
i
i

“ex7” — 2022/7/1 — 11:51 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Summer Term 2022

Exercise 7: Dynamic Programming

Prof. Dr. Moritz Diehl, Andrea Zanelli, Dimitris Kouzoupis, Florian Messerer, Yizhen Wang

In this exercise, we will use dynamic programming (DP) to implement a controller for the inverted
pendulum from Exercise 6,

θ̇ = ω

ω̇ = sin(θ) + τ,
(1)

where θ is the angle describing the orientation of the pendulum, ω is its angular velocity and τ
is the input torque. The goal is to design a feedback policy capable of swinging up the pendulum
starting from θ = π. Moreover, we will prove the Schur Complement Lemma, which can be used to
derive the formulation for the LQR controller.

1. Dynamic programming: Consider the following optimal control problem,

min
x0,...,xN ,
u0,...,uN−1

N−1∑
i=0

(
xTi Qxi + uTi Rui

)
+ xTNQNxN (2a)

s.t. x0 = x̄0, (2b)

xi+1 = F (xi, ui), i = 0, . . . , N − 1, (2c)

−10 ≤ ui ≤ 10, i = 0, . . . , N − 1, (2d)

where F (x, u) describes the discretized dynamics obtained by applying one step of the explicit
RK4 integrator with step-size h = 0.1 to (1).

(a) Consider the unconstrained linear quadratic infinite horizon problem that is obtained
from (2) by linearizing the dynamics at xlin = (0, 0), ulin = 0, and dropping the control
constraints,

min
x0,x1,...,,
u0,u1,...,

∞∑
i=0

(
xTi Qxi + uTi Rui

)
(3a)

s.t. x0 = x̄0, (3b)

xi+1 = Axi +Bui, i = 0, 1, . . . , (3c)

where A := ∂F (x,u)
∂x

∣∣x=xlin
u=ulin

and B := ∂F (x,u)
∂u

∣∣x=xlin
u=ulin

.

Complete the template LQR design.m / LQR design.py to obtain the LQR gain ma-
trix K, which defines the optimal control at each stage as the time-independent linear
feedback law u∗i (x) = −Kx.

Hint: MATLAB function dlqr /Python function scipy.linalg.solve discrete are

(b) Complete the template dynamic programming.m / dynamic programming.py to imple-
ment the DP algorithm and use it to compute the cost-to-go associated with the initial
state of (2). Choose N = 20, Q = diag(100, 0.01), R = 0.001 and QN equal to the cost
matrix associated with the LQR controller. Discretize the angle θ into 200 values between
−π

2
and 2π. Analogously, discretize the angular velocity into 40 values between -10 and

10 and the torque τ into 20 values between 10 and -10.

Remark: in order to compute the cost-to-go you will have to project the state obtained by
simulating the dynamics forward onto the defined discretization grid. To this end, use in
your code the MATLAB / Python function project provided with this exercise.

1



i
i

“ex7” — 2022/7/1 — 11:51 — page 2 — #2 i
i

i
i

i
i

(c) Consider the plots provided by the previous template, showing the cost of DP and LQR
as well as their control policies. Where is the LQR policy similar to the one obtained
with DP? Where is it different? Why?

(d) Complete the template closed loop.m / closed loop.py to obtain a closed loop simu-
lation of the system, for both LQR and DP. For LQR keep in mind that it was obtained
without considering the control constraints, so you have to clip the controls obtained
from the LQR feedback law to the feasible control interval [−10, 10]. For the DP con-
troller we will always consider the current state of the system as initial state of (2), so
you can choose the control according to the cost-to-go function obtained as result of the
recursion in (b).

Which of the two controllers achieves the better performance? Why?

2. Schur Complement Lemma: Consider the following lemma:

Lemma 1 (Schur Complement Lemma) Let R be a positive-definite matrix. Then, the follo-
wing holds:

min
u

[
x
u

]T [
Q ST

S R

] [
x
u

]
= xT (Q− STR−1S)x (4)

and the minimizer u∗(x) is given by u∗(x) = −R−1Sx.

Prove Lemma 1.

Abbreviate the objective function as f(u). If we compute the vector-matrix-vector product,
we can write it as

f(u) = x>Qx+ 2x>S>u+ u>Ru

with the gradient given by
∇f(u) = 2Sx+ 2Ru.

Since R � 0 (i.e., f(u) is strictly convex in u), the first-order condition ∇f(u∗) = 0 will be
sufficient for optimality of u∗ and u∗ will also be the unique minimizer. From

2Sx+ 2Ru∗ = 0 ⇔ u∗ = −R−1Sx

it therefore follows that u∗ = −R−1Sx is a (the) minimizer of f(u). Evaluating the correspon-
ding objective value we see that

f(u∗) = x>Qx+ 2x>S>(R−1Sx) + (x>S>R−1)R(−R−1Sx)

= x>Qx− 2x>S>R−1Sx+ x>S> −R−1Sx
= x>(Q− S>R−1S)x,

which is identical to the right-hand side of (4), concluding the proof. �

2


