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Nonsmooth Dynamics (NSD) - a classification

Regard ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g., ẋ = 1 + |x|

NSD2: state dependent switch of RHS, e.g., ẋ = 2− sign(x)

NSD3: state dependent jump, e.g., bouncing ball, v(t+) = −0.9 v(t−)
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Nonsmooth numerical optimal control - overview
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NOSNOC: NOnSmooth Numerical Optimal Control
Open-source package based on MATLAB, CasADi and IPOPT

Key features

1. automatic reformulation of systems with state jumps into switched systems via the
time-freezing reformulation

2. automatic discretization of the OCP via FESD (high accuracy)

3. solution methods for the resulting discrete-time OCP via continuous optimization in a
homotopy (no integers)

NOSNOC: https://github.com/nurkanovic/nosnoc

Nonsmooth numerical optimal control Armin Nurkanović 3
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NOSNOC Examples

Videos and gifs.
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NSD2 - Piecewise smooth / Filippov systems
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Motivating examples - crossing a discontinuity

Consider the ODE

ẋ = 2− sign(x)

More explicitly...

ẋ =

{
3, if x < 0

1, if x > 0
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Motivating examples - sliding mode (simpler)

Consider the ODE

ẋ = −sign(x)

And let

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

Then...

ẋ =


1, if x < 0

0, if x = 0

−1, if x > 0
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Motivating examples - sliding mode

Consider the ODE

ẋ = −sign(x) + 0.5 sin(t)

And let

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

We have for some t > t∗ that x(t) = 0
and ẋ(t) = 0

That is sign(0) = 0 = 0.5 sin(t)

WHAT HAPPEND?
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Motivating examples - sliding mode - fixed

Consider the ODE

ẋ ∈ −sign(x) + 0.5 sin(t)

And let

sign(x) ∈


{−1}, if x < 0

[−1, 1], if x = 0

{1}, if x > 0

We have for some t > t∗ that x(t) = 0 and
ẋ(t) = 0

That is sign(0) = [−1, 1] ∋ 0.5 sin(t)

It works! Thanks to A.F. Filippov
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Motivating examples - sliding mode - fixed

Consider the ODE
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NSD2 Systems - state dependent switches

Regard discontinuous right-hand side, piecewise smooth on disjoint open regions Ri ⊂ Rnx

Discontinuous ODE (NSD2)

ẋ = fi(x, u), if x ∈ Ri,

i ∈ {1, . . . , nf}

Numerical aims:

1. exactly detect switching times

2. obtain exact sensitivities across regions

3. appropriately treat evolution on boundaries
(sliding mode → Filippov convexification)
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Filippov Convexification

Dynamics not yet well-defined on region boundaries ∂Ri. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

ẋ ∈ FF(x, u) :=
{ nf∑
i=1

fi(x, u) θi

∣∣∣ nf∑
i=1

θi = 1,

θi ≥ 0, i = 1, . . . nf ,

θi = 0, if x /∈ Ri

}
Aleksei F. Filippov
(1923-2006)

image source: wikipedia

▶ for interior points x ∈ Ri nothing changes: FF(x, u) = {fi(x, u)}
▶ Provides meaningful generalization on region boundaries.

E.g. on R1 ∩R2 both θ1 and θ2 can be nonzero
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Filippov Convexification

Dynamics not yet well-defined on region boundaries ∂Ri. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion
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How to compute convex multipliers θ?
Answer in a remarkable paper by David E. Stewart from 1990
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How to compute convex multipliers θ?

Assume sets Ri given by [cf. Stewart, 1990]

Ri =
{
x ∈ Rn

∣∣gi(x) < minj ̸=i gj(x)
}

Linear program (LP) Representation

ẋ =

nf∑
i=1

fi(x, u) θi with

θ ∈ arg min
θ̃∈Rnf

nf∑
i=1

gi(x) θ̃i

s.t.

nf∑
i=1

θ̃i = 1

θ̃ ≥ 0

Note that the boundary between Ri and Rj is defined by {x ∈ Rn | 0 = gi(x)− gj(x)}.
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From Filippov to dynamic complementarity systems
Using the KKT conditions of the parametric LP

