Model Predictive Control and Reinforcement Learning
– On-Policy Control with Function Approximation –

Joschka Boedecker and Moritz Diehl

University Freiburg

October 6, 2022
Lecture Overview

1. Function Approximation in Reinforcement Learning
2. Linear Methods
3. On-policy Control with Function Approximation
4. Off-policy Learning
5. Problems of Off-policy Learning with Function Approximation
6. Deep Q-learning
7. DDPG
8. TD3
Acknowledgement

Slide contents are partially based on *Reinforcement Learning: An Introduction* by Sutton and Barto and the Reinforcement Learning lecture by David Silver.
Function Approximation in Reinforcement Learning

- Up to this point, we represented all elements of our RL systems by tables (value functions, models and policies)
- If the state and action spaces are very large or infinite, this is not a feasible solution
- We can apply function approximation to find a more compact representation of RL components and to generalize over states and actions
- Reinforcement Learning with function approximation comes with new issues that do not arise in Supervised Learning – such as non-stationarity, bootstrapping and delayed targets
Here: we estimate value-functions $v_{\pi}(\cdot)$ and $q_{\pi}(\cdot, \cdot)$ by function approximators $\hat{v}(\cdot, w)$ and $\hat{q}(\cdot, \cdot, w)$, parameterized by weights w

But we can also represent models or policies
We can use different types of function approximators:

- Linear combinations of features
- Neural networks
- Decision trees
- Gaussian processes
- Nearest neighbor methods
- ...

Here: We focus on differentiable FAs and update the weights via gradient descent.
We want to update our weights w.r.t. the *Mean Squared Value Error* of our prediction:

\[
\mathbf{w}_{t+1} = \mathbf{w}_t - \frac{1}{2} \alpha \nabla \left[v_\pi(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right]^2 \\
= \mathbf{w}_t + \alpha \left[v_\pi(S_t) - \hat{v}(S_t, \mathbf{w}_t) \right] \nabla \hat{v}(S_t, \mathbf{w}_t)
\]

However, we don’t have \(v_\pi(S_t) \).
Function Approximation in Reinforcement Learning

Gradient MC

\[
\mathbf{w} \leftarrow \mathbf{w} + \alpha [G_t - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})
\]

Semi-gradient TD(0)

\[
\mathbf{w} \leftarrow \mathbf{w} + \alpha [R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) - \hat{v}(S_t, \mathbf{w})] \nabla \hat{v}(S_t, \mathbf{w})
\]

Why are bootstrapping methods, defined this way, called *semi-gradient methods*?
Function Approximation in Reinforcement Learning

Gradient MC

\[w \leftarrow w + \alpha [G_t - \hat{v}(S_t, w)] \nabla \hat{v}(S_t, w) \]

Semi-gradient TD(0)

\[w \leftarrow w + \alpha [R_{t+1} + \gamma \hat{v}(S_{t+1}, w) - \hat{v}(S_t, w)] \nabla \hat{v}(S_t, w) \]

Why are bootstrapping methods, defined this way, called *semi-gradient methods*? They take into account the effects of changing \(w \) w.r.t. the prediction, but not w.r.t. the target!
Linear Methods

- Represent state s by feature vector $x(s) = (x_1(s), x_2(s), \ldots, x_d(s))^\top$
- These features can also be non-linear functions/combinations of state dimensions
- Linear methods approximate the value function by a linear combination of these features

$$\hat{v}(s, w) = w^\top x(s) = \sum_{i=1}^{d} w^i x^i(s)$$

- Therefore, $\nabla_w \hat{v}(s, w) = x(s)$
- Gradient MC prediction converges under linear FA
- On-policy linear semi-gradient TD(0) is stable
- Unfortunately, this does not hold for non-linear FA
The update at each time step t is:

$$
\mathbf{w}_{t+1} = \mathbf{w}_t + \alpha \left(R_{t+1} + \gamma \mathbf{w}_t^\top \mathbf{x}_{t+1} - \mathbf{w}_t^\top \mathbf{x}_t \right) \mathbf{x}_t
$$

$$
= \mathbf{w}_t + \alpha \left(R_{t+1}\mathbf{x}_t - \mathbf{x}_t \left(\mathbf{x}_t - \gamma \mathbf{x}_{t+1} \right)^\top \mathbf{w}_t \right)
$$

The expected next weight vector can thus be written:

$$
\mathbb{E}[\mathbf{w}_{t+1}|\mathbf{w}_t] = \mathbf{w}_t + \alpha (\mathbf{b} - \mathbf{A}\mathbf{w}_t),
$$

where $\mathbf{b} = \mathbb{E}[R_{t+1}\mathbf{x}_t]$ and $\mathbf{A} = \mathbb{E}[\mathbf{x}_t (\mathbf{x}_t - \gamma \mathbf{x}_{t+1})^\top]$.

