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What is optimization?

! Optimization = search for the best solution 
! in mathematical terms: 

minimization or maximization of an objective function f (x) 
depending on variables x subject to constraints

What is optimization?

Equivalence of maximization and minimization problems: 
(from now on only minimization)

x*   Minimum

x

-f(x)

x*   Maximum

f(x)

x
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Constrained optimization

! Often variable x shall satisfy certain constraints, e.g.:  
• x    0 
• x1 

2 + x2 
2  = C 

! General formulation:

Constrained optimization

f objective function / cost function 
g equality constraints 
h inequality constraints

0)(
0)(

(s.t.) subject to
)(min
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≥
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Simple example: Ball hanging on a spring 
Simple example: Ball hanging on a spring  

To find position at rest, 
minimize potential energy!

spring gravity
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Feasible set

feasible set is intersection 
of grey and blue area

Feasible set = collection of all 
points that satisfy all constraints:

Example
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Local and global minima
Local and global optima

f(x)

x

Global Minimum:

Local Minimum

Local Minimum
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Derivatives

Derivatives
! First and second derivatives of the objective function or the 

constraints play an important role in optimization  
!
! The first order derivatives are called the gradient  (of the resp. fct) 
!
!
! and the second order derivatives are called the Hessian matrix
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Optimality conditions (unconstrained)

min
x∈Rn

f(x)

! sufficient condition:  
x* stationary and ∇2f(x*) positive definite

!
! necessary condition:  

∇f(x*)=0 (stationarity)

Optimality conditions (unconstrained)

Assume that f is twice differentiable.  
We want to test a point x* for local 
optimality.

x*

nRxxf ∈)(min

MPC and RL – Lecture 3: Optimization J. Boedecker and M. Diehl, University Freiburg 10



Types of stationary points

Types of stationary points

∇2f(x*) positive definite: 
local minimum

∇2f(x*) negative definite: 
local maximum

∇2f(x*) indefinite: saddle point

(a)-(c) x* is stationary: ∇f(x*)=0
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Ball on a spring without constraints

contour lines of f(x)

gradient vector

unconstrained minimum: 

Ball on a spring without constraints
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Sometimes there are many local minima

Sometimes there are  many local minima

e.g. potential energy  
of macromolecule

Global optimization is a very hard issue - most algorithms find only 
the next local minimum.   But there is a favourable special case...
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Convex functions
Convex functions

Convex: all connecting 

lines are above graph

Non-convex: some connecting 

lines are not above graph

f : Ω→ R convex ⇔ ∀x, y ∈ Ω, t ∈ [0, 1] : f(x+ t(y − x)) ≤ f(x) + t(f(y)− f(x))
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Convex feasible sets
Convex feasible sets

Convex: all connecting lines 

between feasible points are in  

the feasible set

Non-convex: some connecting 

line between two feasible points 

is not in the feasible set

Ω convex ⇔ ∀x, y ∈ Ω, t ∈ [0, 1] : x+ t(y − x) ∈ Ω
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Convex optimization problems
Convex problems  

Convex problem if  
 

 f(x) is convex and the feasible set is convex

One can show:  
For convex problems, every local minimum is also a global minimum.  

It is sufficient to find local minima!
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Characteristics of optimization problems 1
Characteristics of optimization problems 1

! size / dimension of problem n , 
i.e. number of free variables 

!
! continuous or discrete search space 
!
! number of minima
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Characteristics of optimization problems 2
Characteristics of optimization problems 2

! Properties of the objective function: 
• type: linear, nonlinear, quadratic ... 
• smoothness: continuity, differentiability 

!
! Existence of constraints 
!
! Properties of constraints: 

• equalities / inequalities 
• type: „simple bounds“, linear, nonlinear,  

dynamic equations (optimal control) 
• smoothness
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Summary Basic Definitions and Concepts

I Optimization problems can be:
I unconstrained or constrained
I convex or non-convex
I linear or non-linear
I differentiable or non-smooth
I continuous or (mixed-)integer
I finite or infinite dimensional
I ...
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Problem Class 1: Linear Programming (LP)
Problem Class 1: Linear Programming (LP)

! Linear objective,  
 linear constraints:      
 Linear Optimization Problem     

(convex) 
!
!
! Example: Logistics Problem 

• shipment of quantities a1, a2, ... am  
of a product from m locations  

• to be received at n detinations in  
quantities b1, b2, ... bn 

• shipping costs cij 

• determine amounts xij

Origin of linear  
programming 
in 2nd world war
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Problem Class 2: Quadratic Programming (QP)
Problem Class 2: Quadratic Programming (QP) 

! Quadratic objective and linear  
 constraints:     
 Quadratic Optimization Problem     

(convex, if Q pos. def.) 
!
!
!
! Example: Markovitz mean variance portfolio optimization 

