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Non-Smooth Dynamics (NSD) - Informal Classification

Regard ordinary differential equation (ODE) with non-smooth right hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g. & =1+ |z

NSD2: state dependent ("internal”) switch of RHS, e.g. © = 2 — sign(z)
(similar but different: external switch by discrete actuator)

state dependent jump, e.g. x(t4) =3+ z(t-)
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Switched NMPC for Electric DC-AC Power Converter (NSD2)
PhD work by Benjamin Stickan (Fraunhofer ISE) and Gianluca Frison

» NMPC aim: follow sinusoidal reference, react
fast to grid failures

T
» 3 states, 1 binary input, 1 state dependent
switch due to diodes (in blanking time)

a
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3
3
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» sampling time: 25 microseconds, ARM
A5301.1GHz, horizon N = 2

» switching integrator, 3 RK4 and 4 Euler
steps, generated as C code via CasADi

X |
» hand tailored SQP real-time iteration, on

, \
track to be applied on industrial photovoltaic
power converter (in DyConPV project).
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Overview

Optimization with Complementarity Constraints: Embracing the Nonconvex
Finite Elements with Switch Detection (FESD)
Time Freezing for State Dependent Jumps

vV v vy

Three Step Decomposition for Discrete Actuators
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NMPC needs to solve Nonlinear Programs (NLP)

Continuous Time NMPC Problem Discretized NMPC Problem (an NLP)

T . N-1
min / L(z,u)dt + E(z(T)) min 5o Pr(k, 2k, ur) + E(ey)
x(:),u(- 0 [
s.t. x(0) = Zo s.t. To = IO.
i (t) = f(a(t), u(t)) w1 = OF (wk, 2, k)
0= @?1g(1‘k, Zky uk)
0> h(z(t),u(t)), t €[0,T] 0> ®p(xk, 2k, ur), k=0,...,N—1
0> r(a(T)) 0> r(oy)
Assume smooth convex L, E, h,r. Again, smooth convex @, F &, 7.
Nonlinear f makes problem nonconvex. Variables = = (xg,...) and 2 = (z0,...) and
Direct methods diSCI’etiZe, then optimize. u = (uo7 . ,UN—l) can be summarized in
E.g. collocation or multiple shooting. vector w € R™w .
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Nonlinear Programs (NLP) with Convex Structure

Newton-type methods generate a sequence wy, w1, wa, ... by linearizing and solving convex
subproblems. E.g., sequential convex programming (SCP) linearizes nonconvex constraints.

Summarized NLP SCP subproblem at linearization point w;

i - J (w) wit1 € arg min J(w)
s.t. 0= F(w) st. 0= Fp(w;w;)
02> H(w) 0> H(w)
Still assume smooth convex J, H. First order Taylor series:
Nonlinear ' makes problem nonconvex. Fi(w;w;) := F(w;) + gl(wz)(w — w;)

Works extremely well for mildly nonlinear F', also in microsecond NMPC [cf. Zanelli 2021, Lekic
2020, Hausberger 2020]

But what if there is significant nonconvex structure in the NLP 7
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Mathematical Programs with Complementarity Constraints (MPCC)

NLP with additional constraints of complementarity type: ‘x lyeaTy=0 ‘

MPCC

Toy MPCC example:

min (w; — 1)? + (wqy — 1)?

min J(w)
wER™w weR?
st. 0= F(w) st. 0<w, Lwe >0
0> H(w)

Two local minimizers.
One local maximizer
(without constraint
qualification)

0<Lwl Rw>0

Convex J, H and smooth F.
Fixed matrices L, R.

Due to complementarity constraints, MPCC are nonsmooth and nonconvex.
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MPCC Solution by Penalty Method

The penalty MPCC method [cf. Ferris 1999, Ralph&Wright 2004] generates sequence wg, wi, w3, . ..
by solving NLP with increasing weights 0 = py < p1 < p2 < ..., and NLP warm-starting.

MPCC Penalty subproblem for weight p;

Jin - J(w) wj € arg min J(w) + pj $(w)
st. 0= F(w) st. 0= F(w)

0> H(w) 0> H(w)

0<Lw, Rw>0 0<Lw, Rw2>0

0 =

() Objective contribution p;¢(w) is nonconvex.
with nonlinear nonconvex scalar Need good NLP solver (SCP, SQP, Interior Point, ...)

d(w) = (Lw)" Rw Crucial: start NLP solver at previous solution w}_;.

