
Model Predictive Control and Reinforcement Learning

– Technologies behind AlphaGo –

Joschka Boedecker and Moritz Diehl

University Freiburg

October 5, 2022

Go

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 1

Lecture Overview

1 Bandits

2 Monte Carlo Tree Search

3 AlphaGo

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 2

Acknowledgement

Slide contents are partially based on Reinforcement Learning: An Introduction by Sutton and
Barto and the Reinforcement Learning lecture by David Silver.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 3

Lecture Overview

1 Bandits

2 Monte Carlo Tree Search

3 AlphaGo

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 4

Multi-armed Bandits

I A multi-armed Bandit is a tuple 〈A, p〉, where:
I A is a finite set of actions (or arms) and
I p(r|a) = Pr{Rt = r|At = a} is an unknown probability distribution over rewards

I In each time step t, the agent selects an action At
I The environment then generates reward Rt
I The agent aims at maximizing the cumulative reward

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 5

Multi-armed Bandits

I The value of action a is the expected reward q(a) = E[Rt|At = a]

I If the agent knew q, it could simply pick the action with highest value to solve the problem

I We can estimate q given samples by QT (a) =
1

NT (a)

∑T
t=1Rt1At=a, where NT (a) is the

number of times a was taken in t time steps.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 6

Incremental and Running Mean

I We can compute the mean of a sequence x1, x2, . . . incrementally:

µk =
1

k

k∑
j=1

xj

=
1

k

xk + k−1∑
j=1

xj

=

1

k
(xk + (k − 1)µk−1)

= µk−1 +
1

k
(xk − µk−1)

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 7

Estimation of q

I Let Ri now denote the reward received after the ith selection of this action, and let Qn
denote the estimate of its action-value after it has been selected n− 1 times.

I Equally, we can use an incremental implementation:

Qn+1 = Qn +
1

n
[Rn −Qn]

I Generally, we can use some step size α:

Qn+1 = Qn + α[Rn −Qn]

I A constant α can also be used for non-stationary problems (i.e. problems for which the
reward probabilities change over time)

I Having an estimate of q, we can do greedy action selection by:

At = argmax
a

Qt(a)

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 8

ε-greedy

I One of the simpliest ways to explore:
I With probability (1− ε) select the greedy action
I With probability ε select a random action

I Can be coupled with a decay schedule for ε, so as to explore less when the estimate is
quite accurate after some time

I Exemplary schedule: εt+1 = (1− t
T)εinit, where t is the current round and T is the

maximum considered number of rounds

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 9

Optimism in the Face of Uncertainty Principle

Q

P
r{
Q
}

Q(a1)

Q(a2)

Q(a3)

Which action should we pick?

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 10

Optimism in the Face of Uncertainty Principle

Q

P
r{
Q
}

Q(a1)

Q(a2)

Q(a3)

Which action should we pick?

Optimism in the Face of Uncertainty Principle

The more uncertain we are about an action-value, the more important it is to explore that
action – since it could turn out to be the best action.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 11

Upper Confidence Bound

I Exploration is needed because there is always uncertainty about the accuracy of the
action-value estimates

I Idea: take into account how close their estimates are to being maximal and the
uncertainties in those estimates

I For example by the Upper Confidence Bound (UCB) action selection:

At = argmax
a

Qt(a) + c

√
log t

Nt(a)

I Each time a is selected, the uncertainty is presumably reduced

I On the other hand, each time an action other than a is selected, t increases but Nt(a)
does not

I One implementation of the Optimism in the Face of Uncertainty Principle

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 12

Lecture Overview

1 Bandits

2 Monte Carlo Tree Search

3 AlphaGo

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 13

Introduction

I Extending Multi-armed Bandits to Markov Decision Processes
by balancing exploration and exploitation for tree search.

I Different to minimax tree search methods, MCTS searches
assymmetricaly.