• quadratic objective: portfolio variance (sum of the variances and 
covariances of individual securities) 

• linear constraints specify a lower bound for portfolio return 

! QPs play an important role as subproblems in nonlinear optimization

Important: Linear MPC is based on online solution of QP for changing data
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Problem Class 3: Nonlinear Programming (NLP)
Problem Class 3: Nonlinear Programming (NLP)  

! Nonlinear Optimization Problem 
(in general nonconvex) 

!
!
!
!
!
! E.g. the famous nonlinear Rosenbrock   
 function        

Nonlinear MPC is based on online solution of NLP via Newton-type methods
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Problem Class 4: Non-smooth optimization
Problem Class 4: Non-smooth optimization

! objective function or constraints are  
non-differentiable or not continuous e.g.

derivative-based methods can still be useful e.g. stochastic gradient descent (SGD) or penalty
methods for mathematical programs with complementarity constraints (MPCC)
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Problem Class 5: (Mixed) Integer Programming (MIP)

! Some or all variables are integer 
(e.g. linear integer problems) 

!
!
!
!
! Special case: combinatorial optimization  

problems -- feasible set is finite 
!
! Example: traveling salesman problem 

• determine fastest/shortest round 
trip through n locations

Problem Class 5: Integer Programming (IP)
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Problem Class 6: Continuous Optimal Control
Problem Class 6: Optimal Control
!
! Optimization problems  

including dynamics in form of 
differential equations   
(infinite dimensional)  

Variables (partly ∞-dim.) 

THIS COURSE‘S MAIN TOPIC!
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Nonlinear MPC solves Nonlinear Programs (NLP)

Continuous Time NMPC Problem

min
s(·),a(·)

∫ T

0
cc(s, a) dt+ E(s(T ))

s.t. s(0) = s̄0

ẋ(t) = fc(s(t), a(t))

0 ≥ h(s(t), a(t)), t ∈ [0, T ]

0 ≥ r(s(T ))

Direct methods like multiple shooting
first discretize, then optimize.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Continuous Time NMPC Problem

min
s(·),a(·)

∫ T

0
cc(s, a) dt+ E(s(T ))

s.t. s(0) = s̄0

ẋ(t) = fc(s(t), a(t))

0 ≥ h(s(t), a(t)), t ∈ [0, T ]

0 ≥ r(s(T ))

Direct methods like multiple shooting
first discretize, then optimize.

Discrete time NMPC Problem (an NLP)

min
s,a

∑N−1
k=0 c(sk, ak) + E(sN )

s.t. s0 = s̄0

sk+1 = f(sk, ak)

0 ≥ h(sk, ak), k = 0, . . . , N−1

0 ≥ r(sN )

Variables s = (s0, . . .) and a = (a0, . . . , aN−1)
can be summarized in vector x = (s, a) ∈ Rn.
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Nonlinear MPC solves Nonlinear Programs (NLP)

Discrete time NMPC Problem (an NLP)

min
s,a

∑N−1
k=0 c(sk, ak) + E(sN )

s.t. s0 = s̄0

sk+1 = f(sk, ak)

0 ≥ h(sk, ak), k = 0, . . . , N−1

0 ≥ r(sN )

Variables s = (s0, . . .) and a = (a0, . . . , aN−1)
can be summarized in vector x = (s, a) ∈ Rnx .

Nonlinear Program (NLP)

min
x∈Rnx

F (x)

s.t. G(x) = 0

H(x) ≥ 0
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The great watershed
The great watershed

!
!

"The great watershed in optimization isn't  
between linearity and nonlinearity,  
but convexity and nonconvexity”  

!
R. Tyrrell Rockafellar  

!
!

• For convex optimization problems we can efficiently find global minima. 
• For non-convex, but smooth problems we can efficiently find local minima.
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Newton-type methods based on linearizations of nonlinear functions

Linearization of F at linearization point x̄

equals

First order Taylor series at x̄

equals

FL(x; x̄) := F (x̄) +
∂F

∂x
(x̄) (x− x̄)

(for continuously differentiable F : Rnx → RnF )

MPC and RL – Lecture 3: Optimization J. Boedecker and M. Diehl, University Freiburg 31



Newton-type methods based on linearizations of nonlinear functions

Linearization of F at linearization point x̄

equals

First order Taylor series at x̄

equals

FL(x; x̄) := F (x̄) +∇xF (x̄)>(x− x̄)

(for continuously differentiable F : Rnx → RnF )

MPC and RL – Lecture 3: Optimization J. Boedecker and M. Diehl, University Freiburg 31



Overview

1 Optimization: basic definitions and concepts

2 Introduction to some classes of optimization problems

3 Newton-type optimization
Equality Constrained Optimization
Inequality Constrained Optimization
How to solve QP subproblems?