One can often find "good” local minima with the penalty method.
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Algorithms for MPCC: Two Examples

MPCC often exhibit structure that can be exploited by tailored solvers. We give two examples.

Generic Penalty Loop: Solver LCQP for Linear Complementarity QP:
Penalty subproblem = NLP Penalty subproblem = nonconvex quadratic program
weRw J(w) + pj p(w) m}én §wTQw +clw+ %JwT(LTR + R L)w
weR™w
st 0= F(w) st. 0=Aw—b, 0> Cw—d, 0 < Lw, Rw >0
0> H(w)
0< Lw. Rw>0 Solve by exact line-search SCP started at wj o := wj_;:

For generic nonlinear MPCC SCP subproblem = convex quadratic program (QP)

sequence of penalty NLPs can be 1+ T
solved e.g. by open-source solver min ~w Qw+ (c+ p;Vo(wj;)) w

weRnw 2
IPOPT [Wichter and Biegler 2006]. st. 0= Aw—b. 0> Cw—d. 0< Lw. Rw >0

Used for many results in this talk.
Solve by hot-started qpOASES [Ferreau 2014].
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Benchmarking LCQP on Test Example

LCQP code developed and tested by Jonas Hall

Example from discretization of non-smooth optimal control problem [Stewart & Anitescu 2010].

Continuous OCP with NSD2 System Visualization of relaxation for different o ~ 1/p

min 2 2()2dt + (2(2) — 5/3)> _
st #(t) =2 —sign(x(t)), t€][0,2] ) \,_/
Use implicit Euler with step i = 2/N: Benchmark different MPCC solvers, vary N:

Linear Complementarity QP

min EkN:O Ek (l‘k)

8 %

Ho

]

&b
oh
ol
o8
|

@y, St
5 -
st. k= xp—1 + h(3 — 2y) I S
= ol a —— LCQP Schur
O0<azp+ze L1loge>0 B
- @ - IPOPT Relaxed
o< 2k 1 Yk > 0’ k= 1’ RN N % w10 %0 u‘o‘ 0010 10 10 o 150
— — Number of discretization nodes

LCQP-Schur about 2x faster than IPOPT-Pen
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Overview

Optimization with Complementarity Constraints: Embracing the Nonconvex
Finite Elements with Switch Detection (FESD)
Time Freezing for State Dependent Jumps

vV v vy

Three Step Decomposition for Discrete Actuators
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Non-Smooth Dynamics (NSD) - Informal Classification

Regard ordinary differential equation (ODE) with non-smooth right hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g. & =1+ |z

NSD2: state dependent (”internal”) switch of RHS, e.g. © =2 — sign(z)
(similar but different: external switch by discrete actuator)

state dependent jump, e.g. x(t4) =3+ z(t-)
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NSD2 Systems - State Dependent Switches

Regard discontinuous right hand side, piecewise smooth on disjoint open regions R; C R"~

Discontinuous ODE (NSD?2)

z = fi(z,u), if ¢ € R;,
ie{l,...,m}

Numerical aims:
1. exactly detect switching times

2. obtain exact sensitivities across regions
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NSD2 Systems - State Dependent Switches

Regard discontinuous right hand side, piecewise smooth on disjoint open regions R; C R"~

Discontinuous ODE (NSD?2)

z = fi(z,u), if ¢ € R;,
ie{l,...,m}

Numerical aims:
1. exactly detect switching times

2. obtain exact sensitivities across regions

3. appropriately treat evolution on boundaries
(sliding mode — Filippov convexification)
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Filippov Convexification

Dynamics not yet well-defined on region boundaries OR;. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion
& € Fp(z,u) : {Zflxu ‘ ZOi:L
i=1
.m

0120, Z—l
0; =0, ifa:g_fE }

» for interior points z € R; nothing changes: Fr(x,u) = {f;(z,u)}

» Provides meaningful generalization on region boundaries.
E.g. on Ry N Ry both #; and 65 can be nonzero

NMPC with jumps and discrete actuators Moritz Diehl 13



How to compute convex multipliers 67

Assume sets R; given by [cf. Stewart, 1990]

R el i ]

Linear program (LP) Representation

m

T = Z fi(z,u)0F  with

i=1

0" Gargmln Zgl

S.t. Z 0; =1 0,y 91 <92 0y g@2<g 0 91=92
he, DL, X
60 > 0. 0, 0 01
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From Filippov to dynamic complementarity systems

Using the KKT conditions of the parametric LP

LP representation Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)

