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Optimal Control based on Dynamic System Models

I optimal control = optimization of dynamic systems

I each optimal control problem (OCP) is characterized by three ingredients:
I dynamic system model
I constraints
I objective function, i.e., cost or reward
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Optimal Control based on Dynamic System Models

I optimal control = optimization of dynamic systems

I each optimal control problem (OCP) is characterized by three ingredients:
I dynamic system model (focus of this talk)
I constraints
I objective function, i.e., cost or reward
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Dynamic System Models

I system model describes evolution of system as function of
I system state s from state space S ⊂ Rns (or ⊂ Zns for discrete states)
I control action a from action space A ⊂ Rna (or ⊂ Zna for discrete actions)
I random disturbance ε from some disturbance space D

I examples:
I stochastic discrete time system, for k = 0, 1, 2, . . .

sk+1 = f(sk, ak, εk) with ”evolution function” f : S× A× D→ S

I deterministic continuous time ordinary differential equation (ODE), for t ∈ [0,∞)

ds
dt

(t) = fc(s(t), a(t)) with ”right hand side function” fc : S× A→ Rns

(stochastic continuous time systems need intricate notation and are therefore omitted here)
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Notation for Ordinary Differential Equation (ODE) Models

I denote ds
dt (t) by ṡ(t)

I drop time argument, abbreviate ṡ(t) = fc(s(t), a(t)) by

ṡ = fc(s, a)

I In this course, we use the RL notation: s for state and a for control action

I But in control engineering, one uses: x for state and u for control action, i.e.,

ẋ = fc(x, u)

(this notation might accidentally ”slip through” on some slides)
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ODE Example: Harmonic Oscillator

Mass m with spring constant k and friction coefficient β:

ẋ1(t) = x2(t)

ẋ2(t) = − k
m

(x2(t)− u(t)) − β

m
x1(t)

• state x(t) ∈ R2

• position of mass x1(t) ←− measured
• velocity of mass x2(t)
• control action: spring position u(t) ∈ R ←− manipulated

Can summarize as ẋ = fc(x, u) with

fc(x, u) =

[
x2

− k
m (x2 − u)− β

mx1

]
MPC and RL – Lecture 2: Systems and Simulation J. Boedecker and M. Diehl, University Freiburg 6



ODE Example: Harmonic Oscillator

Mass m with spring constant k and friction coefficient β:

ṡ1(t) = s2(t)

ṡ2(t) = − k
m

(s2(t)− a(t)) − β

m
s1(t)

• state s(t) ∈ R2

• position of mass s1(t) ←− measured
• velocity of mass s2(t)
• control action: spring position a(t) ∈ R ←− manipulated

Can summarize as ṡ = fc(s, a) with

fc(s, a) =

[
s2

− k
m (s2 − a)− β

ms1

]
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Some ODE Examples - what are their state vectors?

I Pendulum

I Hot plate with pot

I Continuously Stirred Tank Reactors (CSTR)

I Robot arms

I Moving robots

I Race cars

I Airplanes in free flight
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From Continuous to Discrete Time via Direct Multiple Shooting
[Bock & Plitt 1984]

Transform continuous ṡ(t) = fc(s(t), a(t)) into discrete time sk+1 = f(sk, ak) as follows:

1. define sk := s(tk) on equidistant time grid tk = k ∆t
with sampling time ∆t

2. use zero order hold control a(t) = ak on t ∈ [tk, tk+1]

3. use numerical simulation to compute ODE solution
x(t) ≡ x(t; sk, ak) satisfying

x(tk) = sk

ẋ(t) = fc(x(t), ak) for t ∈ [tk, tk+1]

4. define f(sk, ak) := x(tk+1; sk, ak)
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From Continuous to Discrete Time via Direct Multiple Shooting
[Bock & Plitt 1984]

Transform continuous ṡ(t) = fc(s(t), a(t)) into discrete time sk+1 = f(sk, ak) as follows:

Exact ODE solution

x(0) = s,

ẋ(t) = fc(x(t), a),

for t ∈ [0,∆t]

f(s, a) := x(∆t)

How to simulate ODE numerically?