MPC and RL – Lecture 3: Optimization J. Boedecker and M. Diehl, University Freiburg 32



General Nonlinear Program (NLP)

We want to solve the discretized optimal control problem, which is a Nonlinear Program (NLP)

min
x
F (x) s.t.

{
G(x) = 0,
H(x) ≥ 0.

We first treat the case without inequalities

min
x
F (x) s.t. G(x) = 0,
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Lagrange Function and Optimality Conditions

Introduce Lagrangian function

L(x, λ) = F (x)− λ>G(x)

Then for an optimal solution x∗ exist multipliers λ∗ such that

∇xL(x∗, λ∗) = 0,
G(x∗) = 0,
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Newton’s Method on Optimality Conditions

How to solve nonlinear equations

∇xL(x∗, λ∗) = 0,
G(x∗) = 0, ?

Linearize.
∇xL(xk, λk) +∇2

xL(xk, λk)∆x −∇xG(xk)∆λ = 0,
G(xk) +∇xG(xk)>∆x = 0.

This is equivalent, due to ∇L(xk, λk) = ∇F (xk)−∇G(xk)λk, with the shorthand
λ+ = λk + ∆λ, to

∇xF (xk) +∇2
xL(xk, λk)∆x −∇xG(xk)λ+ = 0,

G(xk) +∇xG(xk)>∆x = 0,
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Newton Step = Quadratic Program

Conditions
∇xF (xk) +∇2

xL(xk, λk)∆x −∇xG(xk)λ+ = 0,
G(xk) +∇xG(xk)>∆x = 0,

are optimality conditions of a quadratic program (QP), namely:

min
∆x

∇F (xk)>∆x+
1

2
∆x>Bex

k ∆x

s.t. G(xk) +∇G(xk)>∆x = 0,

with
Bex

k = ∇2
xL(xk, λk)
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Newton’s Method

The full step Newton’s Method iterates by solving in each iteration the Quadratic Program

min
∆x

∇F (xk)>∆x+
1

2
∆x>Bex

k ∆x

s.t. G(xk) +∇G(xk)>∆x = 0,

with Bex
k = ∇2

xL(xk, λk).

Obtain as QP solution step ∆xk and new multiplier λ+
QP, and iterate:

xk+1 = xk + ∆xk

λk+1 = λ+
QP
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Newton’s Method - Simplified Notation

The full step Newton’s Method iterates by solving in each iteration the Quadratic Program

min
x

FL(x;xk) +
1

2
(x− xk)>Bex

k (x− xk)

s.t. GL(x;xk) = 0,

with Bex
k = ∇2

xL(xk, λk).

Obtain new iterate x+ and new multiplier λ+
QP and iterate

xk+1 = x+

λk+1 = λ+
QP

Can be called Sequential Quadratic Programming (SQP) with exact Hessian and full steps
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NLP with Inequalities

Regard again NLP with both, equalities and inequalities:

min
x
F (x) s.t.

{
G(x) = 0,
H(x) ≥ 0.

Introduce Lagrangian function

L(x, λ, µ) = F (x)− λ>G(x)− µ>H(x)
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Optimality Conditions with Inequalities

THEOREM(Karush-Kuhn-Tucker (KKT) conditions) For an optimal solution x∗ exist
multipliers λ∗ and µ∗ such that

∇xL(x∗, λ∗, µ∗) = 0,
G(x∗) = 0,
H(x∗) ≥ 0,

µ∗ ≥ 0,
H(x∗)>µ∗ = 0,

These contain nonsmooth conditions (the last three) which are called “complementarity
conditions”. This system cannot be solved by Newton’s Method. But still with SQP...
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Sequential Quadratic Programming (SQP)

By linearizing all functions within the KKT Conditions, and setting λ+ = λk + ∆λ and
µ+ = µk + ∆µ, we obtain the KKT conditions of the following Quadratic Program (QP):

min
x

∇F (xk)>∆x+
1

2
∆x>Bex

k ∆x

s.t.

{
G(xk) +∇G(xk)>∆x = 0,
H(xk) +∇H(xk)>∆x ≥ 0,

with
Bex

k = ∇2
xL(xk, λk, µk)

and its solution delivers
∆xk, λ+

QP, µ+
QP
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Sequential Quadratic Programming (SQP) - Simplified Notation

In each SQP iteration, solve the following QP:

min
x

FL(x;xk) +
1

2
(x− xk)>Bex

k (x− xk)

s.t.

