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4.5. STATISTICAL ANALYSIS OF THE WEIGHTED LEAST SQUARES ESTIMATOR 39

4.5.3 Optimality of the Inverse Noise Covariance as Weighting Matrix

As mentioned at the end of the previous section, the choice of the inverse of the noise covariance as weighting
matrix is optimal in the sense that no other choice of weighting matrix delivers a smaller covariance. We will be
able to prove an even stronger statement, namely that the optimally weighted least squares estimator is the best
among all unbiased linear estimators. In this subsection we drop the subindex (·)N for notational simplicity.

Theorem 7 (Cramer-Rao Lower Bound for Unbiased Linear Estimators) Assume measurements y 2 RN are
generated according to a model y = �✓0 + ✏ with ✓0 2 Rd the true (but unknown) parameter and ✏ 2 RN

zero-mean measurement noise with positive definite covariance matrix cov(✏) = ⌃✏ and rank(�) = d. Regard
any unbiased linear estimator ✓̂A := Ay with fixed matrix A 2 Rd⇥N . Then

cov(✓̂A) < (�
>

⌃
�1
✏ �)

�1
. (4.32)

The lower bound is achieved by the optimally weighted least squares estimator with matrix A
⇤

:= (�
>

W
⇤
�)

�1
�

>
W

⇤

using W
⇤

:= ⌃
�1
✏ , i.e., it has the smallest covariance matrix among all unbiased linear estimators.

Proof: First, we note that for any given matrix A, the estimator is unbiased if and only if A� = I, because
E{Ay} = E{A�✓0 + ✏} = A�✓0. Second, we observe that cov(✓̂A) = A⌃✏A

>. Third, we have shown above in
Eq. (4.31) that cov(✓̂A⇤) = (�

>
⌃

�1
✏ �)

�1, i.e., that the lower bound is indeed achieved by the optimally weighted
least squares estimator. Now, the main statement of the above theorem is equivalent to

8A 2 Rd⇥N
:

⇣
A� = I

⌘
)

⇣
A⌃✏A

> < (�
>

⌃
�1
✏ �)

�1
⌘
. (4.33)

We need to show that the matrix A⌃✏A
>� (�

>
⌃

�1
✏ �)

�1 is positive semidefinite if A� = I. In order to show this
we introduce the matrix

B =

"
A ⌃

1
2
✏

�
>

⌃
� 1

2
✏

#
for which we have BB

>
=


A⌃✏A

>
A�

(A�)
>

�
>

⌃
�1
✏ �

�

Now there is a famous lemma about the ”Schur complement” (cf. A 5.5 in [?]) that states that if the lower right
block in a symmetric matrix is positive definite, the whole matrix is positive semidefinite if and only if the so called
”Schur complement” of the lower right block is positive definite.

In our case, the lower right block is given by �
>

⌃
�1
✏ �, which is positive definite. The Schur complement –

which must be positive semidefinite due to the fact that the whole matrix BB
> is positive semidefinite – is in our

case given by A⌃✏A
>�A� (�

>
⌃

�1
✏ �)

�1
(A�)

>. Because A� = I we deduce that A⌃✏A
>�(�

>
⌃

�1
✏ �)

�1<0.
This is what we wanted to prove.