LP representation

ẋ = F (x, u) θ

with θ ∈ argmin
θ̃∈Rnf

g(x)⊤θ̃

s.t. 0 ≤ θ̃

1 = e⊤θ̃

where

F (x, u) := [f1(x, u), . . . , fnf
(x, u)] ∈ Rnx×nf

g(x) := [g1(x), . . . , gnf
(x)]⊤ ∈ Rnf

e := [1, 1, . . . , 1]⊤ ∈ Rnf

Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)

ẋ = F (x, u) θ (1a)

0 = g(x)− λ− eµ (1b)

0 ≤ θ ⊥ λ ≥ 0 (1c)

1 = e⊤θ (1d)

Compact notation

ẋ = F (x, u) θ

0 = GLP(x, θ, λ, µ),

▶ µ ∈ R and λ ∈ Rnf are Lagrange
multipliers

▶ (1c) ⇔ min{θ, λ} = 0 ∈ Rnf

▶ Together, (1b), (1c), (1d) determine the
(2nf + 1) variables θ, λ, µ uniquely
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Optimal control needs to solve Nonlinear Programs (NLPs)

Original optimal control problem
in continuous time

min
x(·),u(·),

θ(·),λ(·),µ(·)

∫ T

0

L(x, u)dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) =
∑nf

i=1 fi(x(t), u(t)) θi(t)

0 = GLP(x(t), θ(t), λ(t), µ(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Assume smooth (convex) L,E, h, r
Nonsmooth dynamics make problem
nonconvex
Direct methods discretize, then optimize
E.g., collocation or multiple shooting

Goal: discretized optimal control problem
(an NLP)

min
x,z,u

∑N−1
k=0 ΦL(xk, zk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = Φdif
f (xk, zk, uk)

0 = Φalg
f (xk, zk, uk)

0 ≥ Φh(xk, zk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Smooth convex ΦL, E,Φh, r
Variables x = (x0, . . .), z = (z0, . . .) and
u = (u0, . . . , uN−1) summarized in vector
w ∈ Rnw

Nonsmooth Φalg
f
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Why not use standard discretization methods?
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Motivating examples - sliding mode - explicit Euler

Consider the ODE

ẋ = −sign(x)

And let

sign(x) =


−1, if x < 0

0, if x = 0

1, if x > 0

We use

xk+1 = xk − h · sign(xk)
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Numerical simulation example: unstable switched oscillator

Regard an unstable nonsmooth oscillator

ẋ(t) =

{
A1x, c(x) < 0,

A2x, c(x) > 0,

with

A1 =

 1 ω

−ω 1

 , A2 =

 1 −ω

ω 1

 ,
c(x) = x21 + x22 − 1, ω = 2π, x(0) = [e−1 0]⊤
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Numerical simulation example: importance of switch detection

▶ Use Implicit Runge-Kutta Gauss Legendre method of order 10!

▶ If implicit Euler has an accuracy of ≈ 10−1, then this method has for the same step-size
an accuracy of ≈ 10−10

▶ 4 integration steps over T = π
2 , h = 0.3928...

Standard IRK vs FESD IRK
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Numerical simulation example: importance of switch detection

▶ Use Implicit Runge-Kutta Gauss Legendre method of order 10!

▶ If implicit Euler has an accuracy of ≈ 10−1, then this method has for the same step-size
an accuracy of ≈ 10−10

▶ 4 integration steps over T = π
2 , h = 0.3928...

Standard IRK vs FESD IRK

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Analytic solution

-2 -1 0 1 2

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Nonsmooth numerical optimal control Armin Nurkanović 21



Why not smooth everything?
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Direct optimal control with a standard IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.
Denote by V∗(x0) the nonsmooth objective
value for the unique feasible trajectory
starting at x(0) = x0.

Equivalent reduced problem

min
x0∈R

V∗(x0)

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh(
x(t)

σ
), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.
IRK Radau of order 5 with
h = 0.1; i.e., N = 20 steps

Equivalent reduced problem

min
x0∈R

Vσ(x0)
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Direct optimal control with a standard IRK discretization - smoothing
Tutorial example inspired by [Stewart & Anitescu, 2010]
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Direct optimal control with a standard IRK discretization - Let us try again
See ”Limits of MPCC formulations in direct optimal control with nonsmooth differential equations”,
N., Albrecht, Diehl, ECC 2020

Continuous-time OCP

min
x(·)∈C0([0,2])

∫ 2

0

x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− tanh(
x(t)

