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Non-Smooth Dynamics (NSD) - Informal Classification

Regard ordinary differential equation (ODE) with non-smooth right hand side (RHS).
Distinguish three cases:

Examples – case 1 
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• Both the solution and the vector field are continuous 
functions

• Discontinuities in second derivatives 
• Numerically, we treat them as a special instance of 

case 2 (next series of examples)

• Regard the example 

Examples – case 2: crossing a discontinuity 

Regard the example

• This system has two regions  R1 and R2, and therefore 
two different modes:

• f1(x) = 3 for x < 0
• f2(x) = 1 for x > 0

The surface 𝑥 = 0 is the discontinuity/switching surface.

In this example we reach the discontinuity and cross it.
→ easy case 
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Examples – case 2: crossing a discontinuity  

Regard the example

• This system has two regions  R1 and R2, and therefore 
two different modes:

• f1(x) = 3 for x < 0
• f2(x) = 1 for x > 0

The surface 𝑥 = 0 is the discontinuity/switching surface.

In this example we reach the discontinuity …
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NSD1: non-differentiable RHS, e.g. ẋ = 1 + |x|

NSD2: state dependent (”internal”) switch of RHS, e.g. ẋ = 2− sign(x)

(similar but different: external switch by discrete actuator)

NSD3: state dependent jump, e.g. x(t+) = 3 + x(t−)

NMPC with jumps and discrete actuators Moritz Diehl 1



Switched NMPC for Electric DC-AC Power Converter (NSD2)
PhD work by Benjamin Stickan (Fraunhofer ISE) and Gianluca Frison

I NMPC aim: follow sinusoidal reference, react
fast to grid failures

I 3 states, 1 binary input, 1 state dependent
switch due to diodes (in blanking time)

I sampling time: 25 microseconds, ARM
A53@1.1GHz, horizon N = 2

I switching integrator, 3 RK4 and 4 Euler
steps, generated as C code via CasADi

I hand tailored SQP real-time iteration, on
track to be applied on industrial photovoltaic
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Overview

I Optimization with Complementarity Constraints: Embracing the Nonconvex

I Finite Elements with Switch Detection (FESD)

I Time Freezing for State Dependent Jumps

I Three Step Decomposition for Discrete Actuators

NMPC with jumps and discrete actuators Moritz Diehl 3



NMPC needs to solve Nonlinear Programs (NLP)

Continuous Time NMPC Problem

min
x(·),u(·)

∫ T

0

L(x, u)dt+ E(x(T ))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 ≥ h(x(t), u(t)), t ∈ [0, T ]

0 ≥ r(x(T ))

Assume smooth convex L,E, h, r.
Nonlinear f makes problem nonconvex.
Direct methods discretize, then optimize.
E.g. collocation or multiple shooting.

Discretized NMPC Problem (an NLP)

min
x,z,u

∑N−1
k=0 ΦL(xk, zk, uk) + E(xN )

s.t. x0 = x̄0

xk+1 = Φdif
f (xk, zk, uk)

0 = Φalg
f (xk, zk, uk)

0 ≥ Φh(xk, zk, uk), k = 0, . . . , N−1

0 ≥ r(xN )

Again, smooth convex ΦL, E,Φh, r.
Variables x = (x0, . . .) and z = (z0, . . .) and
u = (u0, . . . , uN−1) can be summarized in
vector w ∈ Rnw .
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Nonlinear Programs (NLP) with Convex Structure

Newton-type methods generate a sequence w0, w1, w2, . . . by linearizing and solving convex
subproblems. E.g., sequential convex programming (SCP) linearizes nonconvex constraints.

Summarized NLP

min
w∈Rnw

J(w)

s.t. 0 = F (w)

0 ≥ H(w)

Still assume smooth convex J,H.
Nonlinear F makes problem nonconvex.

SCP subproblem at linearization point wi

wi+1 ∈ arg min
w∈Rnw

J(w)

s.t. 0 = FL(w;wi)

0 ≥ H(w)

First order Taylor series:
FL(w;wi) := F (wi) + ∂F

∂w (wi)(w − wi)

Works extremely well for mildly nonlinear F , also in microsecond NMPC [cf. Zanelli 2021, Lekic

2020, Hausberger 2020]

But what if there is significant nonconvex structure in the NLP ?
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Mathematical Programs with Complementarity Constraints (MPCC)

NLP with additional constraints of complementarity type: x ⊥ y ⇔ x>y = 0

MPCC

min
w∈Rnw

J(w)

s.t. 0 = F (w)

0 ≥ H(w)

0 ≤ Lw ⊥ Rw ≥ 0

Convex J,H and smooth F .
Fixed matrices L,R.

1

A Sequential Convex Programming Approach to
Solving Quadratic Programs and Optimal Control

Problems with Linear Complementarity Constraints
Jonas Hall1, Armin Nurkanović1,2, Florian Messerer1, Moritz Diehl1,3

Abstract—Mathematical programs with complementarity con-
straints are notoriously difficult to solve due to their nonconvexity
and lack of constraint qualifications in every feasible point.
This work focuses on the subclass of quadratic programs with
linear complementarity constraints. A novel approach to solving
a penalty reformulation using sequential convex programming
and a homotopy on the penalty parameter is introduced. Lin-
earizing the necessarily nonconvex penalty function yields convex
quadratic subproblems, which have a constant Hessian matrix
throughout all iterates. This allows solution computation with a
single KKT matrix factorization. Furthermore, a globalization
scheme is introduced in which the underlying merit function is
minimized analytically, and guarantee of descent is provided at
each iterate. The algorithmic features and possible computational
speedups are illustrated in a numerical experiment.

I. INTRODUCTION

Linear Complementarity Quadratic Programs (LCQP) are
quadratic programs with additional complementarity con-
straints. The complementarity conditions consist of inequality
constraints, imposing nonnegativity of the complementary
pairs, and a bi-linear equality constraint imposing orthogo-
nality. In order to formalize this, consider an n-dimensional
input space with nC complementarity constraints. Let L, R 2
RnC⇥n be the linear input transformations selecting the com-
plementarity pairs. Then a general LCQP can be written as

LCQP : minimize
x 2 Rn

1

2
x>Qx + g>x (1a)

subject to 0  Ax � b, (1b)
0  Lx ? Rx � 0, (1c)

where 0 � Q 2 Rn⇥n, g 2 Rn, A 2 RnA⇥n, and b 2 RnA .
The complementarity constraint (1c) is a compact notation for

0  Lx ? Rx � 0 ()

8
><
>:

0  Lx

0  Rx

0 = x>L>Rx.

