(x(T))$

Assume smooth convex L, E, h, r. Nonlinear f makes problem nonconvex. Direct methods discretize, then optimize. E.g. collocation or multiple shooting.

Discretized Optimal Control Problem (an NLP)

$$\min_{z,u} \sum_{k=0}^{N-1} \Phi_L(x_k, z_k, u_k) + E(x_N)$$

s.t. $x_0 = \bar{x}_0$
 $x_{k+1} = \Phi_f^{\text{dif}}(x_k, z_k, u_k)$
 $0 = \Phi_f^{\text{alg}}(x_k, z_k, u_k)$
 $0 \ge \Phi_h(x_k, z_k, u_k), \ k = 0, \dots, N-1$
 $0 \ge r(x_N)$

Again, smooth convex Φ_L, E, Φ_h, r . Variables $x = (x_0, ...)$ and $z = (z_0, ...)$ and $u = (u_0, ..., u_{N-1})$ can be summarized in vector $w \in \mathbb{R}^{n_w}$. Linear dependence on \bar{x}_0 . Newton-type methods generate a sequence $w_0, w_1, w_2, ...$ by linearizing and solving convex subproblems. E.g., sequential convex programming (SCP) linearizes nonconvex constraints.

Summarized pNLP		
$\min_{w \in \mathbb{R}^{n_w}} F(w)$		
s.t.	$0 = G(w, \bar{x}_0)$	
	$0 \ge H(w)$	

Still assume smooth convex F, H. Nonlinear G makes problem nonconvex. SCP subproblem at linearization point w_i $w_{i+1} \in \arg\min_{w \in \mathbb{R}^{n_w}} F(w)$ s.t. $0 = G_L(w, \bar{x}_0; w_i)$ $0 \ge H(w)$

First order Taylor series: $G_L(w, , \bar{x}_0; w_i) := G(w_i, \bar{x}_0) + \frac{\partial G}{\partial w}(w_i)(w - w_i)$

Jacobian of G does not depend on \bar{x}_0 so can be precomputed. SCP based algorithms work well for mildly nonlinear G, also in microsecond NMPC [cf. Zanelli 2021, Lekic 2020, Hausberger 2020]

Real-time iterations (RTI) perform only one SCP iteration per NMPC problem, i.e., change \bar{x}_0 during the SCP iterations.

Regard arbitrary input parameter p instead of \bar{x}_0 and allow arbitrary dependence on p.

Generic pNLP	pNLP after Parameter Embedding
$\min_{w \in \mathbb{R}^{n_w}} F(w, p)$	$\min_{w \in \mathbb{R}^{n_w}, \ p \in \mathbb{R}^{n_p}} F(w, p)$
s.t. $0 = G(w, p)$	s.t. $0 = p - \bar{p}$
$0 \ge H(w, p)$	0 = G(w, p)
	$0 \ge H(w, p)$

Linear dependence on \bar{p} can be achieved by making p an optimization variable, a process called "parameter embedding" ("initial value embedding" for $p = \bar{x}_0$), which eases implementation of parametric pathfollowing methods.