
Model Predictive Control and Reinforcement Learning

– On-Policy Control with Function Approximation –

Joschka Boedecker and Moritz Diehl

University Freiburg

October 6, 2022

Lecture Overview

1 Function Approximation in Reinforcement Learning

2 Linear Methods

3 On-policy Control with Function Approximation

4 Off-policy Learning

5 Problems of Off-policy Learning with Function Approximation

6 Deep Q-learning

7 DDPG

8 TD3

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 1

Acknowledgement

Slide contents are partially based on Reinforcement Learning: An Introduction by Sutton and
Barto and the Reinforcement Learning lecture by David Silver.

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 2

Function Approximation in Reinforcement Learning

I Up to this point, we represented all elements of our RL systems by tables (value functions,
models and policies)

I If the state and action spaces are very large or infinite, this is not a feasible solution

I We can apply function approximation to find a more compact representation of RL
components and to generalize over states and actions

I Reinforcement Learning with function approximation comes with new issues that do not
arise in Supervised Learning – such as non-stationarity, bootstrapping and delayed targets

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 3

Function Approximation in Reinforcement Learning

I Here: we estimate value-functions vπ(·) and qπ(·, ·) by function approximators v̂(·,w) and
q̂(·, ·,w), parameterized by weights w

st

w

v̂(st,w)

st at

w

q̂(st, at,w)

st

w

q̂(st, a
0,w)q̂(st, a

1,w) q̂(st, a
2,w)

I But we can also represent models or policies

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 4

Function Approximation in Reinforcement Learning

We can use different types of function approximators:

I Linear combinations of features

I Neural networks

I Decision trees

I Gaussian processes

I Nearest neighbor methods

I . . .

Here: We focus on differentiable FAs and update the weights via gradient descent.

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 5

Function Approximation in Reinforcement Learning

We want to update our weights w.r.t. the Mean Squared Value Error of our prediction:

wt+1 = wt −
1

2
α∇[vπ(St)− v̂(St,wt)]

2

= wt + α[vπ(St)− v̂(St,wt)]∇v̂(St,wt)

However, we don’t have vπ(St).

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 6

Function Approximation in Reinforcement Learning

Gradient MC

w← w + α[Gt − v̂(St,w)]∇v̂(St,w)

Semi-gradient TD(0)

w← w + α[Rt+1 + γv̂(St+1,w)− v̂(St,w)]∇v̂(St,w)

Why are bootstrapping methods, defined this way, called semi-gradient methods?

They take into account the effects of changing w w.r.t. the prediction, but not w.r.t. the
target!

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 7

Function Approximation in Reinforcement Learning

Gradient MC

w← w + α[Gt − v̂(St,w)]∇v̂(St,w)

Semi-gradient TD(0)

w← w + α[Rt+1 + γv̂(St+1,w)− v̂(St,w)]∇v̂(St,w)

Why are bootstrapping methods, defined this way, called semi-gradient methods?
They take into account the effects of changing w w.r.t. the prediction, but not w.r.t. the
target!

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 7

Linear Methods

I Represent state s by feature vector x(s) = (x1(s), x2(s), . . . , xd(s))>

I These features can also be non-linear functions/combinations of state dimensions

I Linear methods approximate the value function by a linear combination of these features

v̂(s,w) = w>x(s) =

d∑
i=1

wixi(s)

I Therefore, ∇wv̂(s,w) = x(s)

I Gradient MC prediction converges under linear FA

I On-policy linear semi-gradient TD(0) is stable

I Unfortunately, this does not hold for non-linear FA

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 8

Fixed point of on-policy linear semi-gradient TD

I The update at each time step t is:

wt+1 = wt + α
(
Rt+1 + γw>t xt+1 −w>t xt

)
xt

= wt + α
(
Rt+1xt − xt(xt − γxt+1)

>wt

)
I The expected next weight vector can thus be written:

E[wt+1|wt] = wt + α(b−Awt),

where b = E[Rt+1xt] and A = E[xt(xt − γxt+1)
>]

I If the system converges, it has to converge to the fixed point:

wTD = A−1b

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 9

Coarse Coding

Divide the state space in circles/tiles/shapes and check in which some state is inside. This is a
binary representation of the location of a state and leads to generalization.

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 10

On-policy Control with Function Approximation

I Again, up to this point we discussed Policy Evaluation based on state value functions

I In order to apply FA in control, we parameterize the action-value function

Semi-gradient SARSA

w← w + α[Rt+1 + γq̂(St+1, At+1,w)− q̂(St, At,w)]∇q̂(St, At,w)

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 11

Semi-gradient SARSA

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 12

Off-policy Learning

I We want to learn the optimal policy, but we have to account for the problem of
maintaining exploration

I We call the (optimal) policy to be learned the target policy π and the policy used to
generate behaviour the behaviour policy b

I We say that learning is from data off the target policy – thus, those methods are referred
to as off-policy learning

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 13

Importance Sampling

I Weight returns according to the relative probability of target and behaviour policy