(2)
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Fig. 1. An illustrative LCQP with Q = 2I2, g = (�2,�2)>, L = (1, 0),
and R = (0, 1), as originally presented in [3]. The feasible set is depicted by
the solid black line. This example contains two strongly stationary points
located at (0, 1) and (1, 0) (which are local minima), and one weaker
(Clarke-)stationary point at the origin (which is a local maximum).

An illustrative example is depicted in Figure 1. These prob-
lems are particularly difficult to solve due to their nonconvex-
ity and nonsmoothness of the feasible set. Moreover, standard
constraint qualifications such as the the Linear Independence
Constraint Qualification (LICQ) or the weaker Mangasarian-
Fromovitz constraint qualification are violated at every fea-
sible point [1, Proposition 1.1]. Thus, it is very difficulty
to numerically solve (1) directly, as the multipliers are un-
bounded and the constraint Jacobian matrices are degenerate.
Generalizations of (1) with nonlinear functions are known
as Mathematical Programs with Complementarity Constraints
(MPCC). These problems have received a lot of attention and
many solution strategies have been proposed, many of which
are included in the survey [2].

One popular approach to reformulate an MPCC into a
less degenerate Non-Linear Program (NLP) is to remove the
bi-linear term from the constraint and penalize its violation
in the objective. Convergence and solution equivalence of
the two approaches have been studied for example in [4].
This approach is further adapted to an interior point strategy

Toy MPCC example:

min
w∈R2

(w1 − 1)2 + (w2 − 1)2

s.t. 0 ≤ w1 ⊥ w2 ≥ 0

Two local minimizers.
One local maximizer
(without constraint
qualification)

Due to complementarity constraints, MPCC are nonsmooth and nonconvex.
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MPCC Solution by Penalty Method

The penalty MPCC method [cf. Ferris 1999, Ralph&Wright 2004] generates sequence w∗0 , w
∗
1 , w

∗
2 , . . .

by solving NLP with increasing weights 0 = ρ0 < ρ1 < ρ2 < . . ., and NLP warm-starting.

MPCC

min
w∈Rnw

J(w)

s.t. 0 = F (w)

0 ≥ H(w)

0 ≤ Lw, Rw ≥ 0

0 = φ(w)

with nonlinear nonconvex scalar
φ(w) := (Lw)>Rw

Penalty subproblem for weight ρj

w∗j ∈ arg min
w∈Rnw

J(w) + ρj φ(w)

s.t. 0 = F (w)

0 ≥ H(w)

0 ≤ Lw, Rw ≥ 0

Objective contribution ρjφ(w) is nonconvex.
Need good NLP solver (SCP, SQP, Interior Point, ...)
Crucial: start NLP solver at previous solution w∗j−1.

One can often find ”good” local minima with the penalty method.

NMPC with jumps and discrete actuators Moritz Diehl 7



Algorithms for MPCC: Two Examples

MPCC often exhibit structure that can be exploited by tailored solvers. We give two examples.

Generic Penalty Loop:

Penalty subproblem = NLP

min
w∈Rnw

J(w) + ρj φ(w)

s.t. 0 = F (w)

0 ≥ H(w)

0 ≤ Lw, Rw ≥ 0

For generic nonlinear MPCC,
sequence of penalty NLPs can be
solved e.g. by open-source solver
IPOPT [Wächter and Biegler 2006].

Used for many results in this talk.

Solver LCQP for Linear Complementarity QP:

Penalty subproblem = nonconvex quadratic program

min
w∈Rnw

1

2
w>Qw + c>w +

ρj
2
wT (L>R+R>L)w

s.t. 0 = Aw−b, 0 ≥ Cw−d, 0 ≤ Lw, Rw ≥ 0

Solve by exact line-search SCP started at wj,0 := w∗j−1:

SCP subproblem = convex quadratic program (QP)

min
w∈Rnw

1

2
w>Qw + (c+ ρj∇φ(wji))

>w

s.t. 0 = Aw−b, 0 ≥ Cw−d, 0 ≤ Lw, Rw ≥ 0

Solve by hot-started qpOASES [Ferreau 2014].
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Benchmarking LCQP on Test Example
LCQP code developed and tested by Jonas Hall

Example from discretization of non-smooth optimal control problem [Stewart & Anitescu 2010].

Continuous OCP with NSD2 System

min
x(·)

∫ 2

0
x(t)2dt+ (x(2)− 5/3)2

s.t. ẋ(t) = 2− sign(x(t)), t ∈ [0, 2]

Use implicit Euler with step h = 2/N :

Linear Complementarity QP

min
x,y,z

∑N
k=0Ek(xk)

s.t. xk = xk−1 + h(3− 2yk)

0 ≤ xk + zk ⊥ 1− yk ≥ 0

0 ≤ zk ⊥ yk ≥ 0, k = 1, . . . , N

Visualization of relaxation for different σ ∼ 1/ρ
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Fig. 2. Value of the objective V MPCC
relaxed (x0) for the relaxed MPCC, for

various values of the relaxation parameter �.

Here, the free initial value x(0) is the effective degree of
freedom. Denote by V⇤(x0) the (nonsmooth) objective value
for the unique feasible trajectory starting at x(0) = x0. The
equivalent reduced problem reads as

min
x0 2 R

V⇤(x0).

We transform the Filippov DI (15b) into a DCS as described
in Section III. To solve the resulting MPCC, we use the
smoothing and relaxation methods from Section IV. In all
cases in the regularized OCP, the DCS reduces to a smooth
DAE. We apply a fully simultaneous approach [8] with
the midpoint rule and a step-size h = 0.04. The resulting
NLPs are solved with IPOPT [32] through its CasADi [33]
interface in MATLAB. In Figures 2 and 3 one can see the
values of the the objective for the relaxation (V MPCC

relaxed (x0))
and smoothing approach (V MPCC

smoothed(x0)), respectively. One
can observe, that the values of the objective converge to
the analytic solution where the derivatives do not. Especially
after h > o(�) spurious local solutions appear. As discussed
in Section IV, for the relaxed version the objectives converge
faster.