If the system converges, it has to converge to the fixed point:

$$
\mathbf{w}_{TD} = \mathbf{A}^{-1}\mathbf{b}
$$
Coarse Coding

Divide the state space in circles/tiles/shapes and check in which some state is inside. This is a binary representation of the location of a state and leads to generalization.
Again, up to this point we discussed Policy Evaluation based on state value functions.

In order to apply FA in control, we parameterize the action-value function using Semi-gradient SARSA:

\[
\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[R_{t+1} + \gamma \hat{q}(S_{t+1}, A_{t+1}; \mathbf{w}) - \hat{q}(S_t, A_t; \mathbf{w}) \right] \nabla \hat{q}(S_t, A_t; \mathbf{w})
\]
Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

Input: a differentiable action-value function parameterization $\hat{q} : S \times A \times \mathbb{R}^d \rightarrow \mathbb{R}$

Algorithm parameters: step size $\alpha > 0$, small $\varepsilon > 0$

Initialize value-function weights $w \in \mathbb{R}^d$ arbitrarily (e.g., $w = 0$)

Loop for each episode:

- $S, A \leftarrow$ initial state and action of episode (e.g., ε-greedy)

Loop for each step of episode:

- Take action A, observe R, S'
- If S' is terminal:
 - $w \leftarrow w + \alpha \left[R - \hat{q}(S, A, w) \right] \nabla \hat{q}(S, A, w)$
 - Go to next episode
- Choose A' as a function of $\hat{q}(S', \cdot, w)$ (e.g., ε-greedy)
 - $w \leftarrow w + \alpha \left[R + \gamma \hat{q}(S', A', w) - \hat{q}(S, A, w) \right] \nabla \hat{q}(S, A, w)$
 - $S \leftarrow S'$
 - $A \leftarrow A'$
Off-policy Learning

- We want to learn the optimal policy, but we have to account for the problem of maintaining exploration.
- We call the (optimal) policy to be learned the target policy π and the policy used to generate behaviour the behaviour policy b.
- We say that learning is from data off the target policy – thus, those methods are referred to as off-policy learning.
Importance Sampling

- Weight returns according to the relative probability of target and behaviour policy
- Define state-transition probabilities $p(s'|s, a)$ as
 \[p(s'|s, a) = \Pr\{S_t = s'|S_{t-1} = s, A_{t-1} = a\} = \sum_{r \in R} p(s', r|s, a) \]
- The probability of the subsequent trajectory under any policy π, starting in S_t, then is:
 \[
 \Pr\{A_t, S_{t+1}, A_{t+1}, \ldots S_T|S_t, A_{t:T-1} \sim \pi\} = \pi(A_t|S_t)p(S_{t+1}|S_t, A_t)\pi(A_{t+1}|S_{t+1}) \cdots p(S_T|S_{T-1}, A_{T-1})
 \]
 \[
 = \prod_{k=t}^{T-1} \pi(A_k|S_k)p(S_{k+1}|S_k, A_k)
 \]
Importance Sampling

The relative probability therefore is:

Definition: Importance Sampling Ratio

\[
\rho_{t:T-1} = \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k|S_k) p(S_{k+1}|S_k, A_k)} = \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k)}{\prod_{k=t}^{T-1} b(A_k|S_k)}
\]

The expectation of the returns by \(b \) is \(\mathbb{E}[G_t|S_t = s] = v_b(s) \). However, we want to estimate the expectation under \(\pi \). Given the importance sampling ratio, we can transform the MC returns by \(b \) to yield the expectation under \(\pi \):

\[
\mathbb{E}[\rho_{t:T-1} G_t|S_t = s] = v_\pi(s).
\]

Importance Sampling can come with a vast increase in variance.
To use importance sampling with function approximation, replace the update to an array to an update to weight vector w, and correct it with the importance sampling weight.

