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Function Approximation in Reinforcement Learning

I Up to this point, we represented all elements of our RL systems by tables (value functions,
models and policies)

I If the state and action spaces are very large or infinite, this is not a feasible solution

I We can apply function approximation to find a more compact representation of RL
components and to generalize over states and actions

I Reinforcement Learning with function approximation comes with new issues that do not
arise in Supervised Learning – such as non-stationarity, bootstrapping and delayed targets
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Function Approximation in Reinforcement Learning

I Here: we estimate value-functions vπ(·) and qπ(·, ·) by function approximators v̂(·,w) and
q̂(·, ·,w), parameterized by weights w
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I But we can also represent models or policies
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Function Approximation in Reinforcement Learning

We can use different types of function approximators:

I Linear combinations of features

I Neural networks

I Decision trees

I Gaussian processes

I Nearest neighbor methods

I . . .

Here: We focus on differentiable FAs and update the weights via gradient descent.
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Function Approximation in Reinforcement Learning

We want to update our weights w.r.t. the Mean Squared Value Error of our prediction:

wt+1 = wt −
1

2
α∇[vπ(St)− v̂(St,wt)]

2

= wt + α[vπ(St)− v̂(St,wt)]∇v̂(St,wt)

However, we don’t have vπ(St).
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Function Approximation in Reinforcement Learning

Gradient MC

w← w + α[Gt − v̂(St,w)]∇v̂(St,w)

Semi-gradient TD(0)

w← w + α[Rt+1 + γv̂(St+1,w)− v̂(St,w)]∇v̂(St,w)

Why are bootstrapping methods, defined this way, called semi-gradient methods?

They take into account the effects of changing w w.r.t. the prediction, but not w.r.t. the
target!
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Linear Methods

I Represent state s by feature vector x(s) = (x1(s), x2(s), . . . , xd(s))>

I These features can also be non-linear functions/combinations of state dimensions

I Linear methods approximate the value function by a linear combination of these features

v̂(s,w) = w>x(s) =

d∑
i=1

wixi(s)

I Therefore, ∇wv̂(s,w) = x(s)

I Gradient MC prediction converges under linear FA

I On-policy linear semi-gradient TD(0) is stable

I Unfortunately, this does not hold for non-linear FA
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Fixed point of on-policy linear semi-gradient TD

I The update at each time step t is:

wt+1 = wt + α
(
Rt+1 + γw>t xt+1 −w>t xt

)
xt

= wt + α
(
Rt+1xt − xt(xt − γxt+1)

>wt

)
I The expected next weight vector can thus be written:

E[wt+1|wt] = wt + α(b−Awt),

where b = E[Rt+1xt] and A = E[xt(xt − γxt+1)
>]

I If the system converges, it has to converge to the fixed point:

wTD = A−1b
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Least Squares TD

I Recall the fixed point: wTD = A−1b

I Why don’t we calculate A and b directly?

I LSTD does exactly that:

Ât =

t−1∑
k=0

xk(xk − γxk+1)
> + εI and b̂t =

t−1∑
k=0

Rk+1xk

I LSTD is more data-efficient, but also has quadratic runtime (compared to semi-gradient
TD(0) – which is linear)

MPC and RL – Lecture 9 J. Boedecker and M. Diehl, University Freiburg 10



Least Squares TD
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Coarse Coding

Divide the state space in circles/tiles/shapes and check in which some state is inside. This is a
binary representation of the location of a state and leads to generalization.
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Memory-based Function Approximation

I So far, we discussed the parametric approach to represent value functions

I Memory-based methods simply store collected examples and their values in memory and
retrieve samples in order to estimate the value for a query state

I The simplest examples are the nearest neighbor method or the weighted average method
over a subset of nearest neighbors

I Similarity between states can be defined by a kernel k(s, s′)

I The value of a query state then is

v̂(s,D) =
∑
s′∈D

k(s, s′)g(s′),

where g(s′) is the stored value of s′
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On-policy Control with Function Approximation

I Again, up to this point we discussed Policy Evaluation based on state value functions

I In order to apply FA in control, we parameterize the action-value function

Semi-gradient SARSA

w← w + α[Rt+1 + γq̂(St+1, At+1,w)− q̂(St, At,w)]∇q̂(St, At,w)
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Semi-gradient SARSA
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Semi-gradient SARSA
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Semi-gradient SARSA
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