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Overview

Optimization: basic definitions and concepts
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What is optimization?

® Optimization = search for the best solution

® in mathematical terms:
minimization or maximization of an objective function f (x)
depending on variables x subject to constraints

Equivalence of maximization and minimization problems:
(from now on only minimization)

f(x) -f(x)
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Constrained optimization

® Often variable x shall satisfy certain constraints, e.g.:

° X 2)
2 2 =
o X2+ X C

® General formulation:

min f(x)
subject to (s.t.)
glx) = 0
hx) = 0

f objective function / cost function
g equality constraints
h inequality constraints
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Simple example: Ball hanging on a spring

To find position at rest,
minimize potential energy!

: 2 2
mimx, +x, +mx,
spring gravity

l+x,+x, = 0

0

W

3-x +x,
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Feasible set

Feasible set = collection of all
points that satisfy all constraints:

Example feasible set is intersection
_~ of grey and blue area

N ()= X, =0
AT ()= 1-x'—x220

~~~~~~
........

The “feasible set” Q is {z € R"|g(z) =0, h(z) > 0}.
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Local and global minima

Local Minimum

Local Minimum

R" is a “local minimizer” iff

The point z
an open ball around z*) so that Yo € QN
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Derivatives

® First and second derivatives of the objective function or the
constraints play an important role in optimization

® The first order derivatives are called the gradient (of the resp. fct)

of of ﬁ)T

Vv =(=—
f(x) (817] ) axza b a.’l;'n
® and the second order derivatives are called the Hessian matrix

o%f 9%f 9% f
oz ox10x2 7 0x10%n
9?2 9% f 9
Vif(z) = | 0w20z1  8z® 7 Owadan
oy _f o°f
0xndr1  Oxndre " Orpn2
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Optimality conditions (unconstrained)

min f(z)

Assume that f is twice differentiable.
We want to test a point x* for local
optimality.

® necessary condition: /
V1(x*)=0 (stationarity)

® sufficient condition:
x* stationary and VZ2f(x*) positive definite —

\

X*
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Types of stationary points

(a)-(c) x*is stationary: Vf(x*)=0

(b} ~

V2f(x*) positive definite:
local minimum

é‘ V2f(x*) negative definite:
5 local maximum

Minimum Moximum

(e} *

Saddle

V2f(x*) indefinite: saddle point
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Ball on a spring without constraints

min X + X7 +mx,
XER

contour lines of f(x)

gradient vector
Vf(x)=(2x,,2x, + m)

unconstrained minimum:

0=V/(x) = (x,x)) = (0%)
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Sometimes there are many local minima

e.g. potential energy
of macromolecule

Global optimization is a very hard issue - most algorithms find only
the next local minimum. But there is a favourable special case...
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Convex functions

~

Convex: all connecting Non-convex: some connecting

lines are above graph lines are not above graph

‘f:Q—HRconvex & Vr,ye Qte|0,1]: flx+t(y —x)) Sf(x)—&—t(f(y)—f(ac))‘
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Convex feasible sets

Convex: all connecting lines Non-convex: some connecting
between feasible points are in  line between two feasible points

the feasible set is not in the feasible set

Qconvex < Vr,yeQtel0,1]:x+tly—x) EQ‘
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Convex optimization problems

Convex problem if

f(x) is convex and the feasible set is convex

One can show: .
For convex problems, every local minimum is also a global minimum.
It is sufficient to find local minimal!
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Characteristics of optimization problems 1

® size / dimension of problem n ,
i.e. number of free variables

@ continuous or discrete search space

® number of minima
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Characteristics of optimization problems 2

® Properties of the objective function:
« type: linear, nonlinear, quadratic ...
» smoothness: continuity, differentiability

® Existence of constraints

® Properties of constraints:
* equalities / inequalities

» type: ,simple bounds®, linear, nonlinear, N
i i i Y
dynamic equations (optimal control) ] :WW;“
+ smoothness N