Figure 4 shows the solution of a smoothed MPCC cor-
responding to the OCP (15) for different start guesses and
different values of the smoothing parameter �. The start
initialization for some x0 is obtained by a forward simulation
of (15b) with the same method and same grid as in the
discretization of the OCP. As long as the condition h = o(�)
is satisfied, one can see the NLP solver converges to a unique
local solution, and as soon as h > o(�), the solver converges
to the nearest spurious local solution (compare to Figure 3).
The one spike at x0 = �1.1 in Figure 4 is due to IPOPT
getting into restoration phase and producing a new initial
guess [32].

In practice, smoothing and relaxation might work well due
to the homotopy, since for larger values of � the algorithm
gets into a ”good region”, but still, the numerical sensitivity
is wrong after h = o(�) gets violated. For the relaxation
method for MPCCs, this is illustrated in Figure 5. We
compare the homotopy approach as described in IV and a
cold start approach for the same xinit

0 = �1. In the homotopy
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Fig. 3. Value of the objective V MPCC
smoothed(x0) for the smoothed MPCC, for

various values of the smoothing parameter �.

�1.8 �1.6 �1.4 �1.2 �1
�2

�1.5

�1

xinit
0

x
⇤ 0

� = 0.1
� = 0.01
� = 0.0001
Analytic solution

Fig. 4. Value of the optimal solution x⇤
0 against different initial values

x0 for which a initial feasible solution guess was computed. The MPCC is
solved by a relaxation method for different values of �.

approach, the parameter � is updated with the following rule:
�k+1 = 0.8�k, with �0 = 1, k is the number of the problem
in the sequence. In the cold start approach for every � we find
a feasible initial guess the same way as for the experiment
in Figure 4. One can observe, with the homotopy we get in a
good region and even for smaller � the approximate solution
is close to the analytic solution. On the other hand, with cold
start, as soon as h = o(�) is violated, the NLP converges
to the nearest spurious local solution. The distance between
the homotopy solution to the analytic solution decreases with
decreasing the integrator step-size.

VI. CONCLUSION AND FUTURE WORK

On one hand, the advantage of smoothing or relaxing the
DCS in an MPCC formulation is that the smoothed systems
can give accurate numerical sensitivities, provided that h =
o(�). From an implementation point of view, one can use
standard integrator codes in direct multiple shooting or direct
collocation and a standard NLP solver. Homotopy methods
seem also to improve the solution accuracy. On the other
hand, with this approach one can get only moderate accuracy,
since for more accurate solutions one has to take very small
step-sizes.

In this paper we show that the restrictive conditions for
getting the right numerical sensitivities for smooth approxi-
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IV. MPCC FOR DIRECT OPTIMAL CONTROL PROBLEMS
WITH NONSMOOTH DYNAMICS

We consider the following discrete time OCP, which
can be obtained by direct parametrization of a continuous
time OCP, e.g. with direct multiple shooting [20] or direct
collocation [8] :

min
u0,...,uN�1
z0,...,zN�1

x0,..xN

N�1X

i=0

li(xi, zi, ui) + lN (xN ) (13a)

s.t. x0 � x̂0 = 0, (13b)
c(xi+1, xi, zi, ui) = 0, i = 0, . . . , N � 1,

(13c)
h(xi, ui, zi) � 0, i = 0, . . . , N � 1,

(13d)
r(xN ) � 0, (13e)

with the optimization variables xi 2 Rnx , zi 2 Rnz , ui 2
Rnu , the objective function contributions li : Rnx ⇥ Rnz ⇥
Rnu ! R and lN : Rnx ! R. The function ci : Rnx⇥Rnx⇥
Rnz ⇥ Rnu ! Rnx denotes the direct transcription of the
DI or DCS (or their smooth approximations). The functions
h : Rnx ⇥Rnz ⇥Rnu ! Rnh and r : Rnx ! Rnr define the
inequality constraints (possibly also the inequalities from the
DCS) and x̂0 denotes the initial state.

A. Mathematical Programs with Complementarity Con-
straints

Mathematical Programs with Complementarity Con-
straints (MPCC) form a difficult subclass of general NLPs.
They have complementarity conditions as constraints, which
may arise, e.g., from the KKT conditions of a lower level
problem in bi-level optimization [27] or from direct tran-
scription of the DCS in an optimal control context, see
Section III. The general form of an MPCC is:

min
w

f(w) (14a)

s.t. g(w) = 0, (14b)
h(w) � 0, (14c)

0  w1 ? w2 � 0, (14d)

where w = (w0, w1, w2) 2 Rn is a decomposition of the
problem variables. The objective function f : Rn ! R and
the constraint functions g : Rn ! Rng and h : Rn ! Rnh

are assumed to be smooth. This formulation covers also
a compact notation of (13) with a DCS. More general
complementarity conditions can easily be handled by in-
troducing slack variables. This class of NLPs is difficult to
solve due to lack of regularity as the Linear Independence
Constraint Qualification (LICQ) and the weaker Mangasar-
ian–Fromovitz Constraint Qualification (MFCQ) are violated
in every feasible point of the NLP (14) [28]. The lack of con-
straint qualifications leads to unbounded and non-unique La-
grange multipliers, which may lead to NLP solvers perform-
ing badly. The constraint (14d) can equivalently be replaced
by the following inequalities: w1, w2 � 0 and w>

1 w2 
0, or w1, w2 � 0 and W1w2  0, with W1 = diag(w1).
Note that, in the first case the complementarity is gathered
into a single constraint. For a broader overview of solution
strategies see [29], [30], [31] and references therein. We
briefly present some of them with a focus on solutions
strategies where the MPCC is reformulated into an equivalent
(at least in the limit) regularized NLP, so that standard solvers
for smooth optimization problems can be used.

