
Model Predictive Control and Reinforcement Learning

– MDPs, Policy and Value Iteration –

Joschka Boedecker and Moritz Diehl

University Freiburg

July 27, 2021

Lecture Overview

1 Markov Decision Processes

2 Policies and Value Functions

3 Policy and Value Iteration

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 1

Acknowledgement

Slide contents are partially based on Reinforcement Learning: An Introduction by Sutton and
Barto and the Reinforcement Learning lecture by David Silver.

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 2

Agent and Environment

Environment

Agent

St+1

St At

Rt+1

Rt

Time steps t: 0, 1, 2, . . .
States: S0, S1, S2, . . .
Actions: A0, A1, A2, . . .
Rewards: R1, R2, R3, . . .

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 3

Markov Decision Processes

A finite Markov Decision Process (MDP) is a 4-tuple 〈S,A, p,R〉, where

I S is a finite number of states,

I A is a finite number of actions,

I p is the transition probability function p : S ×R× S ×A 7→ [0, 1],

I and R is a finite set of scalar rewards. We can then define expected reward
r(s, a) = E[Rt+1|St = s,At = a] and r(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′].

Markov Property

A state-reward pair (St+1, Rt+1) has the Markov property iff:

Pr{St+1, Rt+1|St, At} = Pr{St+1, Rt+1|St, At, . . . , S0, A0}.

The future is independent of the past given the present.

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 4

Markov Decision Processes

A finite Markov Decision Process (MDP) is a 4-tuple 〈S,A, p,R〉, where

I S is a finite number of states,

I A is a finite number of actions,

I p is the transition probability function p : S ×R× S ×A 7→ [0, 1],

I and R is a finite set of scalar rewards. We can then define expected reward
r(s, a) = E[Rt+1|St = s,At = a] and r(s, a, s′) = E[Rt+1|St = s,At = a, St+1 = s′].

A deterministic system is a special case of an MDP:

p(st+1|st, ut) =

{
1 st+1 = f(st, at)

0 otherwise

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 5

Rewards

I A reward Rt in time step t is a scalar feedback signal.

I Rt indicates how well an agent is performing at single time step t.

Reward Hypothesis

All of what we mean by goals and purposes can be well thought of as the
maximization/minimization of the expected value of the cumulative sum of a received scalar
signal (called reward/cost).

Examples:

I Chess: +1 for winning, -1 for losing

I Walking: +1 for every time step not falling over

I Investment Portfolio: difference in value between two time steps

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 6

Return

I The agent aims at maximizing the expected cumulative reward

I Non-discounted: Gt = Rt+1 +Rt+2 +Rt+3 + · · ·+RT

I Discounted: Gt = Rt+1 + γRt+2 + γ2Rt+3 + · · · =
∞∑
k=0

γkRt+k+1

I Discounting with γ ∈ [0, 1] to prevent from infinite returns (e.g. in infinite horizon control
problems)

I Returns at successive time steps are related to each other:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + γ3Rt+4 + . . .

= Rt+1 + γ(Rt+2 + γRt+3 + γ2Rt+4 + . . .)

= Rt+1 + γGt+1

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 7

MDP: Example

Description

Imagine a house cleaning robot. It can have three charge levels: high, low and none. At every
point in time, the robot can decide to recharge or to explore unless it has no battery. When
exploring, the charge level can reduce with probability ρ. Exploring is preferable to recharging,
however it has to avoid running out of battery.

Formalize the above problem as an MDP.

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 8

MDP: Example

Solution

For the given problem, we set:

I S = {high, low, none}
I A = {explore, recharge}
I R = {+1,−1,−100} for exploring, recharging, and transitions leading to none,

respectively.

I p has entries with value 1 for transitions (high,−1, high, recharge),
(low,−1, high, recharge) and (none, 0, none, ·). It further has entries with value ρ for
transitions (high,+1, low, explore) and (low,−100, none, explore) and entries with value
1− ρ for transitions (high,+1, high, explore) and (low,+1, low, explore).