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Summary Basic Definitions and Concepts

» Optimization problems can be:
unconstrained or constrained
convex or non-convex
linear or non-linear
differentiable or non-smooth
continuous or (mixed-)integer
finite or infinite dimensional
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Overview

Introduction to some classes of optimization problems
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Problem Class 1: Linear Programming (LP)

® Linear objective,
linear constraints: n;in 'z
Linear Optimization Problem s t. Az = b
(convex)
x>0

® Example: Logistics Problem
« shipment of quantities a,, a,, ... a,
of a product from m locations

« to be received at n detinations in Origin of linear
quantities by, by, ... b, programmlng
- in 2nd world war
« shipping costs ¢;

+ determine amounts x;
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Problem Class 2: Quadratic Programming (QP)

® Quadratic objective and linear 1
. . T T
constraints: mn ¢ T+ 27 Qz
Quadratic Optimization Problem s.t. Az=1»
(convex, if Q pos. def.)
Cz>d

® Example: Markovitz mean variance portfolio optimization
* quadratic objective: portfolio variance (sum of the variances and
covariances of individual securities)
« linear constraints specify a lower bound for portfolio return

® QPs play an important role as subproblems in nonlinear optimization

Important: Linear MPC is based on online solution of QP for changing data
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Problem Class 3: Nonlinear Programming (NLP)

® Nonlinear Optimization Problem .
(in general nonconvex) mzln f(z)
s. t h(z) =0
g9(z) >0

® E.g. the famous nonlinear Rosenbrock
function

f(2) =100(z2 — 21)” + (1 - 21)°

Nonlinear MPC is based on online solution of NLP via Newton-type methods
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Problem Class 4: Non-smooth optimization

® objective function or constraints are
non-differentiable or not continuous e.g.

f(e) = ||

f(z) = mlaxfi(x), i=1,.n

cosz firz<Z
_ >3
f(f”)‘{ 0 firz>2

fl@)y=14 for i<z<i+1,i=0,1,2,..

derivative-based methods can still be useful e.g. stochastic gradient descent (SGD) or penalty
methods for mathematical programs with complementarity constraints (MPCC)
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Problem Class 5: (Mixed) Integer Programming (MIP)

® Some or all variables are integer . T
. . min cC T
(e.g. linear integer problems) T
s.t. Az=0»
n
x €7y

® Special case: combinatorial optimization =
problems -- feasible set is finite L WAl |

® Example: traveling salesman problem

» determine fastest/shortest round
trip through n locations
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Problem Class 6: Continuous Optimal Control

® Optimization problems
including dynamics in form of
differential equations
(infinite dimensional)
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Variables

min
TyUsD

s. t.

z(t),u(t),p (partly -dim.)

/OT o(t, z(t), u(t),p)dt
@ = f(t,z(t),u(t),p)

THIS COURSE'S MAIN TOPIC!
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Nonlinear MPC solves Nonlinear Programs (NLP)

Continuous Time NMPC Problem

min fOTcC(s, a)dt + E(s(T))
s(~),a(~)

s.t. S(O) = 3o

Direct methods like multiple shooting
first discretize, then optimize.

MPC and RL — Lecture 3: Optimization J. Boedecker and M. Diehl, University Freiburg



Nonlinear MPC solves Nonlinear Programs (NLP)

Continuous Time NMPC Problem Discrete time NMPC Problem (an NLP)

e Jo ce(s,a) dt + E(s(T)) min YN e(sg, ar) + E(sy)
s.t.  s(0) =3¢ s.t. sgp=35p
:L’(t) = fc(s(t)’a(t)) Sk4+1 = (S )
0> h(s(t),a(t)), t €[0,T] 0> h(sg,ax), k=0,...,N—1
0> r(s(T)) 0> r(sw)
Direct methods like multiple shooting Variables s = (so,...) and a = (ag,...,an—_1)
first discretize, then optimize. can be summarized in vector z = (s,a) € R™.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

. N—
min S5 el ) + Blsx)
s.t. Ssgp = S

sk+1 = f(sk, ar)
0 2 h(sk,ak), k= 0,...,N—1
0> r(sy)

Variables s = (sg,...) and a = (ag,...,an—1)
can be summarized in vector x = (s,a) € R™.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

: N—
min SN sk ar) + E(sy)
s.t. So =50

sk+1 = f(sk,ar)
0 > h(sk,ak), kZO,...,N—l
0>r(sn)

Variables s = (sg,...) and a = (ag,...,an—1)
can be summarized in vector x = (s,a) € R™=.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP) Nonlinear Program (NLP)
rglian Eév:_ol c(sk,ar) + E(sn) xrenﬂglz F(z)
s.t. Sop = So s.t. G(III) =0
sk+1 = f(Sk, ak) H(z) =20

