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Off-policy Learning

I We want to learn the optimal policy, but we have to account for the problem of
maintaining exploration

I We call the (optimal) policy to be learned the target policy π and the policy used to
generate behaviour the behaviour policy b

I We say that learning is from data off the target policy – thus, those methods are referred
to as off-policy learning
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Importance Sampling

I Weight returns according to the relative probability of target and behaviour policy

I Define state-transition probabilities p(s′|s, a) as
p(s′|s, a) = Pr{St = s′|St−1 = s,At−1 = a} =

∑
r∈R p(s

′, r|s, a)
I The probability of the subsequent trajectory under any policy π, starting in St, then is:

Pr{At, St+1, At+1, . . . ST |St, At:T−1 ∼ π}
= π(At|St)p(St+1|St, At)π(At+1|St+1) · · · p(ST |ST−1, AT−1)

=

T−1∏
k=t

π(Ak|Sk)p(Sk+1|Sk, Ak)
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Importance Sampling

The relative probability therefore is:

Definition: Importance Sampling Ratio

ρt:T−1 =

∏T−1
k=t π(Ak|Sk)p(Sk+1|Sk, Ak)∏T−1
k=t b(Ak|Sk)p(Sk+1|Sk, Ak)

=

∏T−1
k=t π(Ak|Sk)∏T−1
k=t b(Ak|Sk)

The expectation of the returns by b is E[Gt|St = s] = vb(s). However, we want to estimate the
expectation under π. Given the importance sampling ratio, we can transform the MC returns
by b to yield the expectation under π:

E[ρt:T−1Gt|St = s] = vπ(s).

Importance Sampling can come with a vast increase in variance.
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Off-policy MC Prediction and Semi-gradient TD(0)

To use importance sampling with function approximation, replace the update to an array to an
update to weight vector w, and correct it with the importance sampling weight.

Off-policy MC Prediction

w← w + αρt:T−1[Gt − v̂(St,w)]∇v̂(St,w)

Semi-gradient Off-policy TD(0)

w← w + αρtδt∇v̂(St,w)
where δt = Rt+1 + γv̂(St+1,w)− v̂(St,w)
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Baird’s Counterexample

The reward is 0 for all transitions, hence vπ(s) = 0. This could be exactly approximated by
w = 0.
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Baird’s Counterexample

Semi-gradient DP

w← w + α
|S|
∑
s∈S(E[Rt+1 + γv̂(St+1,w)|St = s]− v̂(s,w))∇v̂(s,w)
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The Deadly Triad

The combination of

I Function Approximation,

I Bootstrapping and

I Off-policy Learning

is known as the Deadly Triad, since it can lead to stability issues and divergence.
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Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

I Model-free off-policy RL algorithm that works on continuous state and discrete action
spaces

I Q-function is represented by a multi-layer perceptron

I One of the first approaches that combined RL with ANNs, predecessor of DQN
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Neural Fitted-Q Iteration (NFQ) [Riedmiller 2005]

for iteration i = 1, .., N do
sample trajectory with ε-greedy exploration and add to memory D
initialize network weights randomly
generate pattern set P = {(xj , yj)|j = 1..|D|} with

xj = (sj , aj) and yj =

{
rj if sj is terminal

rj + γmaxa′ Q(sj+1, a
′,wi) else

for iteration k = 1, ..,K do
Fit weights according to:

L(wi) =
1

|D|

|D|∑
j=1

(yj −Q(xj ,wi))
2

end

end
Algorithm 1: NFQ
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Deep Q-Networks (DQN)

DQN provides a stable solution to deep RL:

I Use experience replay (as in NFQ)

I Sample minibatches (as opposed to Full Batch in NFQ)

I Freeze target Q-networks (no target networks in NFQ)

I Optional: Clip rewards or normalize network adaptively to sensible range
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Deep Q-Networks: Experience Replay

To remove correlations, build data set from agent’s own experience

I Take action at according to ε-greedy policy

I Store transition (st, at, rt+1, st+1) in replay memory D

I Sample random mini-batch of transitions (s, a, r, s′) from D

I Optimize MSE between Q-network and Q-learning targets, e.g.

L(w) = Es,a,r,s′∼D
[
(r + γmax

a′
Q(s′, a′,w)−Q(s, a,w))2

]
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Deep Q-Networks: Target Networks

To avoid oscillations, fix parameters used in Q-learning target

I Compute Q-learning targets w.r.t. old, fixed parameters w−

r + γ argmax
a′

Q(s′, a′,w−)

I Optimize MSE between Q-network and Q-learning targets

L(w) = Es,a,r,s′∼D
[
(r + γmax

a′
Q(s′, a′,w−)−Q(s, a,w))2

]
I Periodically update fixed parameters w− ← w

I hard update: update target network every N steps
I slow update: slowly update weights of target network every step by

w− ← (1− τ)w− + τw
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Deep Q-Networks (DQN)

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode i = 1, ..,M do

for t = 1, .., T do
select action at ε-greedily
Store transition (st, at, st+1, rt) in D
Sample minibatch of transitions (sj , aj , rj , sj+1) from D

Set yj =

{
rj if sj+1 is terminal

rj + γ maxa′Q(sj+1, a
′,w−) else

Update the parameters of Q according to:

∇wiLi(wi) = Es,a,s,r∼D[(r + γmax
a′

Q(s′, a′,wi)−Q(s, a,wi))∇wiQ(s, a,wi)]

Update target network
end

end
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Deep Q-Networks: Reinforcement Learning in Atari
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Deep Q-Networks: Reinforcement Learning in Atari

I End-to-end learning of values Q(s, a) from pixels s

I Input state s is a stack of raw pixels from the last 4 frames

I Output is Q(s, a) for 18 joystick/button positions

I Reward is change in score for that step
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How much does DQN help?

DQN
Q-Learning Q-Learning Q-Learning Q-learning

+ Replay + Replay
+ Target Q + Target Q

Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 831 2894
Space Invaders 302 373 826 1089
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