&= F(z,u) 0"
z=F(z,u)0 (1a)
ith 0" € argmin z)' o
i Gl 0= g(a) ~ A~ op (1)
st. 0<46 0<0LA>0 (1c)
1=c"f l=c'0 (1d)

» 1 € Rand A € R™ are Lagrange multipliers
Fla,u) = [fiw,w), . o)) €R™™ o (16) & min{6, A} = 0 € R™
9(z) =[g1(2),...,gm(x)]" €R™ » Together, (1b), (1c), (1d) determine the
=[1,1,...,1]T €eR™ (2m + 1) variables 6, A\, pu uniquely

gy
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Continuous time DCS Discrete time IRK-DCS equation

z(0) = Zo, To,0 = Tog, Tkt+1,0= Tk,0 T hZZ=1 bnVkn
@(t) = v(t) Tk =Tko+hD 0| QinVkn
v(t) = F(x(t),u(t)) 0(t) Vg, = Fxg,j, vk, ;) Ok,j
0= g(x(t)) — AQt) — eu(?) 0=g(%k,j) — Ak,j — €hik,;
0<0(t) LA{t)>0 0< 0k, LAp;>0
1=e"6(t), tel0,T] l=e'6pj, j=1,...,5, k=0,...,N—1

Notation: zj, € R™ 6, € R™ etc. with:
» k€ {0,1,...,N} - index of integration step; step length h :=T/N
» j,ne€{0,1,...,s} - index of intermediate IRK stage / collocation point
> ajy, and b, - Butcher tableau entries of Implicit Runge Kutta method

NMPC with jumps and discrete actuators Moritz Diehl 16



Conventional Collocation - Illustrative Example

Regard example with = € R? and Solve with IRK Radau IIA method of order 7,
constants a, k,c > 0: s=4, N=5 T=0.5, h=0.1.

i = {fl(l‘), xr1 > 0,

fa(x), =1 <O0.

@ =", p@=[ 7

—a —kx1 — cxo

gl(x) = — 71,

92(33) =T

To=1[0.5,0]"

NMPC with jumps and discrete actuators Moritz Diehl 17



Conventional Collocation - Illustrative Example

Zoom in

05 T T T T T T
] I I I 2ok I I
I I I I I I
I I I I I I
2.4
05 I I I I I I
I I I L L | |
l I I o | |
1 I I 26 I 3 I
I I I | Switching Time| |
= ! ! ! = | I
T 15 I I I T 28 I I
I I I I pi
2 : I : ‘ !
I I I 3r | |
25 I I I | L |
I I I | = |
I I 32 I I
3 I I ) | |
I I I | |
35 L L - 34k 1 1

0 0.1 0.2 0.3 0.4 0.5 026 0.28 0.3 032 034 036 0.38 0.4 0.42
t

High integration accuracy of 7th order IRK method is lost in fourth time step.
Reason: we try to approximate a non-smooth function by a (smooth) polynomial.

Question: could we ensure that switches happen only at element boundaries?
— Finite Elements with Switch Detection (FESD)

NMPC with jumps and discrete actuators Moritz Diehl 18



Finite Elements with Switch Detection (FESD)

PhD work of A. Nurkanovic, to be submitted

FESD is a novel DCS discretization method based on three ideas:
» make stepsizes hy free, ensure Z,]CV:_OI hi = T [cf. Baumrucker & Biegler 2009]
» allow switches only at element boundaries, enforce via cross-complementarities

» remove spurious degrees of freedom via step equilibration

0 0.1 02 0‘3 04 0‘5 t f
conventional variable stepsizes and FESD discretization
discretization cross-complementarities with step equilibration

NMPC with jumps and discrete actuators Moritz Diehl 19



Conventional DCS and FESD discretization without step equilibration

Conventional discretization FESD discretization without step equilibration

To0 =To, h=T/N To,0 = Zo, ]kvz_olhk =T
T41,0 = Tio + h 2221 bnVk,n Thi1,0 = Th,0 + Iy Zizl bnVkn
Tx,j = Tr,o0 + P Y0 GinVkm Tk = Tho + Pk Y1 QjnVkn
Vk,j = F(Tk,j, uk,5) Ok, Uk, = F(2k,j, uk,j) Ok, j
0=9g(®k5) = Akj — epnj 0= g(r,;) = Mujr = epin,j
0<6r; LA;>0 0< 0, L \gj» >0 (cross-complementarities)
L=e'0), l1=e'0y,
forj=1,...,s for j=1,...,s and k=0,...,N—1
and k=0,...,N—1 and j/ =0,1,...,s
» N extra variables (ho,...,hn_1) restricted by one extra equality