MPC and RL – Lecture 2: Systems and Simulation J. Boedecker and M. Diehl, University Freiburg 10



Numerical Simulation/Integration, Three Examples

I simplest (but not recommended) implementation is a single step of an Euler integrator:

f(s, a) := s+ ∆t fc(s, a)

I more accurate are N steps of an Euler integrator:
x0 := s
for i = 0 to N − 1 do

xi+1 := xi + (∆t/N)fc(xi, a)
f(s, a) := xN

I more efficient are higher order Runge Kutta (RK) methods, e.g. a single RK4 step:
v1 := fc(s, a)
v2 := fc(s+ (∆t/2) v1, a)
v3 := fc(s+ (∆t/2) v2, a)
v4 := fc(s+ ∆t v3, a)
f(s, a) := s+ (∆t/6) (v1 + 2v2 + 2v3 + v4)
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Euler vs 4th Order Runge Kutta Method (RK4) for Test Problem

Aim: solve ṡ = s+ a for ∆t = 1, s = 1, a = 0. Exact solution is f(s, a) = e = 2.718.

I Four Euler steps give

x0 := 1
x1 := x0 + 1/4x0 [ = (1 + 1/4)x0 ]
x2 := (1 + 1/4)x1
x3 := (1 + 1/4)x2
x4 := (1 + 1/4)x3
fEuler(s, a) := x4 [= (1+1/4)4 = 2.441], error > 10%

I One RK4 step gives

v1 := 1
v2 := 1 + 1/2v1 [ = 6/4 ]
v3 := 1 + (1/2)v2 [ = 7/4 ]
v4 := 1 + v3 [ = 11/4 ]
fRK4(s, a) := 1+(1/6) (v1+2v2+2v3+v4) [ = 2.708 ]

RK4 is 27x more accurate than Euler for same number M = 4 of function evaluations
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Classes of Numerical Simulation MethodsOverview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Runge-Kutta

17 / 34
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Fourth order RK method most efficient for typically desired accuracies

I each integration method is characterized by
I integration order P and
I number of internal stages S

I can increase accuracy by more integration steps N

I total number of function evaluations is M = N · S
I integration error proportional to M−P

I for small M , low order methods are most accurate,
e.g., Euler with P = 1

I for large M , high order methods are more accurate

I humans typically want errors smaller than 10%, but
rarely smaller than 10−6

I accidentally, this favours the RK4 method (P = 4)
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Classes of Numerical Simulation MethodsOverview

Classes of numerical methods:

General Linear Methods

Multistep Single-step

Linear Multistep Runge-Kutta

explicit implicit implicitexplicit

and others ...

Runge-Kutta
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Discretization equations for general Runge Kutta (RK) methods

Exact ODE solution

x(0) = s,

ẋ(t) = v(t)

v(t) = fc(x(t), a),

for t ∈ [0,∆t]

f(s, a) := x(∆t)

N steps of general RK method with S stages

x0 = s, xk+1 = xk + h
∑S
j=1 bjvk,j

xk,i = xk + h
∑S
j=1 aijvk,j

vk,i = fc(xk,i, a),

for i = 1, . . . , S, k = 0, . . . , N − 1

f(s, a) := xN

I aij and bj are Butcher tableau entries of (potentially implicit) Runge Kutta method
I step length h := ∆t/N ; intermediate states xk, xk,i, vk,i ∈ Rns with integration step index
k ∈ {0, 1, . . . , N} and RK stage index i, j ∈ {1, . . . , S}

I N nonlinear equation systems with each 2Sns equations in 2Sns unknowns (xk,i, vk,i)
I solved by Newton’s method (or imposed as equality constraints in optimization)
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Butcher Tableau, Six Examples
8.2 Numerical Simulation 505
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(b) Simulation results for M = 32.

Figure 8.2: Performance of different integration methods.

It is important to note that on the right-hand side of each row, only
those ki values are used that are already computed. This property
holds for every explicit integration method, and makes it possible to
explicitly evaluate the first s equations one after the other to obtain
all values k1, . . . , ks for the summation in the last line. One usually
summarizes the coefficients of a Runge-Kutta method in what is known
as a Butcher tableau (after John C. Butcher, born 1933) given by

c1

c2 a21

c3 a31 a32
...