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 9

MDP: Example

Solution

The transition graph therefore is:

high low none

explore
1− ρ, +1 ρ, +1

explore
1− ρ, +1 ρ, −100

recharge, −1

recharge, −1

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 10

Policies

I The policy defines the behaviour of the agent:
I can be stochastic: π(a|s) = P[At = a|St = s]
I or deterministic: π(s) = a

I Due to the Markov property, knowledge of the current state s is sufficient to make an
informed decision.

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 11

Value Functions

I Value Function vπ(s) is the expected return when starting in s and following π:

vπ(s) = Eπ[Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s

]

I Action-Value Function qπ is the expected return when starting in s, taking action a and
following π thereafter:

qπ(s, a) = Eπ[Gt|St = s,At = a] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣∣∣St = s,At = a

]

I Simple connection:
vπ(s) = Eπ[qπ(s, π(s))] (1)

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 12

Bellman Equation

I The Bellman Equation expresses a relationship between the value of a state and the values
of its successor states

I The value function vπ is the unique solution to its Bellman Equation

vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt + γGt+1|St = s]

=
∑
a

π(a|s)
∑
s′

∑
r

p(s′, r|s, a) [r + γEπ[Gt+1|St+1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

Bellman Equation for vπ

vπ(s) =
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)] .

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 13

Bellman Equation: Example

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Gridworld Example: Prediction

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)
What is the value function for the uniform random policy?

Description

Actions move the agent deterministically. Actions that would move the agent off the grid cost
−1 with no state change. All other actions are free. However, every action performed by the
agent in A moves it to A′ with a reward of +10, each action in B moves it to B′ with a
reward of +5. Assume a uniform policy. vπ with a discounting factor of γ = 0.9 is to the right.
Show exemplary for state s0,0 with vπ(s0,0) = 3.3 that the Bellman equation is satisfied.

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 14

Bellman Equation: Example

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Gridworld Example: Prediction

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)
What is the value function for the uniform random policy?

Solution

vπ(s0,0) = 0.25 · (−1 + γ · 3.3) + 0.25 · (+0 + γ · 8.8) +
0.25 · (+0 + γ · 1.5) + 0.25 · (−1 + γ · 3.3)

= 3.3025 ≈ 3.3

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 15

Bellman Equation

For a deterministic system and a deterministic policy, the Bellman Equation simplifies to:

Bellman equation for value-function vπ for a deterministic system and policy

vπ(s) = r + γmax
a′

v∗(f(s, a)).

We equivalently obtain a corresponding system of equations for the Q-function:

Bellman Equation for action-value function qπ

qπ(s, a) =
∑
s′,r

p(s′, r|s, a)

[
r + γ

∑
a′

π(a′|s′)qπ(s′, a′)

]
.

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 16

Optimality of Policies

We consider a policy as optimal if the value (i.e. its expected return under the policy) in every
state is at least as high as for any other policy:

Optimality of a policy π∗

A policy π∗ is called optimal :⇔
For all s ∈ S :

vπ∗(s) ≥ vπ(s) for all π (2)

The corresponding optimal value function is denoted by v∗.

I This requires a search among all, possibly infinitely many, policies. This seems to be
rather impractical.

I Is there an easier way to check if a policy π and corresponding value function vπ is
actually optimal?

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 17

Bellman Optimality Equation

Intuitively, the Bellman Optimality Equation expresses the fact that the value of a state under
an optimal policy must equal the expected return for the best action from that state:

v∗(s) = max
a

qπ∗(s, a)

= max
a

Eπ∗ [Rt+1 + γGt+1|St = s,At = a]

= max
a

Eπ∗ [Rt+1 + γv∗(St+1)|St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)]

Bellman Optimality Equation for v∗

The Bellman Equation for the optimal value function v∗ is defined as:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)].