» additional multipliers Ay o, ft,0 are uniquely determined

NMPC with jumps and discrete actuators Moritz Diehl 20



Conventional DCS and FESD discretization

To0 =1%o, h=T/N €00 = To, Yon g bk =T
Th41,0 = Th,o + D01 bk Tht1,0 = Tho + Mk Donq bk
Th,j = Tr,0 +h 35,21 Qjnin Thg = Tk,0 + ke Dy GinVkm
vk, = Fxkj,uk ;) Ok,j Vg, = Fzg,j, ur,;) Ok j
0 = g(xk,5) — Ak,j — elik,j 0 = g(xk,j1) — Ar,j» — €lig,j¢
0<0k; LA; >0 0< O L A jo >0

(cross-complementarities)
T T
l=e Qk,j l=e ek’j

0= vk, 041, Aers Aw 1) - (Bar — P 1)
for j=1,...,s and k=0,...,N—1
and j'=0,1,...,s and kK =0,...,N—2

forj=1,...,s
and £k=0,...,N -1

» N extra FESD variables (hq,...,hy_1) now locally uniquely determined by N constraints
» "Nurkanovic's indicator function” (0, 041, Ak, Ak 1) only zero if a switch occurs

NMPC with jumps and discrete actuators Moritz Diehl



Multipliers in Conventional and FESD Discretization

Conventional Collocation: FESD Discretization:
1 . 1F ] ‘I ‘I T
| | 1
| | I 1
= _ I
Tos Sos | | q i‘ ]
I | | :
| | I 1
I | | |
0 0 T T . 1 1
o 0 0.1 0.2 03 04 05
t t
1 l l { l ) : 7 " T )
i | | N — ! ! =
_ | | | | < | | | J—,
Tosp l l | | I Sos | | | I
l 1 l I I | | \ h
1 1 l 1 I | | | H
1 1 1 1 |
° . . . . ! 0 T 1 : 1 1
0 0.1 02 03 04 05 o 01 02 03 04 05
t t

FESD's cross-complementarities exploit the fact that the multiplier A;(¢) is continuous in time.
On boundary, A;(t;) must be zero if 8;(¢t) > 0 for any t € [tx—_1,tx+1] on the adjacent intervals.

N
N
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Numerical simulation example: unstable switched oscillator

Regard an unstable non-smooth oscillator 2
Ay, <0, i
() = 1z, () E
Asz,  c(x) >0, S
with
1w 1 —w o
Al — , A2 — , 2 1 f, 1 2
—w 1 w 1 ,
25
clr) =22 4+25 -1, w=2m x(0)=[e ' 0]"
For t € [0,2], we have
2(2) =[e 0] ;

NMPC with jumps and discrete actuators Moritz Diehl



switched systems

FESD recovers high integration order for

Conventional Collocation: FESD Discretization:

10°F
—6— IRK Radau 9

B e \
S g
= =

—6— Iuplicit Euler

0 —6— IRK Radau 3 0
077 IRK Radau 5 | | 1010
—©— IRK Radau 7
—©— IRK Radau 9
102 10° 102 10°
M

M
Integration error E(T') at time T' = 2 vs. total number M = s N of collocation points, for
different Radau IlA methods.

FESD discretization delivers versatile MPCC formulation with high integration order
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Regard the following OCP
4

min / u(t) "u(t)dt
@()u(-) 0

st 2(0) = (2,1),
#(t) € —sign(z(t)) + u(t), t € [0,4],
— 2ey < u(t) < 2e, t€0,4],
2(4) = (~1,-0.5).
15
1
0
0.5
15’2 15 1 0.5 0 05 15

NMPC with jumps and discrete actuators
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Overview

Optimization with Complementarity Constraints: Embracing the Nonconvex
Finite Elements with Switch Detection (FESD)
Time Freezing for State Dependent Jumps

vV v vy

Three Step Decomposition for Discrete Actuators
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Non-Smooth Dynamics (NSD) - Informal Classification

Regard ordinary differential equation (ODE) with non-smooth right hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g. & =1+ |z

NSD2: state dependent ("internal”) switch of RHS, e.g. © = 2 — sign(z)
(similar but different: external switch by discrete actuator)

state dependent jump, e.g. z(t4) =3+ z(t-)
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NSD3 State Jump Example: Bouncing Ball

Bouncing ball with state 2 = (y, v): Phase plot of bouncing ball trajectory:
mv = —mg, ify >0
o(tt) = —09v(t™), ify(t—)=0andv(t") <0 |
ol
o
e z(0)
Sof z
4l
2l
a3t (tr)
ol
5t ‘ ‘ ‘
-1.5 -1 -0.5 0 0.5 1

t y

Question: could we transform NSD3 systems into (easier) NSD2 systems?