B. Smoothing and Relaxation Methods for MPCCs

In relaxation and smoothing approaches the nonsmooth
complementarity constraints are replaced by smooth con-
straints involving a positive parameter �. We call a prob-
lem relaxed if the (14d) is replaced by w1, w2 � 0 and
w>

1 w2  �, or w1, w2 � 0 and W1w2  �. This is known
as Scholtes global relaxation [31]. For an overview and
comparison of several global and local relaxation strategies
see [29]. The relaxed problem is smooth and usually MFCQ
is satisfied, therefore standard solvers can be used. Here,
the MPCCs are solved with a homotopy, i.e. a sequence of
problems is solved, with � being decreased to zero. The
(approximate) solution from a previous problem is a starting
point for the next problem with a new value of �. Under
certain regularity assumptions [29], this sequence converges
to the solution of the MPCC (14). Another widely used regu-
larization is to smooth the complementarity, i.e. to replace it
with w>

1 w2 = � or W1w2 = �. However, this approach has
a slower convergence rate. Denote w⇤ as the true solution
of the MPCC (14) and w(�) the solution of the relaxed or
smoothed MPCC. The local solution mapping w(�) is piece-
wise smooth in � and it satisfies kw⇤ � w(�)k = O(�1/2)
in case of relaxation and kw⇤ � w(�)k = O(�1/4) in case
of smoothing, under the same assumptions [30].

V. NUMERICAL EXAMPLE

To demonstrate the limits of MPCC approaches in direct
optimal control we take the simple OCP from [7]:

min
x(·) 2 C0

Z 2

0

x(t)2 dt + (x(2) � 5/3)2 (15a)

s.t. ẋ(t) 2 2 � sign(x(t)), t 2 [0, 2]. (15b)

2018
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Fig. 4. Plotting the average CPU time required for each method and
discretization size to solve 100 differently initialized LCQPs.

the guarantee of merit function descent at each iterate was
introduced. Its applicability and promising performance was
demonstrated by solving an initial value optimal control prob-
lem. A comparison against state-of-the-art solution variants
solved by a high performance NLP-solver showed that the
algorithm is able to compete in all of the three categories:
solution CPU time, complementarity satisfaction, and solu-
tion quality. Future work aims at providing an open-source
software package to reliably solve LCQPs. The presented
algorithm will be implemented with multiple QP solvers on the
subsolver level (e.g. qpOASES [24] and OSQP [28]). Further,
the option to solely solve the outer loop homotopy with an
adequate solver could be provided. On the theoretical side,
future work consists of providing a proof of global conver-
gence regarding both inner and outer loops. Additionally, the
presented algorithm could be utilized on a subsolver level for
solving nonlinear MPCCs opening up applicability to a wider
range of problems.
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[22] F. Messerer, K. Baumgärtner, and M. Diehl, “Survey of sequen-
tial convex programming and generalized Gauss-Newton methods.”
Preprint available at www.optimization-online.org/DB HTML/2020/04/
7733.html, 2021.

[23] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy
to overcome the limitations of explicit MPC,” International Journal of
Robust and Nonlinear Control, vol. 18, no. 8, pp. 816–830, 2008.

[24] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“qpOASES: A parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, no. 4, pp. 327–
363, 2014.

[25] I. S. Duff, “MA57—a code for the solution of sparse symmetric definite
and indefinite systems,” ACM Trans. Math. Softw., vol. 30, p. 118–144,
June 2004.
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TABLE I
AVERAGE VALUES OVER ALL EXPERIMENTS.

complementarity distance to analytical solution

LCQP 6.8e�17 0.018

LCQP Schur 2.3e�16 0.018

IPOPT Penalty 1.4e�04 0.072

IPOPT Smoothed 1.6e+04 0.078

IPOPT Relaxed 6.0e+03 0.61

LCQP-Schur about 2x faster than IPOPT-Pen
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Overview

I Optimization with Complementarity Constraints: Embracing the Nonconvex

I Finite Elements with Switch Detection (FESD)

I Time Freezing for State Dependent Jumps

I Three Step Decomposition for Discrete Actuators
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Non-Smooth Dynamics (NSD) - Informal Classification

Regard ordinary differential equation (ODE) with non-smooth right hand side (RHS).
Distinguish three cases:

Examples – case 1 
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• Both the solution and the vector field are continuous 
functions

• Discontinuities in second derivatives 
• Numerically, we treat them as a special instance of 

case 2 (next series of examples)

• Regard the example 

Examples – case 2: crossing a discontinuity 

Regard the example

• This system has two regions  R1 and R2, and therefore 
two different modes:

• f1(x) = 3 for x < 0
• f2(x) = 1 for x > 0

The surface 𝑥 = 0 is the discontinuity/switching surface.

In this example we reach the discontinuity and cross it.
→ easy case 
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two different modes:

• f1(x) = 3 for x < 0
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The surface 𝑥 = 0 is the discontinuity/switching surface.

In this example we reach the discontinuity …
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NSD1: non-differentiable RHS, e.g. ẋ = 1 + |x|

NSD2: state dependent (”internal”) switch of RHS, e.g. ẋ = 2− sign(x)

(similar but different: external switch by discrete actuator)

NSD3: state dependent jump, e.g. x(t+) = 3 + x(t−)

NMPC with jumps and discrete actuators Moritz Diehl 11



NSD2 Systems - State Dependent Switches

Regard discontinuous right hand side, piecewise smooth on disjoint open regions Ri ⊂ Rnx

Discontinuous ODE (NSD2)

ẋ = fi(x, u), if x ∈ Ri,
i ∈ {1, . . . ,m}

Numerical aims:

1. exactly detect switching times

2. obtain exact sensitivities across regions

3. appropriately treat evolution on boundaries
(sliding mode → Filippov convexification)
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Filippov Convexification

Dynamics not yet well-defined on region boundaries ∂Ri. Idea by A.F. Filippov (1923-2006):
replace ODE by differential inclusion, using convex combination of neighboring vector fields.

Filippov Differential Inclusion

ẋ ∈ FF(x, u) :=
{ m∑

i=1

fi(x, u) θi

∣∣∣
m∑

i=1

θi = 1,

θi ≥ 0, i = 1, . . .m,

θi = 0, if x /∈ Ri
}

I for interior points x ∈ Ri nothing changes: FF(x, u) = {fi(x, u)}
I Provides meaningful generalization on region boundaries.

