
Model Predictive Control and Reinforcement Learning

– Planning and Learning –

Joschka Boedecker and Moritz Diehl

University Freiburg

July 30, 2021

Lecture Overview

1 Model Learning

2 Dyna

3 Simulation-based Search

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 1

Acknowledgement

Slide contents are partially based on Reinforcement Learning: An Introduction by Sutton and
Barto and the Reinforcement Learning lecture by David Silver.

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 2

Components of RL Systems

I Policy: defines the behaviour of the agent
I is a mapping from a state to an action
I can be stochastic: π(a|s) = P[At = a|St = s]
I or deterministic: π(s) = a

I Value-function: defines the expected value of a state or an action
I vπ(s) = E[Gt|St = s] and qπ(s, a) = E[Gt|St = s,At = a]
I can be used to evaluate states or to extract a good policy

I Model: defines the transitions between states in an environment
I p yields the next state and reward
I p(s′, r|s, a) = Pr{St+1 = s′, Rt+1 = r|St = s,At = a}

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 3

Learning Models

I Depending on the task, the dynamics model can be much easier than the value-function or
the policy

I We can estimate it via supervised learning methods
I However, the model can also be more complex than policy and value-function
I In practice, modelling state-changes can even be easier than the global state
I In a nutshell:

I Learning a model: data-efficient, hard to extract an optimal policy
I Learning a value function: less data-efficient, easier to extract an optimal policy
I Learning a policy: data-inefficient, directly estimate an optimal policy

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 4

Models and Planning

I Given a state and an action, a model generates the next state and the corresponding
reward (can also be used to generate sequences of states and rewards)

I It can either give the probabilities of all possible next states and rewards (distribution
model), or only one (sample model)

I Which one was used in Dynamic Programming?

I Extracting a policy from a model is called planning

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 5

Models and Planning

I Planning: Uses simulated experience generated by a model

I Learning: Uses real experiences from the environment

I But we can also apply learning methods to simulated experience

I Converges to the optimal policy for the model

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 6

Dyna

I Real experience can be used to optimize the value function (or the policy)
I directly (model-free RL) or
I indirectly (model-based RL) via a model

I Indirect methods are often more data-efficient

I But they introduce additional bias through the model

I Idea of Dyna: try to combine the best of both worlds

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 7

Dyna

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 8

Dyna

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 9

Dyna

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 10

When the model is wrong

I Models can be incorrect (limited number of samples, environment has changed, function
approximation)

I Especially in areas where the agent has not explored

I There can be a Distribution Mismatch when the agent enters new areas of the
state-action space

I When the model is incorrect, the planning process is likely to find a suboptimal policy

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 11

When the model is wrong

I Dyna-Q+: Add an exploration bonus for transitions that have not been visited recently

I Let r be the reward, κ the weight of the exploration bonus and τ the number of time
steps in which a certain transition has not been visited

I Then Dyna-Q+ modifies the internal reward function to:

r + κ
√
τ

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 12

When the model is wrong

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 13

Simulation-based Search

I Forward search paradigm using sample-based planning
I Simulate episodes of experience from now with the model
I Apply model-free RL to simulated episodes

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 14

Monte Carlo Tree Search

I Build a search tree containing visited states and actions using the model (simulate
episodes from current state)

I Two policies: tree policy (improving, e.g. ε-greedy) and out-of-tree rollout policy (random)

I Monte-Carlo control applied to simulated experience

I One of the key ingredients of AlphaGo (2016)

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 15

Monte Carlo Tree Search

1. Selection: starting at the root, traverse to a leaf node following the tree policy

2. Expansion: expand the tree by one or multiple child nodes reached from the selected leaf
in some iterations

3. Simulation: simulate an episode following the rollout policy

4. Backup: update the action-values for all nodes visited in the tree

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 16

Monte Carlo Tree Search

MPC and RL – Lecture 18 J. Boedecker and M. Diehl, University Freiburg 17

	Model Learning
	Dyna
	Simulation-based Search