NMPC with jumps and discrete actuators Moritz Diehl 30



Three ideas:

1. mimic state jump by auxiliary dynamic system i = ¢(z) on prohibited region
2. introduce a clock state ¢(7) that stops counting when the auxiliary system is active

3. adapt speed of time, g—: = s with s > 1, and impose terminal constraint ¢t(T) =T

NMPC with jumps and discrete actuators Moritz Diehl 31



The time-freezing reformulation

Augmented state (z,t) € R™™! evolves in
numerical time 7. Augmented system is
nonsmooth, of NSD2 type:

s [f(f)] , if c(x)>0
d |z

dr
t lgp(z)

0], if ¢(z) <0

» During normal times, system and clock
state evolve with adapted speed s > 1.

> Auxiliary system 9% = ¢(z) mimics state

jump while time is frozen, % =0.
aT

NMPC with jumps and discrete actuators Moritz Diehl
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Time-freezing for bouncing ball example

t [physical time]
o

v(t)

2r Virtual time 7

y(t),

0 f; 1‘0 15
7 [numerical time] t [physical time]

Evolution of physical time (clock state)

during augmented system simulation We can recover the true solution by plotting

(s=1). x(7) vs. t(7) and disregarding " frozen pieces".

NMPC with jumps and discrete actuators Moritz Diehl 33



A Tracking NMPC Example with Time-Freezing and FESD

Regard bouncing ball in two dimensions driven by bounded force: § = u

-15 -1 05 0 05 1 15

> augmented state
z=(q,41t) ER®

» m =9 regions (8 with auxiliary
dynamics for state jumps)

NMPC with jumps and discrete actuators

@ )w()S(),
0(),A0),n()

s.t.

Qref (7—) =

Moritz Diehl

/0 (€ — er() T (@ — ues (1)) s(7) dr
x(0) = xo,

'(r) =Y 0:(7) fila(7), u
i=1

HT) =T,

max’

<
1 <8(7) < Smax, 7 €[0,T].

(Rcos(wt(r)), Rsin(wt(T))).



Results with slowly moving reference

For w = 7, tracking is easy: no jumps occur in optimal solution.

» Regard time horizon of two periods

» N = 25 equidistant control intervals

» use FESD with Nggrsp = 3 finite elements
with Radau 3 on each control interval

o(t)

» each FESD interval has one constant
control u and one speed of time s

» MPCC solved via £, penalty
reformulation and homotopy

» For homotopy convergence: in total 4
NLPs solved with IPOPT via CasADi

States and controls in physical time.

NMPC with jumps and discrete actuators Moritz Diehl 35



Results with slowly moving reference - Movie

For w = 7, tracking is easy: no jumps occur in optimal solution.
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Results with fast reference

For w = 2, tracking is only possible if ball bounces against walls.

States and controls in numerical time. States and controls in physical time time.
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Results with fast reference - Movie

For w = 2, tracking is only possible if ball bounces against walls.

NMPC with jumps and discrete actuators Moritz Diehl 38



Homotopy: first iteration vs converged solution

Geometric trajectory

1.5 1 -1.51 1
2.5 2 1.5 1 0.5 0 0.5 1 15 2 25 2.5 2 1.5 1 0.5 0.5 1 15 2 25
e q.
After the first homotopy iteration The solution trajectory after convergence

NMPC with jumps and discrete actuators Moritz Diehl 39
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Hopping Robot - move with minimal effort from start to end position

Homotopy initialized with start position everywhere. Optimizer finds creative soluton. Not with FESD yet.

NMPC with jumps and discrete actuators Moritz Diehl 41



Overview

Optimization with Complementarity Constraints: Embracing the Nonconvex
Finite Elements with Switch Detection (FESD)
Time Freezing for State Dependent Jumps

vV v vy

Three Step Decomposition for Discrete Actuators
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Non-Smooth Dynamics (NSD) - Informal Classification

Regard ordinary differential equation (ODE) with non-smooth right hand side (RHS).
Distinguish three cases:

NSD1: non-differentiable RHS, e.g. & =1+ |z

NSD2: state dependent ("internal”) switch of RHS, e.g. © = 2 — sign(z)
(similar but different: external switch by discrete actuator)

state dependent jump, e.g. x(t4) =3+ z(t-)
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Mixed Integer Optimal Control Problem with Binary Inputs b(t)

Formulated in outer convexified form. Can equivalently be formulated with complementarity constraints.