. . .
. . .

cs as1 · · · as,s�1

b1 b2 · · · bs

The Butcher tableau of three popular RK methods is stated below

Euler

0
1

Heun

0
1 1

1/2 1/2

RK4

0
1/2 1/2
1/2 0 1/2

1 0 0 1
1/6 2/6 2/6 1/6

Note that the bi coefficients on the bottom always add to one. An
interesting fact is that an s-stage explicit Runge-Kutta method can never
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Figure 8.3: Polynomial approximation xe1(t) and true trajectory
x1(t) of the first state and its derivative, computed at
the first integration step of the GL4 collocation method
applied to the stiff ODE from Example 8.4. Note that the
accuracy of the polynomial at the end of the interval is
significantly higher than in the interior. The result of this
first GL4 step can also be seen on the right side of Fig-
ure 8.4.

time derivatives is visualized, for a collocation method with s = 2 col-
location points (GL4) applied to the ODE from Example 8.4. Note that
in this example, ẋe(⌧ ;k1, k2, . . . , ks) is a polynomial of order one, i.e., an
affine function, and its integral, xe(⌧ ;x,k1, k2, . . . , ks), is a polynomial
of order two.

The Butcher tableau of three popular collocation methods is

Implicit
Euler

1 1
1

Midpoint
rule (GL2)

1/2 1/2
1

Gauss-Legendre
of order 4 (GL4)

1/2�
p

3/6 1/4 1/4�
p

3/6
1/2+

p
3/6 1/4+

p
3/6 1/4

1/2 1/2

Implicit Runge-Kutta (IRK) methods

IRK as the natural generalization from ERK methods:

0
c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · ·
b1 b2 · · · bs

)

c1 a11 · · · a1s

c2 a21 · · · a2s

...
...

...
cs as1 · · · ass

b1 · · · bs

25 / 34

MPC and RL – Lecture 2: Systems and Simulation J. Boedecker and M. Diehl, University Freiburg 17



Intermediate Milestone: Deterministic State Space Models

From now on, throughout the course, we exclusively focus on discrete time models

sk+1 = f(sk, ak)

with integer time index k = 0, 1, 2, . . .. We often simplify notation to

s+ = f(s, a)

Aim of optimal feedback control (including both MPC and RL) is to design a map, or policy,

π : S→ A, s 7→ a := π(s) such that closed-loop system s+ = f(s, π(s)) has

desirable properties, such as respecting constraints and minimizing a cost.

In practice, however, we might not be able to directly measure the state s ...
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The (realistic) Input Output Perspective

I In practice, we cannot measure the state. And the state representation is not even unique.

I A system model should allow us to predict, for any horizon length N and sequence of
control actions (a1, . . . , aN ), the sequence of measured outputs (y0, . . . , yN ).

I Typically, we need to also specify some initial conditions (e.g. the initial state s0)

-
control action input ak

Dynamic System

6

(initial conditions)

-
measured output yk
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Two Ways to Represent Deterministic Systems with Outputs

I State Space Models with outputs:

sk+1 = f(sk, ak)

yk = g(sk, ak) for k = 0, 1, 2, . . .

Initial conditions = initial state s0.

I Input Output Models (of order n):

yk = h(yk−1, . . . , yk−n, ak, . . . , ak−n) for k = n, n+ 1, n+ 2, . . .

Initial conditions: y0, . . . , yn−1 and a0, . . . , an−1.
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Recurrence Equation in Input Output Models of order n

Visualization of recurrence yk = h(yk−1, . . . , yk−n, ak, ak−1, . . . , ak−n):
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State Space Form of Input Output Models

I can always transform input-output to state-space models:

I state: sk = (yk−1, ak−1, . . . , yk−n, ak−n) (defined for k ≥ n)

I state transition s 7→ s+ = f(s, a) described by

sk =



yk−1

ak−1

...
yk−n+1

ak−n+1

yk−n
ak−n


7→ sk+1 =



yk
ak
yk−1

ak−1

...
yk−n+1

ak−n+1


= f(sk, ak) :=



h(yk−1, . . . , yk−n, ak, . . . , ak−n)
ak
yk−1

ak−1

...
yk−n+1

ak−n+1


I output equation: yk = g(sk, ak) := h(yk−1, . . . , yk−n, ak, . . . , ak−n).

I conversely, we can sometimes transform state-space to input-output models, e.g. in
case of observable and controllable linear time invariant (LTI) models
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Linear Time Invariant (LTI) Input Output Models

I Difference equation for Auto Regressive models with eXogenous inputs (ARX):

yk = c1yk−1 + . . .+ cnyk−n + b0ak + . . .+ bnak−n

for k = n, n+ 1, . . ., with initial conditions: y0, . . . , yn−1 and a0, . . . , an−1.

