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Introduction

Airborne Wind Energy

o Airborne Wind Energy (AWE): airborne device in the wind field

o different working principles
o reel in / reel out
e onboard generation

Figure: AWE System(Makani Technologeis)
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Rotary Kite AWE

@ rotary kite airborne wind energy systems: rotor instead of a kite or wing
o different kinds of working principles and energy transmission
@ here: energy transmission by a torsionally stiff structure (— torque)

Figure: Rotary Kite AWE System
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System Setup

lifting kite

rotor

wind direction

torque tether

generator

Figure: Overall system setup
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Motivation for Removing the Lifting Kite

no steering possible

no automated starting and landing
lifting kite limited to certain wind speeds
adds complexity

idea: cyclic pitch mechanism and control

aim of this thesis:

investigate this approach for keeping the system airborne
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Cyclic Pitch lllustration

@ cyclically changing the angle of attack of the rotor blades

Figure: Cyclic pitch demonstration
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Introduction

Airfoil Aerodynamics

Vo - COS 7Y

Figure: Forces on the rotor blade
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Airfoil Polar
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Figure: Polar for the used airfoil
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Cyclic Pitch Idea

@ cyclic pitch results in a tilting moment on the rotor
@ the direction of the overall lift force of the rotor can be adjusted

@ this can be used to steer the rotor
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Cyclic Pitch Mechanism

@ cyclic pitch adjustment using an
eccentric mechanism

@ stationary part defines eccentric
point (— cyclic pitch amplitude)
@ rotation causes a cyclic change

of the distance from eccentric
point to rotating point

@ can be approximated by a sine
function

@ rotation compensator needed as
stationary part (RCD) Figure: Eccentric mechanism scheme
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Introduction

Cyclic Pitch Mechanism

Figure: Cyclic Pitch Scheme
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Introduction

Rotation Compensation

motor with gear

motor driver .
microcontroller

IMU
bearing

battery
outer gear

Figure: Active rotation compensation illustration
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Blade Pitch

Figure: Blade pitch setup
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Modeling Approach

lift force on the blade depends on the radius
different modeling strategies possible (BEM, CFD)

here: experimental approach is taken for modeling

simple model that reflects the main effects
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Introduction

Control System Overview

@ two control loops: rotation compensator and cyclic pitch loop
@ rotation compensator as underlying loop
@ aim: set the altitude h of the rotary kite
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Introduction

System Overview
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Figure: Control loop overview
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Rotation Compensation Control

@ has been investigated in another thesis using MPC

@ is deployed using a simple PID controller due to limitations of the
microcontroller

@ sensor fusion and state estimation is mainly performed on the IMU
itself

@ both runs at 50 Hz
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Rotation Compensation Control

Performance

@ has been evaluated testing disturbance correction and setpoint

following
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Figure: Jump from 80 min~! to 130 min~!
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Rotation Compensation Control

Performance

@ has been evaluated testing disturbance correction and setpoint
following
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Figure: Setpoint following for different setpoint jumps
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Rotation Compensation Control

Performance

@ rotation compensator is able to

e reach the setpoint
e correct disturbances
e follow a setpoint trajectory

@ performance might be increased with higher update rate
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Expe s with a Rotary Kite in Alicante

Figure: Rotor setup in Alicante
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Setup and Methods

@ rotor mounted on motor on a wall
@ rotor is driven by motor

e at different speeds
e for different cyclic pitch amplitudes
o for different roll angles (rotation compensator)

@ force sensors mounted between rotor and motor at each blade rod
@ problem: rotating sensors and no IMU on rotor

— deeper data analysis necessary
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Experiments with a Rotary Kite in Alicante

Experimental Setup
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Figure: Experimental rotor setup
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Experiments with a Rotary Kite in Alicante

Example Data

Controls
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Figure: Data from one force sensor
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Experiments with a Rotary Kite in Alicante

Results
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Experiments with a Rotary Kite in Alicante

Results
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Figure: Phase dependence on rotor speed and cyclic pitch amplitude
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Rotor Model

@ moment magnitude approximated by an affine map
@ moment direction: high uncertainties

@ also regard first order effects by an affine map

0
Ms(wry 50) = (Cl : ﬁc + C - wr + C3) : COS((ps)
(Cl “Be+ 2w + C3) ) Sin((ps)
with
¢s = cafBc + cswr + Co
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Figure: Rotor test rig
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Setup and Methods

@ uses a different rotor

e force sensors mounted on the axle (do not rotate with the rotor)
— makes data analysis much easier

@ also driven by a motor

@ rotor moment again measured for different rotor speeds and cyclic
pitch amplitudes
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Experiments with Test Rig

Setup scheme
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Figure: Setup scheme of the test rig
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Exper ts with Test Rig

Figure: Force sensor on the test rig
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Rotor Model

show video
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Experiments with Test Rig

Results
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Figure: Rotor moment for different rotor speeds
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Experiments with Test Rig

Results

@ support the data of the first experiment

@ higher dependence of the direction on rotor speed and pitch amplitude
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Towards a Simple Overall System Model

Figure: Simple overall model
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Towards a Simple Overall System Model

o effective area of the rotor decreases with higher elevation angle

— lower rotor lift force
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Figure: Upper bound of the elevation angle for a given rotor speed
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Towards a Simple Overall System Model

Simulation
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Figure: Simulated system for a setpoint trajectory
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Towards a Simple Overall System Model
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Summary of the Main Outcomes

@ aerodynamic rotor model

e moment magnitude and phase dependence approximated by an affine
map

e only valid for the regarded operating region

e high uncertainties regarding the phase parameter estimation

@ optimization of the rotor needed

e rotor lift force was assumed as a high theoretical value to make model
feasible

@ basis for a system model
e the expected working principle was shown
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Summary of the Main Outcomes

Thank you for your attention!
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