I Define state-transition probabilities p(s′|s, a) as
p(s′|s, a) = Pr{St = s′|St−1 = s,At−1 = a} =

∑
r∈R p(s

′, r|s, a)
I The probability of the subsequent trajectory under any policy π, starting in St, then is:

Pr{At, St+1, At+1, . . . ST |St, At:T−1 ∼ π}
= π(At|St)p(St+1|St, At)π(At+1|St+1) · · · p(ST |ST−1, AT−1)

=

T−1∏
k=t

π(Ak|Sk)p(Sk+1|Sk, Ak)

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 14

Importance Sampling

The relative probability therefore is:

Definition: Importance Sampling Ratio

ρt:T−1 =

∏T−1
k=t π(Ak|Sk)p(Sk+1|Sk, Ak)∏T−1
k=t b(Ak|Sk)p(Sk+1|Sk, Ak)

=

∏T−1
k=t π(Ak|Sk)∏T−1
k=t b(Ak|Sk)

The expectation of the returns by b is E[Gt|St = s] = vb(s). However, we want to estimate the
expectation under π. Given the importance sampling ratio, we can transform the MC returns
by b to yield the expectation under π:

E[ρt:T−1Gt|St = s] = vπ(s).

Importance Sampling can come with a vast increase in variance.

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 15

Off-policy MC Prediction and Semi-gradient TD(0)

To use importance sampling with function approximation, replace the update to an array to an
update to weight vector w, and correct it with the importance sampling weight.

Off-policy MC Prediction

w← w + αρt:T−1[Gt − v̂(St,w)]∇v̂(St,w)

Semi-gradient Off-policy TD(0)

w← w + αρtδt∇v̂(St,w)
where δt = Rt+1 + γv̂(St+1,w)− v̂(St,w)

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 16

Baird’s Counterexample

The reward is 0 for all transitions, hence vπ(s) = 0. This could be exactly approximated by
w = 0.

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 17

Baird’s Counterexample

Semi-gradient DP

w← w + α
|S|
∑
s∈S(E[Rt+1 + γv̂(St+1,w)|St = s]− v̂(s,w))∇v̂(s,w)

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 18

The Deadly Triad

The combination of

I Function Approximation,

I Bootstrapping and

I Off-policy Learning

is known as the Deadly Triad, since it can lead to stability issues and divergence.

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 19

Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

I Model-free off-policy RL algorithm that works on continuous state and discrete action
spaces

I Q-function is represented by a multi-layer perceptron

I One of the first approaches that combined RL with ANNs, predecessor of DQN

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 20

Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

for iteration i = 1, .., N do
sample trajectory with ε-greedy exploration and add to memory D
initialize network weights randomly
generate pattern set P = {(xj , yj)|j = 1..|D|} with

xj = (sj , aj) and yj =

{
rj if sj is terminal

rj + γmaxa′ Q(sj+1, a
′,wi) else

for iteration k = 1, ..,K do
Fit weights according to:

L(wi) =
1

|D|

|D|∑
j=1

(yj −Q(xj ,wi))
2

end

end
Algorithm 1: NFQ

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 21

Deep Q-Networks (DQN)

DQN provides a stable solution to deep RL:

I Use experience replay (as in NFQ)

I Sample minibatches (as opposed to Full Batch in NFQ)

I Freeze target Q-networks (no target networks in NFQ)

I Optional: Clip rewards or normalize network adaptively to sensible range

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 22

Deep Q-Networks: Experience Replay

To remove correlations, build data set from agent’s own experience

I Take action at according to ε-greedy policy

I Store transition (st, at, rt+1, st+1) in replay memory D

I Sample random mini-batch of transitions (s, a, r, s′) from D

I Optimize MSE between Q-network and Q-learning targets, e.g.

L(w) = Es,a,r,s′∼D
[
(r + γmax

a′
Q(s′, a′,w)−Q(s, a,w))2

]

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 23

Deep Q-Networks: Target Networks

To avoid oscillations, fix parameters used in Q-learning target

I Compute Q-learning targets w.r.t. old, fixed parameters w−

r + γ argmax
a′

Q(s′, a′,w−)

I Optimize MSE between Q-network and Q-learning targets

L(w) = Es,a,r,s′∼D
[
(r + γmax

a′
Q(s′, a′,w−)−Q(s, a,w))2

]
I Periodically update fixed parameters w− ← w

I hard update: update target network every N steps
I slow update: slowly update weights of target network every step by

w− ← (1− τ)w− + τw

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 24

Deep Q-Networks (DQN)

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode i = 1, ..,M do

for t = 1, .., T do
select action at ε-greedily
Store transition (st, at, st+1, rt) in D
Sample minibatch of transitions (sj , aj , rj , sj+1) from D

Set yj =

{
rj if sj+1 is terminal

rj + γ maxa′Q(sj+1, a
′,w−) else

Update the parameters of Q according to:

∇wiLi(wi) = Es,a,s,r∼D[(r + γmax
a′

Q(s′, a′,wi)−Q(s, a,wi))∇wiQ(s, a,wi)]

Update target network
end

end

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 25

Deep Q-Networks: Reinforcement Learning in Atari

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 26

Deep Q-Networks: Reinforcement Learning in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is a stack of raw pixels from the last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 27

How much does DQN help?

