Model Predictive Control and Reinforcement Learning

— Technologies behind AlphaGo —

Joschka Boedecker and Moritz Diehl

University Freiburg

October 5, 2022

UNI
1

FREIBURG

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Lecture Overview

Bandits

Monte Carlo Tree Search

AlphaGo

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Acknowledgement

Slide contents are partially based on Reinforcement Learning: An Introduction by Sutton and
Barto and the Reinforcement Learning lecture by David Silver.

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Lecture Overview

Bandits

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Multi-armed Bandits

> A multi-armed Bandit is a tuple (A, p), where:

A is a finite set of actions (or arms) and
p(rla) = Pr{R; = r|A; = a} is an unknown probability distribution over rewards

» In each time step ¢, the agent selects an action A;
» The environment then generates reward R;

» The agent aims at maximizing the cumulative reward

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Multi-armed Bandits

» The value of action a is the expected reward ¢(a) = E[R:|A; = a]
> If the agent knew ¢, it could simply pick the action with highest value to solve the problem

> We can estimate g given samples by Qr(a) = ﬁm) Ethl Rl 4,—q, where Np(a) is the
number of times a was taken in t time steps.

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Incremental and Running Mean

» We can compute the mean of a sequence x1,xs, ... incrementally:
1
=3,
j=1

1 k—1

= n T + T

j=1

1

= (@ + (b = Dpp—1)
k

1
= k-1 + E(xk — Hr—1)

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Estimation of ¢

» Let R; now denote the reward received after the ith selection of this action, and let @,
denote the estimate of its action-value after it has been selected n — 1 times.

» Equally, we can use an incremental implementation:

1
Q’I’L+1 = Qn + E[Rn - Qn]
» Generally, we can use some step size a:

Qni1 = Qn + a[Ry — Qn]

> A constant « can also be used for non-stationary problems (i.e. problems for which the
reward probabilities change over time)

» Having an estimate of ¢, we can do greedy action selection by:

A = argmax Q¢ (a)

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

e-greedy

» One of the simpliest ways to explore:
With probability (1 — €) select the greedy action
With probability € select a random action
» Can be coupled with a decay schedule for €, so as to explore less when the estimate is
quite accurate after some time

» Exemplary schedule: ;11 = (1 — %)Ginit, where t is the current round and T is the
maximum considered number of rounds

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Optimism in the Face of Uncertainty Principle

Pr{Q}

Which action should we pick?

J. Boedecker and M. Diehl, University Freiburg

MPC and RL — Technologies behind AlphaGo

Optimism in the Face of Uncertainty Principle

—_— Q)
— Qa2)
— (Q(a3)

Pr{Q}

Q

Which action should we pick?

Optimism in the Face of Uncertainty Principle

The more uncertain we are about an action-value, the more important it is to explore that
action — since it could turn out to be the best action.

J. Boedecker and M. Diehl, University Freiburg

MPC and RL — Technologies behind AlphaGo

Upper Confidence Bound

» Exploration is needed because there is always uncertainty about the accuracy of the
action-value estimates

» Idea: take into account how close their estimates are to being maximal and the
uncertainties in those estimates

» For example by the Upper Confidence Bound (UCB) action selection:

logt
Nt(a)

A = argmax @Q¢(a) + ¢

» Each time a is selected, the uncertainty is presumably reduced

» On the other hand, each time an action other than a is selected, ¢ increases but N¢(a)
does not

» One implementation of the Optimism in the Face of Uncertainty Principle

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Lecture Overview

Monte Carlo Tree Search

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Introduction

» Extending Multi-armed Bandits to Markov Decision Processes
by balancing exploration and exploitation for tree search.

» Different to minimax tree search methods, MCTS searches
assymmetricaly.

» Proposed by Kocsis and Szepesvéri in 2006 for improving
computer Go players.

» The online search can be stopped at anytime providing the
currently best action.

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Monte Carlo Tree Search

1 Repeat while time remains I
Selection —— Expansion — Simulation —— Backup _)

AN N\ N\

p A >R

|
Tree Rollout
Policy Policy
|

X

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Applying Monte Carlo Tree Search (1)

Current state —>ﬁ : Tree Policy
9,

Default Policy

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Applying Monte Carlo Tree Search (2)

Current state —»
Tree Policy

Default Policy

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Applying Monte Carlo Tree Search (3)

Current state —» £

I Tree Policy

Default Policy

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Applying Monte Carlo Tree Search (4)

Current state — &

Tree Policy

Default Policy

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Applying Monte Carlo Tree Search (5)

Current state —» &

Tree Policy

Default Policy

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Monte Carlo Tree Search

» During the selection and expansion phase, we keep track of the visit count

where 1(s, a, 1) indicates whether the ith selection or expansion phase visited state s and
took action a.
> Selection: starting at the root, traverse to a leaf node following the tree policy

> An example of a popular tree policy is to adapt UCB for tree search:
log N(s)

A = argmax Q(s,a) ey [y

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Monte Carlo Tree Search

> Expansion: expand the tree by a child node when reaching a new leaf node s .