E.g. on R1 ∩R2 both θ1 and θ2 can be nonzero

NMPC with jumps and discrete actuators Moritz Diehl 13



How to compute convex multipliers θ?

Assume sets Ri given by [cf. Stewart, 1990]

Ri =
{
x ∈ Rn

∣∣gi(x) < minj 6=i gj(x)
}

Linear program (LP) Representation

ẋ =

m∑

i=1

fi(x, u) θ∗i with

θ∗ ∈ arg min
θ∈Rm

m∑

i=1

gi(x) θi

s.t.

m∑

i=1

θi = 1

θ ≥ 0.

NMPC with jumps and discrete actuators Moritz Diehl 14



From Filippov to dynamic complementarity systems
Using the KKT conditions of the parametric LP

LP representation

ẋ = F (x, u) θ∗

with θ∗ ∈ argmin
θ∈Rm

g(x)>θ

s.t. 0 ≤ θ
1 = e>θ

where

F (x, u) := [f1(x, u), . . . , fm(x, u)] ∈ Rnx×m

g(x) := [g1(x), . . . , gm(x)]> ∈ Rm

e := [1, 1, . . . , 1]> ∈ Rm

Express equivalently by optimality conditions:

Dynamic Complementarity System (DCS)

ẋ = F (x, u) θ (1a)

0 = g(x)− λ− eµ (1b)

0 ≤ θ ⊥ λ ≥ 0 (1c)

1 = e>θ (1d)

I µ ∈ R and λ ∈ Rm are Lagrange multipliers

I (1c) ⇔ min{θ, λ} = 0 ∈ Rm

I Together, (1b), (1c), (1d) determine the
(2m+ 1) variables θ, λ, µ uniquely

NMPC with jumps and discrete actuators Moritz Diehl 15



Conventional Discretization by Implicit Runge Kutta (IRK) Method

Continuous time DCS

x(0) = x̄0,

ẋ(t) = v(t)

v(t) = F (x(t), u(t)) θ(t)

0 = g(x(t))− λ(t)− eµ(t)

0 ≤ θ(t) ⊥ λ(t) ≥ 0

1 = e>θ(t), t ∈ [0, T ]

Discrete time IRK-DCS equation

x0,0 = x̄0, xk+1,0 = xk,0 + h
∑s
n=1 bnvk,n

xk,j = xk,0 + h
∑s
n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j)− λk,j − eµk,j
0 ≤ θk,j ⊥ λk,j ≥ 0

1 = e>θk,j , j = 1, . . . , s, k = 0, . . . , N − 1

Notation: xk,r ∈ Rnx , θk,r ∈ Rm etc. with:

I k ∈ {0, 1, . . . , N} - index of integration step; step length h := T/N

I j, n ∈ {0, 1, . . . , s} - index of intermediate IRK stage / collocation point

I ajn and bn - Butcher tableau entries of Implicit Runge Kutta method

NMPC with jumps and discrete actuators Moritz Diehl 16



Conventional Collocation - Illustrative Example

Regard example with x ∈ R2 and
constants a, k, c > 0:

ẋ =

{
f1(x), x1 > 0,

f2(x), x1 < 0.

f1(x) =


x2

−a


 , f2(x) =


 x2

−kx1 − cx2




g1(x) = −x1,
g2(x) = x1

x̄0 = [0.5 , 0]>

.

Solve with IRK Radau IIA method of order 7,
s = 4, N = 5, T = 0.5, h = 0.1.
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Conventional Collocation - Illustrative Example
Zoom in

0 0.1 0.2 0.3 0.4 0.5
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0.26 0.28 0.3 0.32 0.34 0.36 0.38 0.4 0.42
-3.4
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-2.6

-2.4

-2.2

High integration accuracy of 7th order IRK method is lost in fourth time step.
Reason: we try to approximate a non-smooth function by a (smooth) polynomial.

Question: could we ensure that switches happen only at element boundaries?
→ Finite Elements with Switch Detection (FESD)

NMPC with jumps and discrete actuators Moritz Diehl 18



Finite Elements with Switch Detection (FESD)
PhD work of A. Nurkanovic, to be submitted

FESD is a novel DCS discretization method based on three ideas:

I make stepsizes hk free, ensure
∑N−1
k=0 hk = T [cf. Baumrucker & Biegler 2009]

I allow switches only at element boundaries, enforce via cross-complementarities

I remove spurious degrees of freedom via step equilibration
Example revisited: comparison of the two schemes 

Unrestricted | © Siemens 2021 | Nurkanović | 6.7.2021| Internal Workshop on Control, Estimation, Learning and Optimization

Standard collocation Variable finite elements 
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conventional
discretization

Not covered today: ensure piecewise equidistant gird 
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With step-size regularization Without step-size regularization
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variable stepsizes and
cross-complementarities

Not covered today: ensure piecewise equidistant gird 
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FESD discretization
with step equilibration
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Conventional DCS and FESD discretization without step equilibration

Conventional discretization

x0,0 = x̄0, h = T/N

xk+1,0 = xk,0 + h
∑s
n=1 bnvk,n

xk,j = xk,0 + h
∑s
n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j)− λk,j − eµk,j
0 ≤ θk,j ⊥ λk,j ≥ 0

1 = e>θk,j

for j = 1, . . . , s

and k = 0, . . . , N − 1

FESD discretization without step equilibration

x0,0 = x̄0,
∑N−1
k=0 hk = T

xk+1,0 = xk,0 + hk
∑s
n=1 bnvk,n

xk,j = xk,0 + hk
∑s
n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j′)− λk,j′ − eµk,j′
0≤ θk,j ⊥ λk,j′ ≥ 0 (cross-complementarities)

1 = e>θk,j

for j = 1, . . . , s and k = 0, . . . , N−1

and j′ = 0, 1, . . . , s

I N extra variables (h0, . . . , hN−1) restricted by one extra equality

I additional multipliers λk,0, µk,0 are uniquely determined

NMPC with jumps and discrete actuators Moritz Diehl 20



Conventional DCS and FESD discretization with step equilibration

Conventional discretization

x0,0 = x̄0, h = T/N

xk+1,0 = xk,0 + h
∑s
n=1 bnvk,n

xk,j = xk,0 + h
∑s
n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j)− λk,j − eµk,j
0 ≤ θk,j ⊥ λk,j ≥ 0

