Model Predictive Control and Reinforcement Learning

- Fall School 2022 -

Prof. Joschka Bödecker, Prof. Moritz Diehl, Jasper Hoffmann, Florian Messerer

Surname:	First Name:	Matriculation number:
Pseudonym:	Signature:	

Each question is worth one point, and exactly one of the anwer possibilities will be correct.

1. Which statement about the Gauss-Newton method is wrong?

(a) The QP solved at each iteration is always convex.	
(b) The Hessian approximation is computed from first-order derivatives only.	
(c) It can be applied to objective functions of arbitrary structure.	
(d) The convergence rate is in general linear.	
	1

2. Which statement about the acados software package is wrong?

(a) acados implements an SQP method taylored to optimal control problems.	
(b) For integration, acados implements several implicit and explicit Runge-Kutta methods.	
(c) acados supports several QP solvers as its backend.	
(d) acados can solve Nonlinear Programs of general structure.	
	1

3. The Bellmann optimality equation can also be written as a... (choose the most specific correct option)

(a) Linear Program.	(b) Nonlinear Program.
(c) Quadratic Program.	(d) Semidefinite Program.
	1

4. How many optimization variables does the NLP arising in the direct **single shooting** method have, if the system has n_x states, n_u controls, the initial value is fixed, and the time horizon is divided into N control intervals (piecewise-constant)?

(a) $(N+1)n_x + Nn_u$	(b) $\square Nn_u$	(c) $\square Nn_x^3 + Nn_u^2$	(d) $\qquad \frac{1}{3}N^3n_u^3$	
				1

5. What is meant by monotonicity of DP? Formulate it using T as the DP operator, acting on value functions J and J'.

(a) $\Box J' \ge J \Rightarrow TJ' \ge TJ$	(b) $\Box TJ' \leq TJ \Rightarrow J' \leq J$
(c) $\Box J' \leq J \Rightarrow TJ' \geq TJ$	(d) $\Box TJ' \ge TJ \Rightarrow J' \le J$
	1

6. Which statement about nonsmooth dynamical systems is wrong? Note that the systems are classified as systems with state-dependent switches (NSD2) and systems with state-dependent jumps (NSD3).

(a) \square For NSD2 systems, the accuracy of standard Runge-Kutta methods is always $O(h)$ irrespective of the inter-	-
grator (polynomial) order (where h is the time-step).	
(b) An NSD3 system can be transcribed into an NSD2 system via time-freezing.	
(c) Most NSD2 systems can be described by a Filippov differential inclusion.	
(d) When integrating an NSD2 system, it is not possible to exactly detect the switching time points.	
	1

7. Which statement about Real Time Iterations (RTI) with Gauss-Newton Hessian approximation is wrong?

(a) RTI cannot handle state constraints.
(b) The computations can be split into a preparation and a feedback phase.
(c) After obtaining the most recent state estimate, only one QP is solved before returning a new control input.
(d) If the current state estimate remains constant, Gauss-Newton RTI is identical to a standard Gauss-Newton
iteration.

8. Which of the following statements on the sequential (single shooting) vs the simultaneous (multiple shooting) formulation of an Optimal Control Problem is wrong?

(a) The simultaneous formulation has an exploitable sparsity structure.	
(b) The sequential formulation has less optimization variables.	
(c) The simultaneous formulation is usually better at handling unstable nonlinear systems.	
(d) The sequential formulation is always cheaper to solve.	
	1

9. Which horizon is not included in the three horizons when we talk about "Three Horizon MPC"?

(a) Simulation horizon	(b) Optimization horizon
(c) Estimation horizon	(d) Missing horizon
	1

10. Which of the following statements about integrators is true?

(a) Implicit integrators cannot be a component of a Nonlinear Program (NLP).	
(b) Implicit integators are better at handling stiff systems.	
(c) Implicit integrators are always more accurate than explicit integrators.	
(d) Implicit integrators are always computationally more efficient than explicit integrators.	
	1

1

11. Which of the following statements is correct?

(a) Monte Carlo targets are biased but have high variance.		
(b) Temporal Difference methods use bootstrapping and thus targets are unbiased.		
(c) For a constant initial Q-value function, Q-learning targets for one fixed state have zero variance.		
(d) The concept of value functions as a mapping from states to \mathbb{R} , makes only sense with the Markov property of		
MDPs.		
	1	

12. What is importance sampling in the off-policy Monte Carlo methods not used for?

(a) For variance reduction.	
(b) To get an unbiased target when the behaviour and target policy have different action distributions.	
(c) To allow for using an explorative behaviour policy while optimizing a greedy policy.	
(d) Training multiple policies with different objectives from a single interaction stream.	
	1

13. To guarantee finding an optimal policy in a finite MDP we need to?

(a) Use each action in every state at least once.	(b) Explore every action at each state at least once.
(c) Explore every state and action infinitely often.	(d) Use each action of the action seed infinitely often.
	1

14. Which of the following statements is correct?

(a) A dynamics model is easier to learn compared to a value function.		
(b) TD methods learn directly from raw experiences not necessarily needing a model.		
(c) Bootstrapping is used by TD methods in order to estimate the final outcome directly.		
(d) AlphaGo Zero uses a policy network for the rollout policy.		
	1	

15. Semi-gradient methods

(a) are methods that only calculate a gradient regarding the prediction not the target.	
(b) are methods that only calculate a gradient regarding the target not the prediction.	
(c) are methods that calculate a gradient regarding the prediction and the target.	
(d) update a scalar parameter.	
	1

16. Imagine you want to apply the algorithms from this lecture on a real physical system. You get sensor input after each 0.05 seconds, but the execution of actions has a delay of 0.2 seconds. Is the Markov property fulfilled?

(a) Yes, if a history of the last 0.2 seconds is added to the state space.	
(b) Only if a function approximator is used for the value function.	
(c) Yes.	
(d) 🗌 No.	
	1

17. Which is the formula of the UCB Bandit algorithm presented in the lecture:

(a) $\prod \arg \max_a Q_t(a) + c \sqrt{\frac{N_t(a)}{\log t}}.$	
(b) $\square \operatorname{argmax}_a Q_t(a) + \frac{P(a)}{N+1}.$	
(c) $\square \arg \max_a Q_t(a).$	
(d) $\square \arg \max_a Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}}.$	
	1

18. What is true for Monte Carlo tree search:

(a) In general, the tree needs to cover each possible action to guarantee optimality.	
(b) We count how often each action is taken only for the root node.	
(c) It only does tree search before the game starts.	
(d) At each step the nodes of the whole rollout are added to the tree.	
	1

19. Which of the following components is part of AlphaGo Zero:

(a) \square A state value network v_{θ} to estimate the value of intermediate nodes.
(b) A visitation frequency network to estimate the visitation frequency.
(c) A state-action value network q_{θ} to estimate the value of actions at intermediate nodes.
(d) A policy-value network for an action prior probability and estimating the value of leaf nodes.

20. The Deadly Triad of Reinforcement Learning is:

(a) Off-policy, function approximation, and bootstrapping.	
(b) Off-policy, function approximation, and Monte Carlo.	
(c) That the Bellman equation is not always true.	
(d) On-policy, function approximation, and Monte Carlo.	
	1

1