Model Predictive Control and Reinforcement Learning

– Summer School 2021 – Joschka Boedecker and Moritz Diehl

For the multiple choice questions, which give exactly one point, tick exactly one box for the right answer.

1. Which of the following functions $f(x), f : \mathbb{R}^n \to \mathbb{R}$, is NOT convex $(c \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n})$?

(a) $ Ax _2^2 + \log(c^\top x)$	(b) $\ \ Ax\ _2^2 + \exp(c^\top x)$	(c) $\Box c^{\top}x + \exp(\ Ax\ _2^2)$	(d) $\Box -c^{\top}x + \ Ax\ _{2}^{2}$
			1

2. The local convergence rate of Newton's method is:

(a) superlinear (b) quadratic	(c) linear	(d) sublinear
-------------------------------	------------	---------------

3. A point in the feasible set of an NLP that satisfies the KKT optimality conditions is

(a) the global minimum	(b) a boundary point
(c) a local minimum	(d) a candidate for local minimum
	1

4. What is the most general (unconstrained) problem type to which the Gauss-Newton Hessian approximation is applicable?

(a) non-linear least squares objective	(b) linear least-squares objective
(c) linear objective	(d) any convex objective
	1

5. How does CasADi compute derivatives?

(a) Finite differences	(b) Imaginary trick
(c) Algorithmic Differentiation	(d) Symbolic Differentiation
	1

1

6. How many optimization variables does the NLP arising in the direct **multiple shooting** method have, if the system has n_x states, n_u controls, the initial value is fixed, and the time horizon is divided into N control intervals (piecewise-constant)?

(a) $\square Nn_u$	(b) $\square Nn_x^3 + Nn_u^2$	(c) $(N+1)n_x + Nn_u$	(d) $\prod \frac{1}{3}N^3n_u^3$	
				1

7. Regard an MPC optimization problem for N = 10 steps of the discrete time system s* = 2s + a with continuous state s ∈ ℝ and continuous bounded control action a ∈ [-1,1]. The stage cost is given by c(s,a) = a² and the terminal cost by E(s) = 100s². The initial state is s₀. To which optimization problem class does the problem belong?

(a) Linear Programming (LP)	(b) Mixed Integer Programming (MIP) but not LP	
(c) Quadratic Programming (QP) but not LP	(d) Nonlinear Programming (NLP) but not QP	
	1	

8. Regard an MPC optimization problem for N = 10 steps of the discrete time system s⁺ = 2s² + a with continuous state s ∈ ℝ and continuous bounded control action a ∈ [-1, 1]. The stage cost is given by c(s, a) = a² and the terminal cost by E(s) = 100s². The initial state is s
₀. To which optimization problem class does the problem belong?

(a) Linear Programming (LP)	(b) Mixed Integer Programming (MIP) but not LP		
(c) Quadratic Programming (QP) but not LP	(d) Nonlinear Programming (NLP) but not QP		
	1		

9. Regard dynamic programming for the discrete time system $s^+ = s + a$ with continuous state $s \in \mathbb{R}$ and continuous bounded control action $a \in [-1, 1]$, with zero stage cost c(s, a) = 0. We apply one step of dynamic programming (with operator T) to the value function $J_1(s) = \max(0, s)$. What is the resulting function $J_0 = TJ_1$?

(a) $\Box J_0(s) = \max(0, s - 1)$	(b) $\Box J_0(s) = \max(0, s+1)$
(c) $\Box J_0(s) = 0$	(d) $\Box J_0(s) = \max(s - 1, s + 1)$
	1

10. What is meant by monotonicity of DP? Formulate it using T as the DP operator, acting on value functions J and J'.

(a) $\Box J' \ge J \Rightarrow TJ' \ge TJ$	(b) $\Box J' \leq J \Rightarrow TJ' \geq TJ$
(c) $\Box TJ' \ge TJ \Rightarrow J' \le J$	(d) $\Box TJ' \leq TJ \Rightarrow J' \leq J$
	1

11. Which of the following components is not part of an MDP specification?

(a) Set of states	(b) Set of rewards	(c) Policy	(d) Set of actions
			1

12. Imagine you want to apply the algorithms from this lecture on a real physical system. You get sensor input after each 0.05 seconds, but the execution of actions has a delay of 0.2 seconds. Is the Markov property fulfilled?

(a) No	(b) Yes	(c) Yes, if a history of	(d) Only if a function
		the last 0.2 seconds is added to the state space	approximator is used for the value function
		· · · ·	1

13. With what could you derive/calculate the value function $v_{\pi}(s)$ from the action-value function $q_{\pi}(s, a)$:

(a) With the Markov	(b) With the policy π	(c) Not possible	(d) Only possible with
Decision Process (MDP)			both the MDP and the pol-
			icy π

14. Why is Q-learning an off-policy method?

(a) Because using an ϵ -greedy policy changes actions	(b) Because Q-learning uses a bootstraped value, instead	
randomly	of a Monte-Carlo rollout	
(c) Because we learn Q-values instead of a policy	(d) Because we learn Q-values for the greedy policy, while using a different policy to interact with the environment.	
	1	

15. The correct Q-Learning update is:

(a) $\square Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a^{\star}} Q(s,a^{\star}) -$	(b) $\square Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a^*} Q(s',a^*) -$
$Q(s', a^{\star})]$	Q(s,a)]
(c) $\square Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a) - Q(s',a)]$	(d) $\square Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a) - Q(s,a)]$
	1

1

16. What can you control with the ϵ of an ϵ -greedy policy?

rewards	temporal difference method agent emphasizes short term rewards vs long term the MDP the MDP ration
---------	--

1

17. Target networks were introduced in order to:

(a) Introduce correla-	(b) Prevent forgetting past experiences	(c) Avoid oscillations	(d) Make RL problems
tions into the sequence of		during training which slow	less like Supervised Learn-
observations		down learning	ing problems
			1

18. In policy gradient methods, what should a baseline ideally depend on?

(a) On the state	(b) On the action	(c) On state and action	(d) On nothing (i.e. it
			should be constant)
		•	1

19. Which of the following is true for Actor-Critic algorithms:

(a) Can be used only in	(b) They reduce gradi-	(c) The usage of base-	(d) The actor learns a
problems with discrete ac-	ent variance usually occur-	lines is compulsory for vari-	value function and the critic
tions	ring in vanilla PG methods	ance reduction	learns a policy

20. We use experience replay to:

(a) Introduce correla- tions into the sequence of observations	(b) Prevent forgetting past experiences	(c) Avoid oscillations during the learning process	(d) Break the curse of dimensionality
			1

Empty page for calculations