Off-policy MC Prediction

$$w \leftarrow w + \alpha \rho_{t:T-1}[G_t - \hat{v}(S_t, w)] \nabla \hat{v}(S_t, w)$$

Semi-gradient Off-policy TD(0)

$$w \leftarrow w + \alpha \rho_t \delta_t \nabla \hat{v}(S_t, w)$$

where $\delta_t = R_{t+1} + \gamma \hat{v}(S_{t+1}, w) - \hat{v}(S_t, w)$
Baird’s Counterexample

The reward is 0 for all transitions, hence \(v_{\pi}(s) = 0 \). This could be exactly approximated by \(w = 0 \).
Baird’s Counterexample

Semi-gradient DP

\[\mathbf{w} \leftarrow \mathbf{w} + \frac{\alpha}{|S|} \sum_{s \in S} \left(\mathbb{E}[R_{t+1} + \gamma \hat{v}(S_{t+1}, \mathbf{w}) | S_t = s] - \hat{v}(s, \mathbf{w}) \right) \nabla \hat{v}(s, \mathbf{w}) \]
The combination of

- Function Approximation,
- Bootstrapping and
- Off-policy Learning

is known as the *Deadly Triad*, since it can lead to stability issues and divergence.
Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

- Model-free off-policy RL algorithm that works on continuous state and discrete action spaces
- Q-function is represented by a multi-layer perceptron
- One of the first approaches that combined RL with ANNs, predecessor of DQN
Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

\begin{algorithm}
\begin{algorithmic}
\For{iteration $i = 1, \ldots, N$}
\State sample trajectory with ϵ-greedy exploration and add to memory D
\State initialize network weights randomly
\State generate pattern set $P = \{(x_j, y_j) | j = 1..|D|\}$ with\end{algorithmic}
\begin{align*}
x_j &= (s_j, a_j) \quad \text{and} \quad y_j = \begin{cases} r_j & \text{if } s_j \text{ is terminal} \\ r_j + \gamma \max_{a'} Q(s_{j+1}, a', w_i) & \text{else} \end{cases}
\end{align*}
\For{iteration $k = 1, \ldots, K$}
\State Fit weights according to:
\begin{align*}
L(w_i) &= \frac{1}{|D|} \sum_{j=1}^{|D|} (y_j - Q(x_j, w_i))^2
\end{align*}
\EndFor
\EndFor
\end{algorithm}

\textbf{Algorithm 1:} NFQ
Deep Q-Networks (DQN)

DQN provides a stable solution to deep RL:
- Use experience replay (as in NFQ)
- Sample minibatches (as opposed to Full Batch in NFQ)
- Freeze target Q-networks (no target networks in NFQ)
- Optional: Clip rewards or normalize network adaptively to sensible range
Deep Q-Networks: Experience Replay

To remove correlations, build data set from agent’s own experience

- Take action a_t according to ϵ-greedy policy
- Store transition $(s_t, a_t, r_{t+1}, s_{t+1})$ in replay memory D
- Sample random mini-batch of transitions (s, a, r, s') from D
- Optimize MSE between Q-network and Q-learning targets, e.g.

$$L(w) = \mathbb{E}_{s,a,r,s' \sim D} [(r + \gamma \max_{a'} Q(s', a', w) - Q(s,a,w))^2]$$
Deep Q-Networks: Target Networks

To avoid oscillations, fix parameters used in Q-learning target

- Compute Q-learning targets w.r.t. old, fixed parameters w^-
 \[
 r + \gamma \arg \max_{a'} Q(s', a', w^-)
 \]

- Optimize MSE between Q-network and Q-learning targets
 \[
 L(w) = \mathbb{E}_{s, a, r, s' \sim D} [(r + \gamma \max_{a'} Q(s', a', w^-) - Q(s, a, w))^2]
 \]

- Periodically update fixed parameters $w^- \leftarrow w$
 - hard update: update target network every N steps
 - slow update: slowly update weights of target network every step by
 \[
 w^- \leftarrow (1 - \tau)w^- + \tau w
 \]
Deep Q-Networks (DQN)

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights

for episode $i = 1, \ldots, M$ do
 for $t = 1, \ldots, T$ do
 select action a_t ϵ-greedily
 Store transition (s_t, a_t, s_{t+1}, r_t) in D
 Sample minibatch of transitions (s_j, a_j, r_j, s_{j+1}) from D
 Set $y_j = \begin{cases} r_j & \text{if } s_{j+1} \text{ is terminal} \\ r_j + \gamma \max_{a'} Q(s_{j+1}, a', w^-) & \text{else} \end{cases}$
 Update the parameters of Q according to:
 $$\nabla w_i L_i(w_i) = \mathbb{E}_{s, a, s', r \sim D} [(r + \gamma \max_{a'} Q(s', a', w_i) - Q(s, a, w_i)) \nabla w_i Q(s, a, w_i)]$$
 end
end

Update target network
Deep Q-Networks: Reinforcement Learning in Atari
Deep Q-Networks: Reinforcement Learning in Atari

- End-to-end learning of values $Q(s, a)$ from pixels s
- Input state s is a stack of raw pixels from the last 4 frames
- Output is $Q(s, a)$ for 18 joystick/button positions
- Reward is change in score for that step
How much does DQN help?