0>h
0>r

sk,ak), kZO,...,N—l
SN)

(
(

Variables s = (sg,...) and a = (ag,...,an—1)
can be summarized in vector x = (s,a) € R™=.
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The great watershed

"The great watershed in optimization isn't
between linearity and nonlinearity,
but convexity and nonconvexity”

R. Tyrrell Rockafellar

» For convex optimization problems we can efficiently find global minima.
» For non-convex, but smooth problems we can efficiently find local minima.
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Overview

Newton-type optimization
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Newton-type methods based on linearizations of nonlinear functions

—
Linearization of F' at linearization point \
equals /) Feo
First order Taylor series at / -
equals ) £&5%)
Fi(e:7) = F(E) + 5 (7) (2 7) 3

(for continuously differentiable F': R™» — R"F)

e
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Newton-type methods based on linearizations of nonlinear functions

s e
Linearization of F' at linearization point \
equals /) Feo
First order Taylor series at & /
anst

equals

Fu(z;%) == F(Z) 4+ V. F () (z — )

(for continuously differentiable F': R™» — R"F)

e
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Overview

Newton-type optimization
m Equality Constrained Optimization
m Inequality Constrained Optimization
m How to solve QP subproblems?
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General Nonlinear Program (NLP)

We want to solve the discretized optimal control problem, which is a Nonlinear Program (NLP)

. G(r) = 0,
min F(z) s.t. { H(z) > 0

We first treat the case without inequalities
min F(z) st. G(zr) = 0,

x
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Lagrange Function and Optimality Conditions

Introduce Lagrangian function
L(x,\) = F(z) — A\TG(x)
Then for an optimal solution x* exist multipliers A* such that

Ve L(z*,A*) = 0,
G(z*) = 0,
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Newton's Method on Optimality Conditions

How to solve nonlinear equations

<
8
)
&
\.*
>
*
SN~—
I
uO

Linearize.
Vi L(x® AF)  +V2L(2F AR Ax  —V,.G(xF)AN =
G(z%)  +V,G(2")TAx = 0.

This is equivalent, due to VL(z*, \F) = VF(2*) — VG(2¥)\F, with the shorthand
AT =24+ A\ to

=

|
[=)

V. F(zF) +V2L(zF YAz —V,G(zF)A
G(z%) +V.G(F)TAz = 0,
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Newton Step = Quadratic Program

Conditions
Vo F(2%) +V2L(2% \F)Ar  —V,G(sF)\*T
G(z¥)  +V.G@F)TAz

are optimality conditions of a quadratic program (QP), namely:
1
rgin VF(*)T Az + iA.’L‘TBzXAI
s.t. G(®)+VGEM)TAz = 0,

with
B = V2L(z% \F)
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Newton's Method

The full step Newton’s Method iterates by solving in each iteration the Quadratic Program

min  VF(z*)T Az + %AxTBZXAx

Ax

s.t. G(z*) +VG@EH)TAr = 0,
with B&X = V2L(zk, AF).
Obtain as QP solution step Az* and new multiplier )\ap, and iterate:

xk+1 :Ck + A:Z?k

k+1 +
N = aE,
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Newton's Method - Simplified Notation

The full step Newton’s Method iterates by solving in each iteration the Quadratic Program
min  Fp,(z;2%) 4+ = (2 — 28) T B (z — 2*)
xr

s.t. Gr(z;2) = 0,

N | =

with BSX = V2L (xF k).
Obtain new iterate ™ and new multiplier Agp and iterate

gl = ot

k _ +
A +1 AQP

Can be called Sequential Quadratic Programming (SQP) with exact Hessian and full steps
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Overview

Optimization: basic definitions and concepts

Introduction to some classes of optimization problems

Newton-type optimization

m Inequality Constrained Optimization
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NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

min F(z) s.t. {

x

=
2
v
(@)

Introduce Lagrangian function

Lz, A\ p)=F(z) =N G(z) - p' H(x)
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Optimality Conditions with Inequalities

THEOREM(Karush-Kuhn-Tucker (KKT) conditions) For an optimal solution z* exist
multipliers \* and p* such that

cocoooo

Ve L(z*, X*, u*)
(z

G(a")

v IV

1%
H(.’I}*)TM*

)

These contain nonsmooth conditions (the last three) which are called “complementarity
conditions”. This system cannot be solved by Newton's Method. But still with SQP...
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Sequential Quadratic Programming (SQP)

By linearizing all functions within the KKT Conditions, and setting AT = A\¥ + A\ and