σ
), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.
IRK Radau of order 5 with
h = 0.01; i.e., N = 200 steps

Equivalent reduced problem
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s.t. ẋ(t) = 2− tanh(
x(t)

σ
), t ∈ [0, 2]

Free initial value x(0) is the effective degree
of freedom.
IRK Radau of order 5 with
h = 0.01; i.e., N = 200 steps

Equivalent reduced problem

min
x0∈R

Vσ(x0)

-2 -1.5 -1
1.5

1.6

1.7

1.8

1.9

2

Nonsmooth numerical optimal control Armin Nurkanović 25
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Direct optimal control with a standard IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]

(another remarkable paper by D. Stewart)

▶ discretize the OCP with standard IRK
for DCS

▶ numerical sensitivities wrong
independent of the step-size

▶ smoothing works only if step-size smaller
than smoothing parameter
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Direct optimal control with a standard IRK discretization
Tutorial example inspired by [Stewart & Anitescu, 2010]
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Standard - Fixed
Standard - Homotopy
Analytic Solution

▶ Spurious local minima, optimizer gets trapped close to initialization

▶ Sensitivity correct if step-sizes smaller than smoothing parameter [Stewart & Anitescu,
2010] =⇒ homotopy improves convergence

▶ Integrator NOT differentiable even when they appear to be so!

▶ Still, at best O(h) accuracy can be expected
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Summary of theoretical results
Submitted to Num. Mat, arXiv:2205.05337

1. Convergence of the FESD method to a Filippov solution of the underlying system with
accuracy O(hp) is proven. Here, p is the order of the underlying smooth IRK scheme.

2. Convergence of numerical sensitivities to the true value with O(hp) is given.
The Stewart & Anitescu problem is resolved.

3. An FESD problem needs to solve a nonlinear complementarity problem (NCP) to advance
the integration. The solutions of these NCP are locally unique.
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Revisiting the OCP example - now with FESD
Tutorial example inspired by [Stewart & Anitescu, 2010]
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FESD - Fixed
FESD - Homotopy
Analytic Solution

▶ No spurious local minima, correct sensitivities

▶ Convergence to the ”true” local minima, both with homotopy and without it

▶ In contrast to the standard approach with accuracy O(h), now we have O(hp)

▶ FESD resolves the accuracy and convergence issues
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Nonsmooth Dynamics (NSD) - a classification

Regard ordinary differential equation (ODE) with a nonsmooth right-hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g., ẋ = 1 + |x|

NSD2: state dependent switch of RHS, e.g., ẋ = 2− sign(x)

NSD3: state dependent jump, e.g., bouncing ball, v(t+) = −0.9 v(t−)
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NSD3 state jump example: bouncing ball

Bouncing ball with state x = (q, v):

q̇ = v, mv̇ = −mg, if q > 0

v(t+) = −0.9 v(t−), if q(t−) = 0 and v(t−) < 0

Time plot of bouncing ball trajectory:

Phase plot of bouncing ball trajectory:

Question: could we transform NSD3 systems into (easier) NSD2 systems?
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Three ideas:

1. mimic state jump by auxiliary dynamic system ẋ = faux(x) on prohibited region

2. introduce a clock state t(τ) that stops counting when the auxiliary system is active

3. adapt speed of time, dt
dτ = s with s ≥ 1, and impose terminal constraint t(T ) = T

Nonsmooth numerical optimal control Armin Nurkanović 32



The time-freezing reformulation

Augmented state (x, t) ∈ Rn+1 evolves in
numerical time τ . Augmented system is
nonsmooth, of NSD2 type:

d

dτ

x
t

 =



s

[
f(x)

1

]
, if c(x) ≥ 0

[
sfaux(x)

0

]
, if c(x) < 0

▶ During normal times, system and clock
state evolve with adapted speed s ≥ 1.

▶ Auxiliary system dx
dτ = faux(x) mimics

state jump while time is frozen, dt
dτ = 0.
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Time-freezing for bouncing ball example

Evolution of physical time (clock state)
during augmented system simulation
(s = 1).

We can recover the true solution by plotting
x(τ) vs. t(τ) and disregarding ”frozen pieces”.
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A tracking OCP example with Time-Freezing and FESD in NOSNOC

Regard bouncing ball in two dimensions driven by bounded force: q̈ = u

-1.5 -1 -0.5 0 0.5 1 1.5

-1

-0.5

0

0.5

1

▶ augmented state
x = (q, q̇, t) ∈ R5

▶ nf = 9 regions (8 with auxiliary
dynamics for state jumps)

min
x(.),u(.),s(.),
θ(.),λ(.),µ(.)