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 18

Bellman Optimality Equation: Example

Lecture 1: Introduction to Reinforcement Learning

Problems within RL

Gridworld Example: Prediction

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

A’

B’+10

+5

Actions

(a) (b)
What is the value function for the uniform random policy?

Non-optimality of the uniform random policy

vπ(s0,0) = 3.3025 6= max{−1 + γ · 3.3, 0 + γ · 8.8,
0 + γ · 1.5,−1 + γ · 3.3}

= 7.92

⇒ random policy π is not optimal.MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 19

Bellman Optimality Equation

For a deterministic system and a deterministic policy, the Bellman Optimality Equation
simplifies to:

Bellman equation for the optimal value-function v∗ for a deterministic system and policy

v∗(s) = r + γmax
a′

v∗(f(s, a)).

Equivalently, there exists a Bellman optimality equation for Q-functions:

Bellman equation for the optimal action-value function q∗

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)].

How can we turn these equations into practical algorithms to find optimal policies π∗?

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 20

Policy Iteration: Overview

Idea: Alternate evaluating the value function vπ and improving the policy π to convergence.

π0
E−−−→ vπ0

I−−−→ π1
E−−−→ vπ1

I−−−→ π2
E−−−→ · · · I−−−→ π∗

E−−−→ v∗

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 21

Policy Evaluation

Compute the state-value function vπ for an arbitrary policy π.
∀s ∈ S :

vπ(s)
.
=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

If the environments dynamics are completely known, this is a system of |S| simultaneous linear
equations in |S| unknowns. With the Bellman equation, we can iteratively update an initial
approximation v0:

vk+1(s)
.
= Eπ [Rt+1 + γvk(St+1)|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a) [r + γvk(s
′)]

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 22

Policy Evaluation

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 23

Policy Improvement

Once we have the value function for a policy, we consider which action a to select in a state s
when we follow our old policy π afterwards. To decide this, we look at the Bellman equation of
the state-action value function:

qπ(s, a)
.
= E [Rt+1 + γvπ(St+1)|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

Policy improvement theorem

Let π and π′ be any pair of deterministic policies. If, ∀s ∈ S,

qπ(s, π
′(s)) ≥ vπ(s),

then the policy π′ must be as good as, or better than, π. It follows that, ∀s ∈ S:

vπ′(s) ≥ vπ(s)

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 24

Policy Improvement

To implement this, we compute qπ(s, a) for all states and all actions, and consider the greedy
policy:

π′(s)
.
= argmax

a
qπ(s, a)

= argmax
a

E [Rt+1 + γvπ(St1)|St = s,At = a]

= argmax
a

∑
s′,r

p(s′, r|s, a) [r + γvπ(s
′)]

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 25

Policy Iteration

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 26

Value Iteration

Performing policy evaluation to convergence in every iteration is costly and often not necessary.
A special case is to evaluate just once and combine it with the policy improvement step:

vk+1(s)
.
= max

a
E [Rt+1 + γvk(St+1)|St = s,At = a]

= max
a

∑
s′,r

p(s′, r|s, a) [r + γvk(s
′)]

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 27

Value Iteration

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 28

Generalized Policy Iteration

I Policy Evaluation: estimate vπ
I Policy Improvement: greedy

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 29

Summary

I MDPs allow us to formalize RL (and more generally, stochastic optimal control) problems,
4-tuple 〈S,A, p,R〉, assume Markov Property holds

I Bellman Equations express a relationship between the value of a state and the values of its
successor states, provide structure to search for an optimal policy intelligently

I Policy Iteration and Value iteration use the structure of the Bellman Equations and turn
them into iterative algorithms for finding optimal policies given an MDP (with and
without explicit representation of the policy)

MPC and RL – Lecture 7 J. Boedecker and M. Diehl, University Freiburg 30

	Markov Decision Processes
	Policies and Value Functions
	Policy and Value Iteration

