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Lecture Overview

Bandits
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Multi-armed Bandits

> A multi-armed Bandit is a tuple (A, p), where:

A is a finite set of actions (or arms) and
p(rla) = Pr{R; = r|A; = a} is an unknown probability distribution over rewards

» In each time step ¢, the agent selects an action A;
» The environment then generates reward R;

» The agent aims at maximizing the cumulative reward
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Multi-armed Bandits

» The value of action a is the expected reward ¢(a) = E[R:|A; = a]
> If the agent knew ¢, it could simply pick the action with highest value to solve the problem

> We can estimate g given samples by Qr(a) = ﬁm) Ethl Rl 4,—q, where Np(a) is the
number of times a was taken in t time steps.
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Incremental and Running Mean

» We can compute the mean of a sequence x1,xs, ... incrementally:
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Estimation of ¢

» Let R; now denote the reward received after the ith selection of this action, and let @,
denote the estimate of its action-value after it has been selected n — 1 times.

» Equally, we can use an incremental implementation:

1
Q’I’L+1 = Qn + E[Rn - Qn]
» Generally, we can use some step size a:

Qni1 = Qn + a[Ry — Qn]

> A constant « can also be used for non-stationary problems (i.e. problems for which the
reward probabilities change over time)

» Having an estimate of ¢, we can do greedy action selection by:

A = argmax Q¢ (a)
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e-greedy

» One of the simpliest ways to explore:
With probability (1 — €) select the greedy action
With probability € select a random action
» Can be coupled with a decay schedule for €, so as to explore less when the estimate is
quite accurate after some time

» Exemplary schedule: ;11 = (1 — %)Ginit, where t is the current round and T is the
maximum considered number of rounds
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Optimism in the Face of Uncertainty Principle

Pr{Q}

Which action should we pick?
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Optimism in the Face of Uncertainty Principle
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Which action should we pick?

Optimism in the Face of Uncertainty Principle

The more uncertain we are about an action-value, the more important it is to explore that
action — since it could turn out to be the best action.
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Upper Confidence Bound

» Exploration is needed because there is always uncertainty about the accuracy of the
action-value estimates

» Idea: take into account how close their estimates are to being maximal and the
uncertainties in those estimates

» For example by the Upper Confidence Bound (UCB) action selection:

logt
Nt(a)

A = argmax @Q¢(a) + ¢

» Each time a is selected, the uncertainty is presumably reduced

» On the other hand, each time an action other than a is selected, ¢ increases but N¢(a)
does not

» One implementation of the Optimism in the Face of Uncertainty Principle
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Monte Carlo Tree Search
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Introduction

» Extending Multi-armed Bandits to Markov Decision Processes
by balancing exploration and exploitation for tree search.

» Different to minimax tree search methods, MCTS searches
assymmetricaly.

» Proposed by Kocsis and Szepesvéri in 2006 for improving
computer Go players.

» The online search can be stopped at anytime providing the
currently best action.
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Monte Carlo Tree Search
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Applying Monte Carlo Tree Search (1)

Current state —>ﬁ : Tree Policy
9,

Default Policy
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Applying Monte Carlo Tree Search (2)

Current state —»
Tree Policy

Default Policy
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Applying Monte Carlo Tree Search (3)

Current state —» £

I Tree Policy

Default Policy
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Applying Monte Carlo Tree Search (4)

Current state — &

Tree Policy

Default Policy
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Applying Monte Carlo Tree Search (5)

Current state —» &

Tree Policy

Default Policy
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Monte Carlo Tree Search

» During the selection and expansion phase, we keep track of the visit count

where 1(s, a, 1) indicates whether the ith selection or expansion phase visited state s and
took action a.
> Selection: starting at the root, traverse to a leaf node following the tree policy

> An example of a popular tree policy is to adapt UCB for tree search:
log N(s)

A = argmax Q(s,a) ey [y
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Monte Carlo Tree Search

> Expansion: expand the tree by a child node when reaching a new leaf node s .

» Simulation: simulate an episode from the new node following the rollout policy.

> With the rollout we get a Monte Carlo estimate V(s%) of the value of the new node.
» Backup: update the action-values for all nodes visited in the tree

Q(s,a) = ﬁ > sV (sh).

For the sake of simplicity, we assume that there is only a terminal reward.
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Lecture Overview

AlphaGo
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Can we beat professional go players with MCTS?

» Problem 1: High branching factor
At each new node MCTS always starts from scratch and has to try every possible move.
At the start of the game, there are 192 possible moves.

» Problem 2: Monte Carlo rollouts

Simulation rollouts, especially with random rollout policies, have high variance.
With suboptimal rollout polices the result can be even biased on average.
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Guiding MCTS with Reinforcement Learning

» AlphaGo Zero differs from normal MCTS by leveraging a single neural network that
predicts both a value and a policy for a given state s by

(pv U) = fG(S)

» The value part v is used to estimate the value of leaf states instead of an high-variance
Monte Carlo rollout.

» The policy part p is used as a prior P(s,a) = p(s,a) to guide the MCTS search in a good
direction right from the start

> The effect of the prior is reduced over time by the number of visits N (s, a).
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Guiding MCTS with Reinforcement Learning

a. Select b. Expand and evaluate c. Backup d. Play
R Repeat )
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Training the policy and value network by self-play

H » HH P = oee = $52
> First play a game by self-play and then AN AN AN
update the value and policy network. FONT OOV O ONVON
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Training the policy and value network by self-play

X 81
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b. Neural Network Training

where z is the outcome of the game. o joa jea
+ 4 4

» The policy part of the network p learns the
probablities of the MCTS search 7 via a Py Py Py
cross-entropy loss.
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Results
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Some Notable Iterations of AlphaGo

1. AlphaGo (Silver et al. 2016):

Seperate value and policy network trained with supervised learning from expert data.
Policy and value network improved with reinforcement learning.

2. AlphaGo Zero (Silver et al. 2017):

No human knowledge used for training.
Joined value and policy network trained online with MCTS search.

3. MuZero (Schrittwieser et al. 2020):

Rules are learned by a model.
MCTS in latent space.
Achieved also state of the art in Atari Games.
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Trivia

» The last game a human won against AlphaGo was in 2016 by Lee Sedol:
https://youtu.be/WXuK6gekU1Y?t=3934
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