1 = e>θk,j

for j = 1, . . . , s

and k = 0, . . . , N − 1

FESD discretization with step equilibration

x0,0 = x̄0,
∑N−1
k=0 hk = T

xk+1,0 = xk,0 + hk
∑s
n=1 bnvk,n

xk,j = xk,0 + hk
∑s
n=1 ajnvk,n

vk,j = F (xk,j , uk,j) θk,j

0 = g(xk,j′)− λk,j′ − eµk,j′
0≤ θk,j ⊥ λk,j′ ≥ 0 (cross-complementarities)

1 = e>θk,j

0 = ν(θk′ , θk′+1, λk′ , λk′+1) · (hk′−hk′+1)2

for j = 1, . . . , s and k = 0, . . . , N−1

and j′ = 0, 1, . . . , s and k′ = 0, . . . , N−2

I N extra FESD variables (h0, . . . , hN−1) now locally uniquely determined by N constraints

I ”Nurkanovic’s indicator function” ν(θk′ , θk′+1, λk′ , λk′+1) only zero if a switch occurs

NMPC with jumps and discrete actuators Moritz Diehl 21



Multipliers in Conventional and FESD Discretization

Conventional Collocation: FESD Discretization:

Example revisited: comparison of the two schemes- algebraic variables
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Standard collocation Variable finite elements 
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FESD’s cross-complementarities exploit the fact that the multiplier λi(t) is continuous in time.
On boundary, λi(tk) must be zero if θi(t) > 0 for any t ∈ [tk−1, tk+1] on the adjacent intervals.
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Numerical simulation example: unstable switched oscillator

Regard an unstable non-smooth oscillator

ẋ(t) =

{
A1x, c(x) < 0,

A2x, c(x) > 0,

with

A1 =


 1 ω

−ω 1


 , A2 =


 1 −ω

ω 1


 ,

c(x) = x21 + x22 − 1, ω = 2π, x(0) = [e−1 0]>

For t ∈ [0, 2], we have

x(2) = [e 0]>.
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FESD recovers high integration order for switched systems

Conventional Collocation:

102 103

10-10

10-5

100

FESD Discretization:

102 103

10-10

10-5

100

Integration error E(T ) at time T = 2 vs. total number M = sN of collocation points, for
different Radau IIA methods.

FESD discretization delivers versatile MPCC formulation with high integration order
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Optimal Control Example: Solution Trajectory with 3 Sliding Modes

The uniform grid formulation
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True switches False alarmRegard the following OCP

Page 55
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Numerical Solution without Equilibration

Nurkanovic’s indicator function over time: Step size over time:Uniform grid reformulation 
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The optimizer varies the step-size in random way
and plays too much with the accuracyOptimizer varies step size randomly, potentially playing with integration errors.
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Numerical Solution with Equilibration

Nurkanovic’s indicator function over time: Step size over time:Uniform grid reformulation 
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We have a step-size change only at switches if we add the 
step-size penalty termEquidistant grid on each ”switching stage”. Jumps exactly at switching times.
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Overview

I Optimization with Complementarity Constraints: Embracing the Nonconvex

I Finite Elements with Switch Detection (FESD)

I Time Freezing for State Dependent Jumps

I Three Step Decomposition for Discrete Actuators
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Non-Smooth Dynamics (NSD) - Informal Classification

Regard ordinary differential equation (ODE) with non-smooth right hand side (RHS).
Distinguish three cases:

Examples – case 1 
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• Both the solution and the vector field are continuous 
functions

• Discontinuities in second derivatives 
• Numerically, we treat them as a special instance of 

case 2 (next series of examples)

• Regard the example 

Examples – case 2: crossing a discontinuity 

Regard the example

• This system has two regions  R1 and R2, and therefore 
two different modes:

• f1(x) = 3 for x < 0
• f2(x) = 1 for x > 0

The surface 𝑥 = 0 is the discontinuity/switching surface.

In this example we reach the discontinuity and cross it.
→ easy case 
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Examples – case 2: crossing a discontinuity  

Regard the example

• This system has two regions  R1 and R2, and therefore 
two different modes:

• f1(x) = 3 for x < 0
• f2(x) = 1 for x > 0

The surface 𝑥 = 0 is the discontinuity/switching surface.

In this example we reach the discontinuity …
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NSD1: non-differentiable RHS, e.g. ẋ = 1 + |x|

NSD2: state dependent (”internal”) switch of RHS, e.g. ẋ = 2− sign(x)

(similar but different: external switch by discrete actuator)

NSD3: state dependent jump, e.g. x(t+) = 3 + x(t−)
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NSD3 State Jump Example: Bouncing Ball

Bouncing ball with state x = (y, v):

mv̇ = −mg, if y > 0

v(t+) = −0.9 v(t−), if y(t−) = 0 and v(t−) < 0

Time plot of bouncing ball trajectory:
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Phase plot of bouncing ball trajectory:
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Question: could we transform NSD3 systems into (easier) NSD2 systems?
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Three ideas:

1. mimic state jump by auxiliary dynamic system ẋ = ϕ(x) on prohibited region

2. introduce a clock state t(τ) that stops counting when the auxiliary system is active

3. adapt speed of time, dt
dτ = s with s ≥ 1, and impose terminal constraint t(T ) = T
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The time-freezing reformulation

Augmented state (x, t) ∈ Rn+1 evolves in
numerical time τ . Augmented system is
nonsmooth, of NSD2 type:

d

dτ


x
t


 =





s

[
f(x)

1

]
, if c(x) ≥ 0

[
ϕ(x)

0

]
, if c(x) < 0

I During normal times, system and clock
state evolve with adapted speed s ≥ 1.