DQN
Q-Learning Q-Learning Q-Learning Q-learning

+ Replay + Replay
+ Target Q + Target Q

Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 831 2894
Space Invaders 302 373 826 1089

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 28

Deep Deterministic Policy Gradient

I DDPG is an actor-critic method (Continuous DQN)

I Recall the DQN-target: yj = rj + γmaxaQ(sj+1, a,w
−)

I In case of continuous actions, the maximization step is not trivial

I Therefore, we approximate deterministic actor µ representing the argmaxaQ(sj+1, a,w)
by a neural network and update its parameters following the Deterministic Policy Gradient
Theorem:

∇θJ ≈
1

N

∑
j

∇aQ(sj , a,w)|a=µ(sj)∇θµ(sj ,θ)

I Exploration by adding Gaussian noise to the output of µ

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 29

Deep Deterministic Policy Gradient

I The Q-function is fitted to the adapted TD-target:

yj = rj + γQ(sj+1, µ(sj+1,θ
−),w−)

I The parameters of target networks µ(·,θ−) and Q(·, ·,w−) are then adjusted with a soft
update

w− ← (1− τ)w− + τw and θ− ← (1− τ)θ− + τθ

with τ ∈ [0, 1]

I DDPG is very popular and builds the basis for more SOTA actor-critic algorithms

I However, it can be quite unstable and sensitive to its hyperparameters

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 30

Deep Deterministic Policy Gradient

Initialize replay memory D to capacity N
Initialize critic Q and actor µ with random weights
for episode i = 1, ..,M do

for t = 1, .., T do
select action at = µ(st,θ) + ε, where ε ∼ N (0, σ)
Store transition (st, at, st+1, rt) in D
Sample minibatch of transitions (sj , aj , rj , sj+1) from D

Set yj =

{
rj if sj+1 is terminal

rj + γ Q(sj+1, µ(sj+1,θ
−),w−) else

Update the parameters of Q according to the TD-error
Update the parameters of µ according to:

∇θJ ≈
1

N

∑
j

∇aQ(sj , a,w)|a=µ(sj)∇θµ(sj ,θ)

Adjust the parameters of the target networks via a soft update
end

end
Algorithm 2: DDPGMPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 31

Overestimation Bias

I In all control algorithms so far, the target policy is created by the maximization of a
value-function

I We thus consider the maximum over estimated values as an estimate of the maximum
value

I This can lead to the so-called overestimation bias

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 32

Overestimation Bias

I Recall the Q-learning target: Rt+1 + γmaxaQ(St+1, a)

I Imagine two random variables X1 and X2:

E[max(X1, X2)] ≥ max(E[X1],E[X2])

I Q(St+1, a) is not perfect – it can be noisy :

max
a

Q(St+1, a) =

value comes from Q︷ ︸︸ ︷
Q(St+1, argmax

a
Q(St+1, a)︸ ︷︷ ︸

action comes from Q

)

I If the noise in these is decorrelated, the problem goes away!

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 33

Double Q-learning

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 34

Double Q-learning

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 35

TD3

TD3 adds three adjustments to vanilla DDPG

I Clipped Double Q-Learning

I Delayed Policy Updates

I Target-policy smoothing

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 36

TD3: Clipped Double Q-Learning

I In order to alleviate the overestimation bias (which is also present in actor-critic methods),
TD3 learns two approximations of the action-value function

I It the takes the minimum of both predictions as the second part of the TD-target:

yj = rj + γ min
i∈{1,2}

Q(sj+1, µ(sj+1),w
−
i)

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 37

TD3: Delayed Policy Updates

I Due to the mutual dependency between actor and critic updates. . .
I values can diverge when the policy leads to overestimation and
I the policy will lead to bad regions of the state-action space when the value estimates lack in

(relative) accuracy

I Therefore, policy updates on states where the value-function has a high prediction error
can cause divergent behaviour

I We already know how to compensate for that: target networks

I Freeze target and policy networks between d updates of the value function

I This is called a Delayed Policy Update

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 38

TD3: Target-policy Smoothing

I Target-policy Smoothing adds Gaussian noise to the next action in target calculation

I It transforms the Q-update towards an Expected SARSA update fitting the value of a
small area around the target-action:

yj = rj + γ min
i∈{1,2}

Q(sj+1, µ(sj+1) + clip(ε,−c, c),w−i),

where ε ∼ N (0, σ)

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 39

TD3: Ablation

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 40

	Function Approximation in Reinforcement Learning
	Linear Methods
	On-policy Control with Function Approximation
	Off-policy Learning
	Problems of Off-policy Learning with Function Approximation
	Deep Q-learning
	DDPG
	TD3