{
GL(x;xk) = 0,
HL(x;xk) ≥ 0,

with
Bex

k = ∇2
xL(xk, λk, µk)

and QP solution delivers new iterate

xk+1, λk+1, µk+1
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Constrained Gauss-Newton Method

In special case of least squares objectives

F (x) =
1

2
‖R(x)‖22

can approximate Hessian ∇2
xL(xk, λk, µk) by cheaper and always semidefinite matrix

BGN
k = ∇R(x)∇R(x)>.

Need no multipliers to compute BGN
k . Obtain convex QP subproblem:

min
∆x

R(xk)>∇R(xk)>∆x+
1

2
∆x>BGN

k ∆x

s.t.
G(xk) +∇G(xk)>∆x = 0,
H(xk) +∇H(xk)>∆x ≥ 0,
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Constrained Gauss-Newton Method

In special case of least squares objectives

F (x) =
1

2
‖R(x)‖22

can approximate Hessian ∇2
xL(xk, λk, µk) by cheaper and always semidefinite matrix

BGN
k = ∇R(x)∇R(x)>.

Need no multipliers to compute BGN
k . Obtain convex QP subproblem:

min
∆x

1

2
‖R(xk) +∇R(xk)>∆x‖22

s.t.
G(xk) +∇G(xk)>∆x = 0,
H(xk) +∇H(xk)>∆x ≥ 0,
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Constrained Gauss-Newton Method

In special case of least squares objectives

F (x) =
1

2
‖R(x)‖22

can approximate Hessian ∇2
xL(xk, λk, µk) by cheaper and always semidefinite matrix

BGN
k = ∇R(x)∇R(x)>.

Need no multipliers to compute BGN
k . Obtain convex QP subproblem:

min
x

1

2
‖RL(x;xk)‖22

s.t.
GL(x;xk) = 0,
HL(x;xk) ≥ 0,
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Constrained Gauss-Newton Method in a Nutshell

Constrained Least-Squares Problem

min
x

1

2
‖R(x)‖22

s.t.
G(x) = 0,
H(x) ≥ 0,

Constrained Gauss-Newton Subproblem

xk+1 = arg min
x

1

2
‖RL(x;xk)‖22

s.t.
GL(x;xk) = 0,
HL(x;xk) ≥ 0,

Linear convergence, i.e.
‖xk+1 − x∗‖ ≤ κ‖xk − x∗‖

Contraction rate κ < 1 small if ‖R(x∗)‖22 small.

[Bock 1987]
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How to solve QP subproblems?

For an equality constrained QP

min
x
g>x+

1

2
x>Ax s.t. b+Bx = 0,

the solution (x, λ) is just solution of one linear system:

g +Ax −B>λ = 0,
b +Bx = 0,

In case of inequalities, two variants exist:

I Active Set Methods (similar to simplex for LP, not explained here)

I Interior Point Methods (next slide)
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Interior Point (IP) Methods

For notational convenience, regard inequality constrained QP in following form

min
x
g>x+

1

2
x>Ax s.t.

b+Bx = 0,
x ≥ 0,

Idea: replace inequalities by barrier function −τ log(xi), let τ go to zero.

Convex Barrier Subproblem in IP Method

min
x
g>x+

1

2
x>Ax− τ

∑
i

log(xi) s.t. b+Bx = 0,

Solve each τ -problem with Newton-type method for equality constrained optimization.
Can show

I error goes to zero for τ → 0

I if τ is reduced each time by a constant factor, and each new problem is initialized at old
solution, the number of Newton iterations is bounded (polynomial complexity)
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Nonlinear Systems in Interior Point Methods

Optimality conditions for

Convex Barrier Subproblem in IP Method

min
x
g>x+

1

2
x>Ax− τ

∑
i

log(xi) s.t. b+Bx = 0,

can be shown to be equivalent to system in variables (x, λ, µ)

g +Ax−B>λ− µ = 0,
b+Bx = 0,
xiµi = τ, i = 1, . . . , n.

Only last condition is nonlinear, it replaces the last KKT condition. The system can be solved
by Newton’s method, e.g. in QP solver HPIPM for fast MPC.

Note: IP method can also directly address nonlinear programs, e.g. in NLP solver IPOPT.
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Summary

I Optimization problems can be:
I unconstrained or constrained
I convex or non-convex
I linear or non-linear
I differentiable or non-smooth
I continuous or (mixed-)integer
I finite or infinite dimensional
I ...

I Important classes are
I linear programs (LP)
I quadratic programs (QP)
I nonlinear programs (NLP)

I Newton-type algorithms linearize nonlinear
functions and solve convex subproblems

General NLP

min
x∈Rnx

F (x)

s.t. G(x) = 0

H(x) ≥ 0

For least-squares: F (x) = ‖R(x)‖22 get

Gauss-Newton QP subproblem

min
x∈Rnx

‖RL(x; x̄)‖22

s.t. GL(x; x̄) = 0

HL(x; x̄) ≥ 0
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