I Auxiliary system dx
dτ = ϕ(x) mimics state

jump while time is frozen, dt
dτ = 0.
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Time-freezing for bouncing ball example
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Virtual time

Evolution of physical time (clock state)
during augmented system simulation
(s = 1).
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We can recover the true solution by plotting
x(τ) vs. t(τ) and disregarding ”frozen pieces”.
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A Tracking NMPC Example with Time-Freezing and FESD

Regard bouncing ball in two dimensions driven by bounded force: q̈ = u
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I augmented state
x = (q, q̇, t) ∈ R5

I m = 9 regions (8 with auxiliary
dynamics for state jumps)

min
x(.),u(.),s(.),
θ(.),λ(.),µ(.)

∫ T

0

(q − qref(τ))>(q − qref(τ)) s(τ) dτ

s.t. x(0) = x0, t(T ) = T,

x′(τ) =

m∑

i=1

θi(τ)fi(x(τ), u(τ), s(τ)),

0 = g(x(τ))− λ(τ)− µ(τ)e,

0 ≤ λ(τ) ⊥ θ(τ) ≥ 0,

1 = e>θ(τ),

‖u(τ)‖22 ≤ u2max,

1 ≤ s(τ) ≤ smax, τ ∈ [0, T ].

qref(τ) = (R cos(ω t(τ)), R sin(ω t(τ))).
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Results with slowly moving reference
For ω = π, tracking is easy: no jumps occur in optimal solution.

I Regard time horizon of two periods

I N = 25 equidistant control intervals

I use FESD with NFESD = 3 finite elements
with Radau 3 on each control interval

I each FESD interval has one constant
control u and one speed of time s

I MPCC solved via `∞ penalty
reformulation and homotopy

I For homotopy convergence: in total 4
NLPs solved with IPOPT via CasADi
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Results with slowly moving reference - Movie
For ω = π, tracking is easy: no jumps occur in optimal solution.
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Results with fast reference
For ω = 2π, tracking is only possible if ball bounces against walls.
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Results with fast reference - Movie
For ω = 2π, tracking is only possible if ball bounces against walls.
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Homotopy: first iteration vs converged solution
Geometric trajectory
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After the first homotopy iteration
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The solution trajectory after convergence
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Physical vs. Numerical Time

for ω = π
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Hopping Robot - move with minimal effort from start to end position
Homotopy initialized with start position everywhere. Optimizer finds creative soluton. Not with FESD yet.
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Overview

I Optimization with Complementarity Constraints: Embracing the Nonconvex

I Finite Elements with Switch Detection (FESD)

I Time Freezing for State Dependent Jumps

I Three Step Decomposition for Discrete Actuators
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Non-Smooth Dynamics (NSD) - Informal Classification

Regard ordinary differential equation (ODE) with non-smooth right hand side (RHS).
Distinguish three cases:

Examples – case 1 

Unrestricted | © Siemens 2021 | Nurkanović | 23.06.2021| MINOA Doctoral School 2021Page 8

• Both the solution and the vector field are continuous 
functions

• Discontinuities in second derivatives 
• Numerically, we treat them as a special instance of 

case 2 (next series of examples)

• Regard the example 

Examples – case 2: crossing a discontinuity 

Regard the example

• This system has two regions  R1 and R2, and therefore 
two different modes:

• f1(x) = 3 for x < 0
• f2(x) = 1 for x > 0

The surface 𝑥 = 0 is the discontinuity/switching surface.

In this example we reach the discontinuity and cross it.
→ easy case 
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Regard the example

• This system has two regions  R1 and R2, and therefore 
two different modes:

• f1(x) = 3 for x < 0
• f2(x) = 1 for x > 0

The surface 𝑥 = 0 is the discontinuity/switching surface.
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Examples – case 2: crossing a discontinuity  

Regard the example

• This system has two regions  R1 and R2, and therefore 
two different modes:

• f1(x) = 3 for x < 0
• f2(x) = 1 for x > 0

The surface 𝑥 = 0 is the discontinuity/switching surface.

In this example we reach the discontinuity …
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NSD1: non-differentiable RHS, e.g. ẋ = 1 + |x|

NSD2: state dependent (”internal”) switch of RHS, e.g. ẋ = 2− sign(x)

(similar but different: external switch by discrete actuator)

NSD3: state dependent jump, e.g. x(t+) = 3 + x(t−)
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Mixed Integer Optimal Control Problem with Binary Inputs b(t)
Formulated in outer convexified form. Can equivalently be formulated with complementarity constraints.

minimize
x(·),u(·),b(·),s(·)

T∫

0

L
(
x, u, b, s

)
dt+M

(
x(T )

)
(2a)

subject to x(0) = x̄0 (2b)

dx

dt
=

nb∑

i=1

bi · fi
(
x, u, c

)
,

nb∑

i=1

bi(t) = 1, (2c)

bi(t) ∈ {0, 1}
[
⇔ 0 ≤ bi(t) ⊥ (1− bi(t)) ≥ 0

]
for i = 1, . . . nb, (2d)

− s+ rl ≤ r
(
x, u, b, c

)
≤ ru + s, for t ∈

[
0, T

]
(2e)

( + additional combinatorial constraints) (2f)

x(t): states, u(t): continuous controls, b(t): binary controls, s(t): slack variables

c(t): time-varying parameters, f : system dynamics, rl ≤ r ≤ ru: path constraints

Discretize to obtain MINLP. Global solution usually prohibitive (cf. Ruth Misener’s plenary).
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Three step decomposition for fast approximate MIOCP solution

Combinatorial Integral Approximation (CIA)1

1. Solve relaxed NLP with b(t) ∈ [0, 1]nb to obtain relaxed solution b∗(t) for t ∈ [0, T ].

2. Solve minimum distance problem to find binary trajectory b∗∗(·) closest to b∗(·).

3. Solve an NLP where the binary controls are fixed to b∗∗(t), to adjust x(·) and u(·).

Distance function in Step 2 is the ”CIA distance” which measures the maximum of the integral
of the difference of the trajectories. Fast tailored solvers for this special problem – an MILP –
exist, e.g. in the python package pycombina [Bürger 2019].