T
minimize L(x,u,b,s) dt + M (x(T 2a
z(-),u(-),b(-),s(:) / ( ) ( ( )) (22)
subject to x(O) =TI (2b)

Zb fzxuc Zb (2¢)

bi(t) € {0,1} [@ 0<bi(t) L (1—b(t)) > o] for i=1,...np, (2d)
_3+r1§r(x,u,b,c) <ry+s, for t € [O,T] (2e)

( + additional combinatorial constraints) (2f)

x(t): states, u(t): continuous controls, b(t): binary controls, s(t): slack variables

c(t): time-varying parameters, f: system dynamics, r; < r < r,: path constraints

Discretize to obtain MINLP. Global solution usually prohibitive (cf. Ruth Misener's plenary).
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Three step decomposition for fast approximate MIOCP solution

Combinatorial Integral Approximation (CIA)!

1. Solve relaxed NLP with b(t) € [0,1]™ to obtain relaxed solution b*(¢) for ¢ € [0,T].
2. Solve minimum distance problem to find binary trajectory b**(-) closest to b*(-).
3. Solve an NLP where the binary controls are fixed to b**(t), to adjust z(-) and u(-).

Distance function in Step 2 is the " CIA distance” which measures the maximum of the integral
of the difference of the trajectories. Fast tailored solvers for this special problem —an MILP —
exist, e.g. in the python package pycombina [Biirger 2019].

15. Sager, M. Jung, and C. Kirches: Combi ial Integral Approxi ion, Mathematical Methods of Operations Research, vol. 73, no. 3, pp. 363-380, 2011.
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NMPC for a solar thermal test plant

at Karlsruhe University of Applied Sciences, with two discrete actuators

Vacuum tube collectors (roof)
Recooling unit (roof) Ambient sensors (roof)
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Control-oriented modeling

Schematic depiction of the system model
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Nonlinear switched system ODE model with n, = 20, n, = 2, n, = 5, and n. = 4,

differentiable in all arguments within the domain of interest
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Numerical results: Three Step CIA Decomposition

Step 1: Solution MINLP binaries relaxed Steo 2: Solution CIA Step 3: Solution MINLP binaries fixed
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Alternative to CIA Decomposition: Gauss-Newton based MIQP

[Biirger et al., submitted to CDC 2021]

» Derive convex Gauss-Newton-type approximation of original ’ /

= Jee(y)
MINLP from linearization at relaxed MINLP solution. o Jany) /
. . . . . . = - Jon(yiyt, 2%) /‘ P

» Solution of resulting MIQP can yield improved integer solution =< it FAE e

in terms of objective and feasibility of the original MINLP. ' e I
» MIQP is equivalent to minimization of a distance function that 0}t

is a first order accurate approximation of the true objective. v

Original MINLP GN-MIQP from linearization at (y*, z*)

.1 2 .1 _ 2 N
g |1 F1(y, 2|5 + Fa(y, 2) min 7 | FLL(y, 259, 2°) 5 + Fou(y, 247, 27)
s.t. G(y,2) =0 s.t. Go(y,z;9%,2") =0

H(y,z) <0 Hi(y,zy",2") <0
yezZ yez
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Numerical results: Three Step GN-MIQP Decomposition

NMPC with jumps and

Step 1: Solution MINLP binaries relaxed

Step 2: Solution GN-MIQP

Step 3: Solution MINLP binaries fixed
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Comparison of CIA and GN-MIQP Solution

MINLP solution using GN-MIQP

1.0
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GN-MIQP delivers significant feasibility improvements, at the expense of increased computational cost.
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Conclusions

» Mathematical Programs with Complementarity Constraints (MPCC) are a powerful tool to
formulate and solve nonsmooth and nonconvex optimization problems.

> Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for switched systems of level NSD2.

» Time-Freezing allows us to transform systems with state jumps of level NSD3 to the easier
level NSD2 (which can be treated with FESD).

» NMPC with discrete actuators can efficiently be addressed by a three-step decomposition
method. In Step 2, either a cheap MILP or a more accurate MIQP can be solved.
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Thank you very much for your attention!

Dakujem!
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