∫ T

0

(q − qref(τ))
⊤(q − qref(τ)) s(τ) dτ

s.t. x(0) = x0, t(T ) = T,

x′(τ) =

nf∑
i=1

θi(τ)fi(x(τ), u(τ), s(τ)),

0 = g(x(τ))− λ(τ)− µ(τ)e,

0 ≤ λ(τ) ⊥ θ(τ) ≥ 0,

1 = e⊤θ(τ),

∥u(τ)∥22 ≤ u2max,

1 ≤ s(τ) ≤ smax, τ ∈ [0, T ].

qref(τ) = (R cos(ω t(τ)), R sin(ω t(τ))).
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Results with slowly moving reference
For ω = π, tracking is easy: no jumps occur in optimal solution.

▶ Regard time horizon of two periods

▶ N = 25 equidistant control intervals

▶ use FESD with NFE = 3 finite elements
with Radau 3 on each control interval

▶ each FESD interval has one constant
control u and one speed of time s

▶ MPCC solved via ℓ∞ penalty
reformulation and homotopy

▶ For homotopy convergence: in total 4
NLPs solved with IPOPT via CasADi
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States and controls in physical time.
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Results with slowly moving reference - movie
For ω = π, tracking is easy: no jumps occur in optimal solution.

Nonsmooth numerical optimal control Armin Nurkanović 37



Results with fast reference
For ω = 2π, tracking is only possible if ball bounces against walls.
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Results with fast reference - movie
For ω = 2π, tracking is only possible if ball bounces against walls.
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Homotopy: first iteration vs converged solution
Geometric trajectory
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The solution trajectory after convergence
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Physical vs. Numerical Time

for ω = π
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Hybrid systems and finite automaton

ẋ = fA(x)
w = 0

ẋ = fB(x)
w = 1

ψ(x) ≥ 1

ψ(x) ≤ 0

0 1

0

1

ψ(x)

w
∈

H
(ψ

(x
))

Hybrid system with hysteresis (incomplete description)

ẋ = f(x,w) = (1− w)fA(x) + wfB(x)
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Tutorial example: thermostat with hysteresis

ẋ = −0.2x
w = 0

ẋ = −0.2x+ uh
w = 1

x ≤ 18

x ≥ 20
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Hysteresis: a system with state jumps

Hybrid system with hysteresis

ẋ = f(x,w) = (1− w)fA(x) + wfB(x)

ẇ = 0

0 1

0

1

ψ(x)

w
∈

H
(ψ

(x
))

The State Jump Law

1. if w(t−s ) = 0 and ψ(x(t−s )) = 1, then x(t+s ) = x(t−s ) and w(t
+
s ) = 1

2. if w(t−s ) = 1 and ψ(x(t−s )) = 0, then x(t+s ) = x(t−s ) and w(t
+
s ) = 0

Remember: w(t) is now a discontinuous differential state!
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Tutorial example: thermostat and time-freezing

0 2 4 6
14

16

18

20
x
(τ

)

0 2 4 6
0

0.5

1

w
(τ

)

0 2 4 6
0

1

2

3

τ [numerical time]

t(
τ
)

0 1 2 3
14

16

18

20

x
(t
)

0 1 2 3
0

0.2
0.4
0.6
0.8
1

w
(t
)

0 1 2 3
0

1

2

3

t [physical time]

t(
τ
)

Nonsmooth numerical optimal control Armin Nurkanović 45



Time-freezing: the state space
A look at the (ψ(x), w)−plane

▶ Everything except the blue solid curve is prohibited in the (ψ,w)− space (use 1st principle
of time-freezing)

▶ The evolution happens in a lower-dimensional space =⇒ sliding mode (use 4th principle
of time-freezing)
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Time-freezing: partitioning of the space
An efficient partition leads to less variables in FESD

▶ Partition the state space into Voronoi regions:
Ri = {z | ∥z − zi∥2 < ∥z − zj∥2, j = 1, . . . , 4, j ̸= i}, z = (ψ(x), w)