» Simulation: simulate an episode from the new node following the rollout policy.

> With the rollout we get a Monte Carlo estimate V(s%) of the value of the new node.
» Backup: update the action-values for all nodes visited in the tree

Q(s,a) = ﬁ > sV (sh).

For the sake of simplicity, we assume that there is only a terminal reward.

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Lecture Overview

AlphaGo

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Can we beat professional go players with MCTS?

» Problem 1: High branching factor
At each new node MCTS always starts from scratch and has to try every possible move.
At the start of the game, there are 192 possible moves.

» Problem 2: Monte Carlo rollouts

Simulation rollouts, especially with random rollout policies, have high variance.
With suboptimal rollout polices the result can be even biased on average.

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Guiding MCTS with Reinforcement Learning

» AlphaGo Zero differs from normal MCTS by leveraging a single neural network that
predicts both a value and a policy for a given state s by

(pv U) = fG(S)

» The value part v is used to estimate the value of leaf states instead of an high-variance
Monte Carlo rollout.

» The policy part p is used as a prior P(s,a) = p(s,a) to guide the MCTS search in a good
direction right from the start

> The effect of the prior is reduced over time by the number of visits N (s, a).

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Guiding MCTS with Reinforcement Learning

a. Select b. Expand and evaluate c. Backup d. Play
R Repeat)

Blovo G H -
B R RE: 151 0
Q+Ufoux I P WY Fopst

2 @) =f(77) 138 %

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Training the policy and value network by self-play

H » HH P = oee = $52
> First play a game by self-play and then AN AN AN
update the value and policy network. FONT OOV O ONVON
» For self-play do at each step MCTS and o o s M
obtain the visitation counts N(s,a) of each .o
action at the root state. 5 % %
» From the visitation counts we derive a policy 1 M i
F(a)O(Nl/T fo i fos fo s
where 7 is a temperature parameter. ‘;". .'?; ‘,’;" @ ‘,’;’ %f;
m Ty 3
¢ z

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Training the policy and value network by self-play

X 81
a. Self-Play a ~

i] iy [b oo £
VANV l

» The network (p,v) = fy(s) is updated by x\ﬁ&lﬁﬁ/\ﬁ PONE OV SNV ON

l=(z—v)?—nTlogp+ ald|?

b. Neural Network Training

where z is the outcome of the game. o joa jea
+ 4 4

» The policy part of the network p learns the
probablities of the MCTS search 7 via a Py Py Py
cross-entropy loss.

G o & " &
) v P, v) v

st T2 3

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Results

a. b. c.
5000 S , 0.35
e @
53 £
4000 - > 9
o 60 L
£ 3
3000 | s 2 03
5 50 5
2000 2 5
< @ 3
= 4] <
@ 1000 - 40 s
T I 3025
[§ 30 °
- 5
-1000 8 §
g2 8 02
-2000 - o @
© °
3000 == Reinforcement Learning S 10 g
- == Supervised Learning F=1 == Reinforcement Learning E3 == Reinforcement Learning
=== AlphaGo Lee % = Supervised Learning @ = Supervised Learning
~4000 - r - r v v v g 04 v - v v - v v g 0154, v v - v v - v
0 10 20 30 40 50 60 70 o 0 10 20 30 40 50 60 70 g 0 10 20 30 40 50 60 70

Training time (hours) Training time (hours) Training time (hours)

MPC and RL — Technologies behind AlphaGo Boedecker and M. Diehl, Unive

Some Notable Iterations of AlphaGo

1. AlphaGo (Silver et al. 2016):

Seperate value and policy network trained with supervised learning from expert data.
Policy and value network improved with reinforcement learning.

2. AlphaGo Zero (Silver et al. 2017):

No human knowledge used for training.
Joined value and policy network trained online with MCTS search.

3. MuZero (Schrittwieser et al. 2020):

Rules are learned by a model.
MCTS in latent space.
Achieved also state of the art in Atari Games.

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

Trivia

» The last game a human won against AlphaGo was in 2016 by Lee Sedol:
https://youtu.be/WXuK6gekU1Y?t=3934

MPC and RL — Technologies behind AlphaGo J. Boedecker and M. Diehl, University Freiburg

	Bandits
	Monte Carlo Tree Search
	AlphaGo