<table>
<thead>
<tr>
<th>Game</th>
<th>Q-Learning</th>
<th>Q-Learning</th>
<th>Q-Learning</th>
<th>DQN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ Target Q</td>
<td>+ Replay</td>
<td>+ Target Q</td>
<td></td>
</tr>
<tr>
<td>Breakout</td>
<td>3</td>
<td>10</td>
<td>241</td>
<td>317</td>
</tr>
<tr>
<td>Enduro</td>
<td>29</td>
<td>142</td>
<td>831</td>
<td>1006</td>
</tr>
<tr>
<td>River Raid</td>
<td>1453</td>
<td>2868</td>
<td>4103</td>
<td>7447</td>
</tr>
<tr>
<td>Seaquest</td>
<td>276</td>
<td>1003</td>
<td>831</td>
<td>2894</td>
</tr>
<tr>
<td>Space Invaders</td>
<td>302</td>
<td>373</td>
<td>826</td>
<td>1089</td>
</tr>
</tbody>
</table>
Deep Deterministic Policy Gradient

- DDPG is an actor-critic method (*Continuous DQN*)
- Recall the DQN-target: $y_j = r_j + \gamma \max_a Q(s_{j+1}, a, w^-)$
- In case of continuous actions, the maximization step is not trivial
- Therefore, we approximate deterministic actor μ representing the $\arg \max_a Q(s_{j+1}, a, w)$ by a neural network and update its parameters following the *Deterministic Policy Gradient Theorem*:

$$\nabla_\theta J \approx \frac{1}{N} \sum_j \nabla_a Q(s_j, a, w)|_{a=\mu(s_j)} \nabla_\theta \mu(s_j, \theta)$$

- Exploration by adding Gaussian noise to the output of μ
The Q-function is fitted to the adapted TD-target:

\[y_j = r_j + \gamma Q(s_{j+1}, \mu(s_{j+1}, \theta^\prime), w^-) \]

The parameters of target networks \(\mu(\cdot, \theta^-) \) and \(Q(\cdot, \cdot, w^-) \) are then adjusted with a soft update:

\[w^- \leftarrow (1 - \tau)w^- + \tau w \quad \text{and} \quad \theta^- \leftarrow (1 - \tau)\theta^- + \tau \theta \]

with \(\tau \in [0, 1] \)

DDPG is very popular and builds the basis for more SOTA actor-critic algorithms

However, it can be quite unstable and sensitive to its hyperparameters
Deep Deterministic Policy Gradient

Initialize replay memory \(D \) to capacity \(N \)
Initialize critic \(Q \) and actor \(\mu \) with random weights

for episode \(i = 1, \ldots, M \) do

 for \(t = 1, \ldots, T \) do

 select action \(a_t = \mu(s_t, \theta) + \epsilon \), where \(\epsilon \sim \mathcal{N}(0, \sigma) \)
 Store transition \((s_t, a_t, s_{t+1}, r_t) \) in \(D \)
 Sample minibatch of transitions \((s_j, a_j, r_j, s_{j+1}) \) from \(D \)
 Set \(y_j = \begin{cases} r_j & \text{if } s_{j+1} \text{ is terminal} \\ r_j + \gamma Q(s_{j+1}, \mu(s_{j+1}, \theta^-), w^-) & \text{else} \end{cases} \)
 Update the parameters of \(Q \) according to the TD-error
 Update the parameters of \(\mu \) according to:
 \[
 \nabla_\theta J \approx \frac{1}{N} \sum_j \nabla_a Q(s_j, a, w)|_{a = \mu(s_j)} \nabla_\theta \mu(s_j, \theta)
 \]

 end

end

Adjust the parameters of the target networks via a soft update
In all control algorithms so far, the target policy is created by the maximization of a value-function.

We thus consider the maximum over estimated values as an estimate of the maximum value.

This can lead to the so-called overestimation bias.
Recall the Q-learning target: \(R_{t+1} + \gamma \max_a Q(S_{t+1}, a) \)

Imagine two random variables \(X_1 \) and \(X_2 \):

\[
\mathbb{E} \left[\max(X_1, X_2) \right] \geq \max(\mathbb{E}[X_1], \mathbb{E}[X_2])
\]

\(Q(S_{t+1}, a) \) is not perfect – it can be noisy:

\[
\max_a Q(S_{t+1}, a) = Q(S_{t+1}, \arg \max_a Q(S_{t+1}, a))
\]

If the noise in these is decorrelated, the problem goes away!
Double Q-learning, for estimating $Q_1 \approx Q_2 \approx q_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$
Initialize $Q_1(s, a)$ and $Q_2(s, a)$, for all $s \in S^+, a \in A(s)$, such that $Q(terminal, \cdot) = 0$

