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Components of RL Systems

» Policy: defines the behaviour of the agent
is a mapping from a state to an action
can be stochastic: w(als) = P[A; = a|S; = s]
or deterministic: 7(s) = a
» Value-function: defines the expected value of a state or an action
vr(8) = E[G¢|St = s] and g=(s,a) = E[G¢|S: = s, A¢ = q]
can be used to evaluate states or to extract a good policy
» Model: defines the transitions between states in an environment

p yields the next state and reward
p(s',7ls,a) = Pr{Sis+1 = 8, Riy1 = r|St = 5, Ay = a}
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Learning Models

» Depending on the task, the dynamics model can be much easier than the value-function or
the policy

We can estimate it via supervised learning methods

In practice, modelling state-changes can even be easier than the global state

>
» However, the model can also be more complex than policy and value-function
>
>

In a nutshell:
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Learning a model: data-efficient, hard to extract an optimal policy
Learning a value function: less data-efficient, easier to extract an optimal policy
Learning a policy: data-inefficient, directly estimate an optimal policy
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Models and Planning

» Given a state and an action, a model generates the next state and the corresponding
reward (can also be used to generate sequences of states and rewards)

» |t can either give the probabilities of all possible next states and rewards (distribution
model), or only one (sample model)

» Which one was used in Dynamic Programming?

» Extracting a policy from a model is called planning

model simulated backups values olic
e . = E —
experience policy
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Models and Planning

» Planning: Uses simulated experience generated by a model
» Learning: Uses real experiences from the environment

» But we can also apply learning methods to simulated experience

Random-sample one-step tabular Q-planning

Loop forever:
1. Select a state, S € 8, and an action, A € A(S), at random
2. Send S, A to a sample model, and obtain
a sample next reward, R, and a sample next state, S’
3. Apply one-step tabular Q-learning to S, A, R, S":
Q(S, A) + Q(S, A) + a[R + ymax, Q(S,a) — Q(S, A)]

» Converges to the optimal policy for the model
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> Real experience can be used to optimize the value function (or the policy)

directly (model-free RL) or
indirectly (model-based RL) via a model

» Indirect methods are often more data-efficient
» But they introduce additional bias through the model
» Idea of Dyna: try to combine the best of both worlds
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Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all s € 8§ and a € A(s)
Loop forever:

(a

) S < current (nonterminal) state
(b) A < e-greedy(S, Q)
(c) Take action A; observe resultant reward, R, and state, S’
(d) Q(S,A) « Q(S A) + a[R 4 ymax, Q(S’ a) — Q(S, A)]
(e) Model(S,A) < R, S’ (assuming deterministic environment)
(f) Loop repeat n times:

S < random previously observed state

A < random action previously taken in S

R, S’ + Model(S, A)

Q(S,A) «+ Q(S, A) + a[R + ymax, Q(5,a) — Q(S, A)]

\
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When the model is wrong

» Models can be incorrect (limited number of samples, environment has changed, function
approximation)

» Especially in areas where the agent has not explored

» There can be a Distribution Mismatch when the agent enters new areas of the
state-action space

» When the model is incorrect, the planning process is likely to find a suboptimal policy
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When the model is wrong

» Dyna-Q+: Add an exploration bonus for transitions that have not been visited recently

» Let r be the reward, x the weight of the exploration bonus and 7 the number of time
steps in which a certain transition has not been visited

» Then Dyna-Q+ modifies the internal reward function to:

r 4 kT
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When the model is wrong
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Simulation-based Search

» Forward search paradigm using sample-based planning
» Simulate episodes of experience from now with the model
» Apply model-free RL to simulated episodes

S,
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Monte Carlo Tree Search

» Build a search tree containing visited states and actions using the model (simulate
episodes from current state)

» Two policies: tree policy (improving, e.g. e-greedy) and out-of-tree rollout policy (random)
» Monte-Carlo control applied to simulated experience
> One of the key ingredients of AlphaGo (2016)
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Monte Carlo Tree Search

1. Selection: starting at the root, traverse to a leaf node following the tree policy

2. Expansion: expand the tree by one or multiple child nodes reached from the selected leaf
in some iterations

3. Simulation: simulate an episode following the rollout policy

4. Backup: update the action-values for all nodes visited in the tree
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Monte Carlo Tree Search

1 Repeat while time remains I
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