▶ Feasible region for initial hybrid system with hysteresis on the region boundaries
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Time-freezing: auxiliary dynamics
To mimic state jumps in finite numerical time

▶ Use regions R2 and R3 to define auxiliary dynamics for the state jumps of w(·)

▶ Evolution in w−direction happens only for ψ ∈ {0, 1}
▶ Zoom in: with a naive approach one has locally nonunique solutions
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Time-freezing: auxiliary dynamics

The new state space of the system is y = (x,w, t) ∈ Rnx+2

Auxiliary dynamics

dy

dτ
= faux,A(y) :=


0

−γ(ψ(x))

0


dy

dτ
= faux,B(y) :=


0

γ(ψ(x)− 1)

0


γ(x) =

ax2

1 + x2
−10 −5 0 5 10
0

0.2

0.4
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0.8

1

x
γ
(x

)
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Time-freezing: auxiliary dynamics

▶ Smart choice of auxiliary dynamics resolves the nonuniqueness issue

▶ Zoom in: escape only in one direction possible
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Time-freezing: DAE forming dynamics
Stop the state jump and construct suitable sliding mode

▶ Dynamics in R1 and R4 stops evolution of auxiliary ODE - similar to inelastic impacts

▶ Sliding modes on RA := ∂R1 ∩ ∂R2 and RB := ∂R3 ∩ ∂R4 match fA(y) and fB(y), resp.
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Time-freezing: summary

DAE-forming dynamics

y = (x,w, t)

dy

dτ
= fdf,A(y) :=


2fA(x)

γ(ψ(x))

2


dy

dτ
= fdf,B(y) :=


2fB(x)

−γ(ψ(x)− 1)

2



▶ In total four regions Ri , i = 1, 2, 3, 4 and evolution of
original system is the sliding mode

▶ Regions R2 and R3 equipped with aux. dynamics
y′ = f2(y) = faux,A(y) and y

′ = f3(y) = faux,B(y),
resp., to mimic state jump

▶ Regions R1 and R4 equipped with DAE-forming
dynamics y′ = f1(y) = fdf,A(y) and
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▶ E.g., w′ = 0 =⇒ θ1fdf,A(y) + θ2faux,A(y) = fA(y)
(sliding mode)

▶ Conclusion: we have a PSS and can treat it with FESD

Nonsmooth numerical optimal control Armin Nurkanović 52
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Time optimal control of a car with a turbo accelerator
Example from [Avraam, 2000] solved with NOSNOC

q̇ = v
v̇ = u
L̇ = cN
w = 0

q̇ = v
v̇ = 3u
L̇ = cT
w = 1

v ≥ 15

v ≤ 10

Time optimal control problem

min
y(·),u(·),s(·)

t(τf) + L(τf)

s.t. y(0) = (z0, 0)

y′(τ)∈s(τ)FTF(y(τ), u(τ))

− ū ≤ u(τ) ≤ ū

s̄−1 ≤ s(τ) ≤ s̄

− v̄ ≤ v(τ) ≤ v̄ τ ∈ [0, τf ]

(q(τf), v(τf)) = (qf , vf)
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Scenario 1: turbo and nominal cost the same
cN = cT
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Scenario 2: Turbo is Expensive
cN < cT
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NOSNOC vs MILP/MINLP formulations
Benchmark on time-optimal control problem of a car with turbo

▶ compare CPU time as function of number of control intervals N (left) and solution
accuracy (right)

▶ MILP (Gurobi): solve problem with fixed T until indefeasibly happens with grid search in T

▶ MILP/MINLP and NOSNOC-Std no switch detection = low accuracy
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Conclusions and outlook

Conclusions

▶ Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for nonsmooth systems of level NSD2

▶ FESD resolves many of the issues that standard methods have: integration accuracy,
convergence of sensitivities

▶ Main difficulty: solving the Mathematical Programs with Complementarity Constraints
(MPCC)

Outlook

▶ Improve on MPCC methods, test other existing relaxation methods (work in progress,
soon available in NOSNOC)

▶ Properties of FESD-MPCC solutions. Are all stationary points strongly stationary points?

▶ Combinatorial methods for MPCC arising in nonsmooth optimal control

▶ Efficient NCP solvers for FESD subproblems
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Thank you very much for your attention!
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	Elastic Impacts
	Hybrid systems with hysteresis
	Time-Freezing
	Numerical example
	Conclusions and outlook