I also called Infinite Impulse Response (IIR) model (if some ci coefficients are nonzero)

I If all ci = 0 we speak of Finite Impulse Response (FIR) models:

yk = b0ak + . . .+ bnak−n

I There exist also auto regressive (AR) models without inputs:

yk = c1yk−1 + . . .+ cnyk−n

Example: Fibonacci numbers 1,1,2,3,5,8,13,21, ... (with c1 = c2 = 1 and y0 = y1 = 1)
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Some ODE Examples - what can be measured ?

I Pendulum

I Hot plate with pot

I Continuously Stirred Tank Reactors (CSTR)

I Robot arms

I Moving robots

I Race cars

I Airplanes in free flight
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General Stochastic Models

I in reality, we always have some random noise εk, e.g., disturbances or measurement errors

I also, we usually have unknown, but constant system parameters p

-input ak
Dynamic System

?

stochastic noise εk

6

initial conditions

6

parameters p

-output yk

(parameters can be seen as states that obey the dynamics pk+1 = pk and will often be omitted)
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Stochastic Systems in State Space and Input Output Form

General Form (with random εk):

Stochastic State Space Model

sk+1 = f(sk, ak, εk)

yk = g(sk, ak, εk)

Stochastic Input Output Model

yk = h(yk−1, . . . , yk−n, ak, . . . , ak−n, εk, . . . , εk−n)

Special Cases:

I State Noise and Output Errors:

sk+1 = f(sk, ak) + εSNk

yk = g(sk, ak) + εOE
k

I Equation Errors:

yk = h(yk−1, . . . , yk−n, ak, . . . , ak−n) + εEE
k

(note: different than output error)
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MPC needs System Identification and State Estimation

Prior to implementing an MPC controller, one needs to address two tasks:

I System Identification (offline):

use a long sequence of recorded input and output data, (a0, . . . , aN ) and (y0, . . . , yN ), to
identify parameters p using e.g. least squares optimization or subspace identification

I State Estimation (online):

estimate the state sk by using the previous control actions (..., ak−2, ak−1) and the past
measurements (..., yk−2, yk−1) using e.g. Extended Kalman Filter (EKF) or moving
horizon estimation (MHE) (MHE uses a fixed window of past data for fitting)

Learning-based MPC typically refers to an online model adaptation, i.e., to estimating
parameters online (for which MHE is particularly suitable) (”learning a model” = ”system identification”)

Note: need state estimation only for partially observable markov decision processes (POMDP)
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Fully and Partially Observable Markov Decision Processes (MDP)

State Space View:

Partially Observable MDP

sk+1 = f(sk, ak, εk)

yk = g(sk, ak, εk)

with independent identically distributed εk

Fully Observable MDP

sk+1 = f(sk, ak, εk)

yk= sk

with yk ∈ Rns

Probabilistic View:

Partially Observable MDP

Pstate(sk+1|sk, ak)

Pmeas( yk |sk, ak)

with probability density functions P·(·)

Fully Observable MDP

Pstate(sk+1|sk, ak)

Pmeas( yk |sk, ak) = δ(yk − sk)

with Dirac’s Delta function δ(·) in Rns
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Input output (I/O) models avoid need for state estimation

I We can avoid estimation task by assuming input-output (I/O) models of fixed order n

I This assumption leads to a fully observable markov decision process (MDP)

I State sk at time k is then given by sk = (yk−1, ak−1, . . . , yk−n, ak−n)

I Reinforcement Learning (RL) algorithms often use I/O-models (”end-to-end learning”)

I I/O-models also used in some linear MPC implementations based on LTI models, e.g.

yk =
∑n
i=0 bi ak−i + (yk−1 −

∑n
i=0 bi ak−i−1) + εk

I I/O-models also used for nonlinear black-box MPC or model-based RL which use neural
networks for the mapping yk = h(yk−1, . . . , yk−n, ak, . . . , ak−n)
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Summary

I We distinguish different model types
I continuous vs discrete state and control
I continuous vs discrete time
I linear vs nonlinear
I state space vs input output
I deterministic vs stochastic
I fully or partially observable

(not to be confused with ”observability” in systems theory)

I We transform differential equations to discrete time via numerical simulation

I We denote deterministic discrete time models and Markov Decision Processes (MDP) by

s+ = f(s, a) and P (s+|s, a)

with state s ∈ Rns and control action a ∈ Rna
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