I Proposed by Kocsis and Szepesvári in 2006 for improving
computer Go players.

I The online search can be stopped at anytime providing the
currently best action.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 14

Monte Carlo Tree Search

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 15

Applying Monte Carlo Tree Search (1)

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 16

Applying Monte Carlo Tree Search (2)

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 17

Applying Monte Carlo Tree Search (3)

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 18

Applying Monte Carlo Tree Search (4)

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 19

Applying Monte Carlo Tree Search (5)

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 20

Monte Carlo Tree Search

I During the selection and expansion phase, we keep track of the visit count

N(s, a) =

n∑
i=1

1(s, a, i),

where 1(s, a, i) indicates whether the ith selection or expansion phase visited state s and
took action a.

I Selection: starting at the root, traverse to a leaf node following the tree policy

I An example of a popular tree policy is to adapt UCB for tree search:

At = argmax
a

Q(s, a) + c

√
logN(s)

N(s, a)

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 21

Monte Carlo Tree Search

I Expansion: expand the tree by a child node when reaching a new leaf node siL.

I Simulation: simulate an episode from the new node following the rollout policy.

I With the rollout we get a Monte Carlo estimate V (siL) of the value of the new node.

I Backup: update the action-values for all nodes visited in the tree

Q(s, a) =
1

N(s, a)

n∑
i=1

1(s, a, i)V (siL).

For the sake of simplicity, we assume that there is only a terminal reward.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 22

Lecture Overview

1 Bandits

2 Monte Carlo Tree Search

3 AlphaGo

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 23

Can we beat professional go players with MCTS?

No.

I Problem 1: High branching factor
I At each new node MCTS always starts from scratch and has to try every possible move.
I At the start of the game, there are 192 possible moves.

I Problem 2: Monte Carlo rollouts
I Simulation rollouts, especially with random rollout policies, have high variance.
I With suboptimal rollout polices the result can be even biased on average.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 24

Guiding MCTS with Reinforcement Learning

I AlphaGo Zero differs from normal MCTS by leveraging a single neural network that
predicts both a value and a policy for a given state s by

(p, v) = fθ(s)

I The value part v is used to estimate the value of leaf states instead of an high-variance
Monte Carlo rollout.

I The policy part p is used as a prior P (s, a) = p(s, a) to guide the MCTS search in a good
direction right from the start

A = argmax
a

Q(s, a) + c
P (s, a)

1 +N(s, a)

I The effect of the prior is reduced over time by the number of visits N(s, a).

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 25

Guiding MCTS with Reinforcement Learning

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 26

Training the policy and value network by self-play

I First play a game by self-play and then
update the value and policy network.

I For self-play do at each step MCTS and
obtain the visitation counts N(s, a) of each
action at the root state.

I From the visitation counts we derive a policy

π(a) ∝ N1/τ

where τ is a temperature parameter.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 27

Training the policy and value network by self-play

I The network (p, v) = fθ(s) is updated by

l = (z − v)2 − πT logp+ α‖θ‖2,

where z is the outcome of the game.

I The policy part of the network p learns the
probablities of the MCTS search π via a
cross-entropy loss.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 28

Results

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 29

Some Notable Iterations of AlphaGo

1. AlphaGo (Silver et al. 2016):
I Seperate value and policy network trained with supervised learning from expert data.
I Policy and value network improved with reinforcement learning.

2. AlphaGo Zero (Silver et al. 2017):
I No human knowledge used for training.
I Joined value and policy network trained online with MCTS search.

3. MuZero (Schrittwieser et al. 2020):
I Rules are learned by a model.
I MCTS in latent space.
I Achieved also state of the art in Atari Games.

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 30

Trivia

I The last game a human won against AlphaGo was in 2016 by Lee Sedol:
https://youtu.be/WXuK6gekU1Y?t=3934

MPC and RL – Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg 31

	Bandits
	Monte Carlo Tree Search
	AlphaGo