ut = ,uk + Apu, we obtain the KKT conditions of the following Quadratic Program (QP):

mwin VF(@") T Az + %A:cTB,‘?‘Ax
G(2*)+VG(EM)TAz = 0,
S.t- k k T
H(z")+VH(z")' Az > 0,
with
By = ViL(x" \*, ub)
and its solution delivers

Axka Aapu ﬂaP
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Sequential Quadratic Programming (SQP) - Simplified Notation

In each SQP iteration, solve the following QP:

with
By* = V2L(x* \F uF)
and QP solution delivers new iterate

k+1 )\k-‘,—l uk+1
;
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Constrained Gauss-Newton Method

In special case of least squares objectives
1 2
F(z) = SR()]2
can approximate Hessian V2L (z*, \*, u¥) by cheaper and always semidefinite matrix

BSN = VR(z)VR(z)".

Need no multipliers to compute BSN. Obtain convex QP subproblem:

1
mimn R(z*)TVR(z*)T Az + §AxTB,§NAx
G(z%) + VG(aF) T Az

5.8 H(z®)+VH*)TAz >
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Constrained Gauss-Newton Method

In special case of least squares objectives
1 2
F(z) = SR()]2
can approximate Hessian V2L (z*, \*, u¥) by cheaper and always semidefinite matrix
BSN = VR(z)VR(z)".
Need no multipliers to compute BSN. Obtain convex QP subproblem:
1
Igin §||R(xk) + VR(z") T Az||2

G(z*) + VG(2F) T Az

0,
5.8 H(z%) + VH(zF)T Ax 0

(AVAN|

)
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Constrained Gauss-Newton Method

In special case of least squares objectives

1
F(z) = gHR(fﬁ)Hg
can approximate Hessian V2L (z*, A\, 1¥) by cheaper and always semidefinite matrix

BPN = VR(z)VR(z)".

Need no multipliers to compute BEN. Obtain convex QP subproblem:

. 1
min || Rt}
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Constrained Gauss-Newton Method in a Nutshell

Constrained Least-Squares Problem Constrained Gauss-Newton Subproblem

1
gkt = arg min §||RL(33753k)||§

GL(x;xk
Hy(z; z*

=

S.t.

~— —
IVl
=

Linear convergence, i.e.

¥+ — 2*|| < wlla® — 2|
Contraction rate £ < 1 small if |[R(z*)||3 small.

[Bock 1987]
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Overview

Optimization: basic definitions and concepts

Introduction to some classes of optimization problems

Newton-type optimization

m How to solve QP subproblems?
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How to solve QP subproblems?

For an equality constrained QP
T L 5
min g x—|—§x Az st. b+ Bx = 0,

the solution (z, ) is just solution of one linear system:

g +Ar —B'X = 0,
b +Bzx = 0,

In case of inequalities, two variants exist:
» Active Set Methods (similar to simplex for LP, not explained here)
> Interior Point Methods (next slide)
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Interior Point (IP) Methods

For notational convenience, regard inequality constrained QP in following form

b+ Bx

1
T 1T
min g x—|—2x Az s.t. a:

IVl
o

Idea: replace inequalities by barrier function —7log(z;), let 7 go to zero.
Convex Barrier Subproblem in IP Method
1
ming'z+ —z' Az — 7 Z log(z;) st. b+ Bx = 0,
x 2 -
K3

Solve each 7-problem with Newton-type method for equality constrained optimization.
Can show

> error goes to zero for 7 — 0

» if 7 is reduced each time by a constant factor, and each new problem is initialized at old

solution, the number of Newton iterations is bounded (polynomial complexity)
MPC and RL — Lecture 3: Optimization
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Nonlinear Systems in Interior Point Methods

Optimality conditions for

Convex Barrier Subproblem in IP Method

1
ming 'z + §$TA:TJ—TZIOg(:Ei) st. b+Bx = 0,

can be shown to be equivalent to system in variables (z, A, )

g+Ar—B'A—pu = 0,
b+Bx = 0,
Tihy = T, 1=1,...,n.

Only last condition is nonlinear, it replaces the last KKT condition. The system can be solved
by Newton's method, e.g. in QP solver HPIPM for fast MPC.

Note: IP method can also directly address nonlinear programs, e.g. in NLP solver IPOPT.
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Summary

» Optimization problems can be: General NLP

unconstrained or constrained min F(a:)
convex or non-convex zER"

linear or non-linear s.t. G(JC) =0
differentiable or non-smooth H(x) >0

continuous or (mixed-)integer
finite or infinite dimensional
For least-squares: F(z) = ||R(z)|3 get
» Important classes are
linear programs (LP) . R (2 3)|12
quadratic programs (QP) xglﬂéﬁlw 1R (2 )12
nonlinear programs (NLP)

s.t. GL( ;S_C):

Gauss-Newton QP subproblem

» Newton-type algorithms linearize nonlinear
functions and solve convex subproblems
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