1
S. Sager, M. Jung, and C. Kirches: Combinatorial Integral Approximation, Mathematical Methods of Operations Research, vol. 73, no. 3, pp. 363-380, 2011.
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NMPC for a solar thermal test plant
at Karlsruhe University of Applied Sciences, with two discrete actuators
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Control-oriented modeling
Schematic depiction of the system model

Nonlinear switched system ODE model with nx = 20, nb = 2, nu = 5, and nc = 4,

differentiable in all arguments within the domain of interest
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Numerical results: Three Step CIA Decomposition

(25 CPU sec) (0.02 CPU sec) (18 CPU sec)
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Alternative to CIA Decomposition: Gauss-Newton based MIQP
[Bürger et al., submitted to CDC 2021]

I Derive convex Gauss-Newton-type approximation of original
MINLP from linearization at relaxed MINLP solution.

I Solution of resulting MIQP can yield improved integer solution
in terms of objective and feasibility of the original MINLP.

I MIQP is equivalent to minimization of a distance function that
is a first order accurate approximation of the true objective.

�0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
y

0

1

2

3

J
(y

)

JNLP(y)

JCIA(y; y�)

JGN(y; y�, z�)

Fig. 1. Comparison of JNLP(y) to JCIA(y; y⇤) and JGN(y; y⇤, z⇤)
for given values y 2 [�0.2, 1.2] for MINLP (36) with integer constraints
dropped. The value of JNLP(y⇤⇤

GN) is indicated by the symbol •, the value
of JNLP(y⇤⇤

CIA) by the symbol �.

approximation yields a significantly better approximation
around the optimal integer solution y� = 0 and it would
deliver the optimal solution in step S2 in contrast to CIA.
An interesting observation is that JGN and JNLP share the
same tangents at y⇤.

VI. OPTIMAL CONTROL EXAMPLE

In this section, potential advantages of the proposed ap-
proach for use within mixed-integer optimal control applica-
tions are exemplified within a numerical example, cf. [12].

A. Setup of the numerical example

We regard a simple MIOCP of the form (13) for a
nonlinear and unstable system with one state x 2 R and
one binary control b 2 {0, 1}. The continuous time system
is described by

ẋ = x3 � b (37)

and transformed to a discrete time system

x+ = f(x, b) (38)

by using one Runge-Kutta (RK)-4 step with step length h =
0.05. The aim is to track a reference xref = 0.7 starting from
the initial value x0 = 0.8 on a horizon of length N = 30,
resulting in the following MINLP.

min
x,b

1

2

NX

k=0

(x(k) � xref)
2 (39a)

s. t. x(0) = x0, (39b)
x(k + 1) = f(x(k), b(k)),

k = 0, . . . , N � 1,
(39c)

b 2 P \ ZN . (39d)

The combinatorial constraint set P imposes a minimum
uptime constraint that requires that b remains active for at

0.6

0.8

1.0

x

xref x� x���
CIA

0.00 0.25 0.50 0.75 1.00 1.25 1.50
t

0

1

b b� b��
CIA

Fig. 2. Relaxed and binary feasible solution for the CIA approach.

least three consecutive time steps, i.e., we have

P = {b 2 [0, 1]N |
b(k) � b(k � 1) � b(k � 2),

b(k) � b(k � 1) � b(k � 3),

k = 0, . . . , N � 1}.

(40)

The required previous values b(�1), b(�2), and b(�3) are
all set to zero. Further details on minimum dwell time
constraints in the MIOCP context can be found in [8]. The
problem is solved using three different approaches:

CIA – decomposition algorithm using the CIA-MILP,

GN – decomposition algorithm using the GN-MIQP,

exact – a branch-and-bound style simulation procedure
for finding the globally optimal solution.

The MINLP is implemented using CasADi and the NLP
stage in step S1 of the decomposition algorithm is solved
using Ipopt. The CIA problem is solved using a tailored
branch-and-bound algorithm available in pycombina [13], the
GN-MIQP is solved using Gurobi [21]. Due to the absence of
continuous controls, step S3 for this example just amounts to
a system simulation. The branch-and-bound style simulation
procedure for the exact approach is a custom implementation
in Python.

B. Results

The objective value of the relaxed solution is given by
1
2kF (x⇤, b⇤)k2

2 = 8.97 · 10�3. The objective values for the
CIA approach is 1

2kF (x⇤⇤⇤
CIA, b⇤⇤CIA)k2

2 = 1.32 · 10�1 and the
objective value for the GN approach is 1

2kF (x⇤⇤⇤
GN, b⇤⇤GN)k2

2 =
2.07·10�2. The true optimal cost found by the exact approach
is given by 1

2kF (x�, b�)k2
2 = 2.07 ·10�2. These results show

that for this setup, the GN approach was able to achieve an
improved solution compared to the CIA approach in terms of
the MINLP objective. The solution obtained by GN here even
is a globally optimal solution since the obtained objective
value corresponds to the result of the exact approach.

The optimized state and control obtained by approaches
CIA and GN are given in Fig. 2 and Fig. 3, respectively. The
reference value xref for the state is indicated as dashed grey

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 611 submitted to 2021 60th IEEE Conference on

Decision and Control (CDC). Received March 25, 2021.

Original MINLP

min
y,z

1

2
‖F1(y, z)‖22 + F2(y, z)

s. t. G(y, z) = 0

H(y, z) ≤ 0

y ∈ Zny

GN-MIQP from linearization at (y∗, z∗)

min
y,z

1

2
‖F1,L(y, z; ȳ, z∗)‖22 + F2,L(y, z; y∗, z∗)

s. t. GL(y, z; y∗, z∗) = 0

HL(y, z; y∗, z∗) ≤ 0

y ∈ Zny
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Numerical results: Three Step GN-MIQP Decomposition
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Comparison of CIA and GN-MIQP Solution
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GN-MIQP delivers significant feasibility improvements, at the expense of increased computational cost.
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Conclusions

I Mathematical Programs with Complementarity Constraints (MPCC) are a powerful tool to
formulate and solve nonsmooth and nonconvex optimization problems.

I Finite Elements with Switch Detection (FESD) allow highly accurate simulation and
optimal control for switched systems of level NSD2.

I Time-Freezing allows us to transform systems with state jumps of level NSD3 to the easier
level NSD2 (which can be treated with FESD).

I NMPC with discrete actuators can efficiently be addressed by a three-step decomposition
method. In Step 2, either a cheap MILP or a more accurate MIQP can be solved.
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Thank you very much for your attention!

Ďakujem!
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