
i
i

“ex5” — 2022/5/19 — 11:13 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimal Control (NOC)
Albert-Ludwigs-Universität Freiburg – Summer Term 2022

Exercise 5: Algorithmic Differentiation

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli, Florian Messerer, Yizhen Wang

The aim of this exercise is to gain experience with the two modes of algorithmic differentiation (AD)
discussed in the class.

1. Forward and backward algorithmic differentiation: Consider the following discrete-time
dynamical system:

xk+1 = xk + h((1− xk)xk + uk), (1)

with state xk ∈ R, input uk ∈ R and h ∈ R+ a constant parameter (you can think of it as
the time step of an explicit Euler integrator). We are interested in simulating the dynamics
forward for N steps, starting from the initial value x0 = x̄0 and computing the derivatives of
the obtained states with respect to the controls:

∂xi

∂uj−1

, ∀i, j = 1, ..., N. (2)

(a) Fix x̄0 = 0.5, N = 50, h = 0.1. Make sure to define them once only, so you can easily
adapt their values later. Using CasADi, implement the function Φ : RN → RN that maps
controls to the obtained state trajectory

x = Φ(u), (3)

where x = (x1, . . . , xN) and u = (u0, . . . , uN−1) denote the vector of stacked states and
controls respectively. Define a CasADi function that outputs the Jacobian of x with
respect to u,

J(u) =
∂Φ(u)

∂u
. (4)

You will use the output of this function as a reference for your implementations in the
rest of the exercise.

(b) Implement a MATLAB/Python function forw AD(u, m, x0, h) that takes as input a
vector containing the values for u and a scalar m and returns the derivative ∂x

∂um
, i.e.,

the m-th column of the Jacobian, evaluated at input u, using forward AD. Check that
the result provided by your implementation is equal to the corresponding entries in the
output obtained with CasADi, e.g., by evaluating both at randomly generated values of u,
u tst = rand(N,1) resp. u tst = np.random.rand(N,1), and comparing the maximum
of their elementwise absolute difference. You should be able to reach machine precision,
i.e., order of magnitude around 10−16.

(c) Analogously, implement a MATLAB/Python function back AD that takes as input u, a
scalar m as well as the parameters. It returns the derivative ∂xm

∂u
, i.e., the m-th row of the

Jacobian, using backward AD. Check that the result provided by your implementation
is equal to the corresponding entry in the output obtained with CasADi.

(d) Implement now a function J FAD that takes as inputs u and a scalar m and, using forward

AD, computes the last m rows of the Jacobian ∂Φ(u)
∂u

containing the derivatives of the
last m states in the simulation with respect to the all the controls. Again, validate your
results against the reference output.

Note: You can just call forw AD several times, but then you unnecessarily repeat some
computations. Can you do better?

1



i
i

“ex5” — 2022/5/19 — 11:13 — page 2 — #2 i
i

i
i

i
i

(e) Analogously, implement a function J BAD that takes as inputs u and a scalar m and

computes the last m rows of the Jacobian ∂Φ(u)
∂u

using your implementation of backward
AD and validate it against the reference.

Again: You can just call back AD several times, but then you would unnecessarily repeat
some computations. Can you do better?

(f) Which of the two implementation do you expect to be more performant for small values
of m? Which one for high values of m? Why?

(g) Run your implementations for m ranging from 1 to N and measure the execution time
using the MATLAB functions tic and toc/Python function timeit.default timer().
For this simulation choose h = 0.01 and N = 500. Plot the obtained execution times as
a function of m. Do the results validate your considerations from the previous question?

Note: You may need to adapt the value of N to obtain a reasonable execution time for
the full script. Overall, you should not wait more than a few seconds. If it takes too long,
lower the value of N .

2