Loop for each episode:
 Initialize S
 Loop for each step of episode:
 Choose A from S using the policy ε-greedy in $Q_1 + Q_2$
 Take action A, observe R, S'
 With 0.5 probability:
 $Q_1(S, A) \leftarrow Q_1(S, A) + \alpha \left(R + \gamma Q_2(S', \text{argmax}_a Q_1(S', a)) - Q_1(S, A) \right)$
 else:
 $Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \left(R + \gamma Q_1(S', \text{argmax}_a Q_2(S', a)) - Q_2(S, A) \right)$
 $S \leftarrow S'$
 until S is terminal
Double Q-learning

% left actions from A

Episodes

Double Q-learning

Q-learning

$\mathcal{N}(-0.1, 1)$
TD3 adds three adjustments to vanilla DDPG

- Clipped Double Q-Learning
- Delayed Policy Updates
- Target-policy smoothing
TD3: Clipped Double Q-Learning

- In order to alleviate the overestimation bias (which is also present in actor-critic methods), TD3 learns two approximations of the action-value function.
- It takes the minimum of both predictions as the second part of the TD-target:

\[y_j = r_j + \gamma \min_{i \in \{1, 2\}} Q(s_{j+1}, \mu(s_{j+1}), w_i^-) \]
TD3: Delayed Policy Updates

Due to the mutual dependency between actor and critic updates...

- values can diverge when the policy leads to overestimation and
- the policy will lead to bad regions of the state-action space when the value estimates lack in (relative) accuracy

Therefore, policy updates on states where the value-function has a high prediction error can cause divergent behaviour

- We already know how to compensate for that: target networks
- Freeze target and policy networks between d updates of the value function
- This is called a *Delayed Policy Update*
Target-policy Smoothing adds Gaussian noise to the next action in target calculation.

It transforms the Q-update towards an Expected SARSA update fitting the value of a small area around the target-action:

\[y_j = r_j + \gamma \min_{i \in \{1,2\}} Q(s_j+1, \mu(s_j+1) + \text{clip}(\epsilon, -c, c), w_i^-), \]

where \(\epsilon \sim N(0, \sigma) \).
Table 2. Average return over the last 10 evaluations over 10 trials of 1 million time steps, comparing ablation over delayed policy updates (DP), target policy smoothing (TPS), Clipped Double Q-learning (CDQ) and our architecture, hyper-parameters and exploration (AHE). Maximum value for each task is bolded.

<table>
<thead>
<tr>
<th>Method</th>
<th>H-Cheetah</th>
<th>Hopper</th>
<th>Walker2d</th>
<th>Ant</th>
</tr>
</thead>
<tbody>
<tr>
<td>TD3</td>
<td>9532.99</td>
<td>3304.75</td>
<td>4565.24</td>
<td>4185.06</td>
</tr>
<tr>
<td>DDPG</td>
<td>3162.50</td>
<td>1731.94</td>
<td>1520.90</td>
<td>816.35</td>
</tr>
<tr>
<td>AHE</td>
<td>8401.02</td>
<td>1061.77</td>
<td>2362.13</td>
<td>564.07</td>
</tr>
<tr>
<td>AHE + DP</td>
<td>7588.64</td>
<td>1465.11</td>
<td>2459.53</td>
<td>896.13</td>
</tr>
<tr>
<td>AHE + TPS</td>
<td>9023.40</td>
<td>907.56</td>
<td>2961.36</td>
<td>872.17</td>
</tr>
<tr>
<td>AHE + CDQ</td>
<td>6470.20</td>
<td>1134.14</td>
<td>3979.21</td>
<td>3818.71</td>
</tr>
<tr>
<td>TD3 - DP</td>
<td>9590.65</td>
<td>2407.42</td>
<td>4695.50</td>
<td>3754.26</td>
</tr>
<tr>
<td>TD3 - TPS</td>
<td>8987.69</td>
<td>2392.59</td>
<td>4033.67</td>
<td>4155.24</td>
</tr>
<tr>
<td>TD3 - CDQ</td>
<td>9792.80</td>
<td>1837.32</td>
<td>2579.39</td>
<td>849.75</td>
</tr>
<tr>
<td>DQ-AC</td>
<td>9433.87</td>
<td>1773.71</td>
<td>3100.45</td>
<td>2445.97</td>
</tr>
<tr>
<td>DDQN-AC</td>
<td>10306.90</td>
<td>2155.75</td>
<td>3116.81</td>
<td>1092.18</td>
</tr>
</tbody>
</table>