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Function Approximation in Reinforcement Learning

» Up to this point, we represented all elements of our RL systems by tables (value functions,
models and policies)

> If the state and action spaces are very large or infinite, this is not a feasible solution

» We can apply function approximation to find a more compact representation of RL
components and to generalize over states and actions

» Reinforcement Learning with function approximation comes with new issues that do not
arise in Supervised Learning — such as non-stationarity, bootstrapping and delayed targets
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Function Approximation in Reinforcement Learning

> Here: we estimate value-functions v, (-) and ¢, (+,-) by function approximators ¥(-,w) and
(-, -, w), parameterized by weights w
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» But we can also represent models or policies
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Function Approximation in Reinforcement Learning

We can use different types of function approximators:
» Linear combinations of features
» Neural networks
» Decision trees
» Gaussian processes
» Nearest neighbor methods
> ..

Here: We focus on differentiable FAs and update the weights via gradient descent.
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Function Approximation in Reinforcement Learning

We want to update our weights w.r.t. the Mean Squared Value Error of our prediction:

1 .
Wil = Wi — iaV[Uﬂ(St) — U(St,Wt)]2
= Wy + CK[UW(St) — ’i)(St7 Wt)]v’[}(St, Wt)

However, we don't have v, (S;).
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Function Approximation in Reinforcement Learning

Gradient MC

w — W+ a[Gy — 9(S, w)|VO(Sg, W)

Semi-gradient TD(0)
W W+ a[Ry 1 + v0(Stq1, W) — 0(St, w)| VO (Se, W)

Why are bootstrapping methods, defined this way, called semi-gradient methods?
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Function Approximation in Reinforcement Learning

Gradient MC

W W + a[Gy — 0(S, W)V (S, w)
Semi-gradient TD(0)
W W + a[Ri+1 + Y0(Sit1, W) — 0(Sg, W) VO (S, w)

Why are bootstrapping methods, defined this way, called semi-gradient methods?
They take into account the effects of changing w w.r.t. the prediction, but not w.r.t. the
target!
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Linear Methods

> Represent state s by feature vector x(s) = (z1(s),22(s),...,2%(s)) "
> These features can also be non-linear functions/combinations of state dimensions
» Linear methods approximate the value function by a linear combination of these features

d
(s, w) =w'x(s) = Zwlacl(s)
i=1
Therefore, Vi 0(s, w) = x(s)

Gradient MC prediction converges under linear FA

On-policy linear semi-gradient TD(0) is stable

vvyyvYyy

Unfortunately, this does not hold for non-linear FA
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Fixed point of on-policy linear semi-gradient TD

» The update at each time step t is:

T T
Wil = Wi + « (Rt+1 + YWy X1 — Wy Xt) Xt

=w; +a« (RtJrlxt — x¢(xp — 'yXHl)TWt)
» The expected next weight vector can thus be written:
E[wii1|wi] = wi + a(b — Awy),

where b = E[R;;1%;] and A = E[x;(x; — yX¢11) "]

» If the system converges, it has to converge to the fixed point:

WD = A7 'b
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Least Squares TD

» Recall the fixed point: wip = A™'b
» Why don't we calculate A and b directly?
» LSTD does exactly that:

t—1 t—1
At = Zxk(xk — ’}/X].H_l)—r + el and bt = ZRk'HXk
k=0 k=0

» LSTD is more data-efficient, but also has quadratic runtime (compared to semi-gradient
TD(0) — which is linear)
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Least Squares TD

LSTD for estimating o = w'x(-) ~ v, (O(d?) version)

Input: feature representation x : 8% — R¢ such that x(terminal) = 0
Algorithm parameter: small € > 0

Al 1 A d x d matrix
b+ 0 A d-dimensional vector
Loop for each episode:
Initialize S; x < x(5)
Loop for each step of episode:
Choose and take action A ~ 7(-|.S), observe R, S"; x’ + x(S")
vV X\—l—r(x —yx')
A1l A1 (FX)VT/(l +v'x)
b+ b+ Rx
w« A b
S+ 8 x+x
until S’ is terminal
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Coarse Coding

Divide the state space in circles/tiles/shapes and check in which some state is inside. This is a
binary representation of the location of a state and leads to generalization.
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Memory-based Function Approximation

» So far, we discussed the parametric approach to represent value functions

» Memory-based methods simply store collected examples and their values in memory and
retrieve samples in order to estimate the value for a query state

» The simplest examples are the nearest neighbor method or the weighted average method
over a subset of nearest neighbors

> Similarity between states can be defined by a kernel k(s, s’)

» The value of a query state then is

(s, D) = > k(s s")g(s"),

s'eD

where g(s) is the stored value of s
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On-policy Control with Function Approximation

» Again, up to this point we discussed Policy Evaluation based on state value functions

» In order to apply FA in control, we parameterize the action-value function

Semi-gradient SARSA

W W + a[Rit1 + YG(St41, Arg1, W) — G(St, A, W)V G( S, A, w)
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Semi-gradient SARSA

MPC and RL — Lecture 9

Episodic Semi-gradient Sarsa for Estimating ¢ ~

Input: a differentiable action-value function parameterization ¢ : 8§ x A x R* — R
Algorithm parameters: step size a > 0, small € > 0
Initialize value-function weights w € R? arbitrarily (e.g., w = 0)

Loop for each episode:
S, A + initial state and action of episode (e.g., e-greedy)
Loop for each step of episode:
Take action A, observe R, S’
If S’ is terminal:
w <« w+a[R— (S, A,w)|V§(S, A,w)
Go to next episode
Choose A’ as a function of ¢(5',-,w) (e.g., e-greedy)
W w+a[R+74(S", A, w) — 4(S, A, w)|Vi(S, A, w)
S5
A A
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Semi-gradient SARSA

MOUNTAIN CAR Goal .

Figure 10.1: The Mountain Car task (upper left pancl) and the cost-to-go function
(= max, §(s,a, w)) learned during one run
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Semi-gradient SARSA

Mountain Car
Steps per episode

log scale
averaged over 100 runs
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