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Aim of this course

Understanding the main concepts of model predictive control (MPC) and
reinforcement learning (RL) and their similarities and differences.

Applying the methods to practical optimal control problems in hands-on
exercises and project work.




Time Slots Monday Tuesday Wednesday Thursday Friday
09:00-09:45 Lecture 1 - Intro- | Lecture 4 - Dy- | Lecture 7 - Nu- | Lecture 10 - On- | Microexam
duction - Josch- | namic Program- | merical Optimal | policy RL with
ka Boedecker | ming and LQR - | Control - Moritz | Function Ap-
and Moritz Diehl | Moritz Diehl Diehl proximation -
Joschka
Boedecker
10:00-10:45 Lecture 2: Dy- | Lecture 4 (con- | Lecture 7 (con- | Lecture 11 - Off- | Lecture 14 - Ro-
namic Systems | tinued) - Moritz | tinued) - Moritz | policy RL with | bust and Sto-
and Simulation | Diehl Diehl Function Ap- | chastic MPC -
(Moritz  Diehl) proximation - | Moritz Diehl
(/files/2021ss/M Joschka
PCRL/lecture-2- Boedecker
simulation.pdf)
11:15-12:00 Exercise 1 - Dy- | Exercise 3 - Dy- | Exercise 5 - Nu- | Exercise 7 - RL | Project
namic  System | namic Program- | merical Optimal | with  Function | Guidelines
Simulation - Ka- | ming and LQR - | Control - Katrin | Approximators -
trin  Baumgért- | Katrin Baumgartner Jasper
ner und Jasper | Baumgértner Hoffmann
Hoffmann
14:00-14:45 Lecture 3: Nu- | Lecture 5 - MDP | Lecture 8 - MPC | Lecture 12 - Pol- | Lecture 15 -
merical Opti- | Formalization Stability Theory | icy Gradient | Planning  and
mization (Moritz | and Monte Carlo | - Moritz Diehl Methods - | Learning -
Diehl) Methods - Joschka Joschka
(ffiles/2021ss/M | Joschka Boedecker Boedecker
PCRL/lecture-3- | Boedecker
optimization.pdf)
15:00-15:45 Extended Cof- | Lecture 6 - Tem- | Lecture 9 - MPC | Lecture 13 - Ad- | Lecture 16 - Dif-
fee Break / Get- | poral Difference | Algorithms - | vanced Value- | ferences and
to-Know Each- | and Q-Learning | Moritz Diehl based Methods | Similarites  of
Other-Session - Joschka - Joschka | MPC and RL -
Boedecker Boedecker Joschka
Boedecker and
Moritz Diehl
16:15-17:00 Exercise 2 - Nu- | Exercise 4 - Q- | Exercise 6 - | Exercise 8 - Pol- | Project Pitch
merical Opti- | Learning - | Model Predictive | icy Gradient - | Presentations
mization - Katrin | Jasper Control - Katrin | Jasper
Baumgartner Hoffmann Baumgartner Hoffmann

Time Slots Monday Tuesday Wednesday
09:00-09:45 Guest Lecture Project Work Project Work
Sebastien  Gros:
Adaptation of
MPC via RL: fun-
damental
principles
10:00-10:45 Project Project Status | Project Presentations
Commitments Updates
11:15-12:00 Project Work Project Work Project Presentations
Question session: | Question session:
Jasper Hoffmann
& Katrin Jasper Hoffmann
. & Katrin
Baumgartner .
Baumgartner
14:00-14:45 Guest Lecture Se- | Project Work Project Presentations
bastien Gros: RL
and MPC: safety,
stability, and some
more recent
results
15:00-15:45 Project Work Project Work Certificate  Handout
) (AB.C)
Question
Session:
Jasper Hoffmann
& Katrin
Baumgartner
16:15-17:00 Project Work Guest Lecture - | End at 16:00
Questi Sergey Levine:
uestion Model-Free  and
Session: Model-Based Re-

Jasper & Katrin
Baumgartner

inforcement Learn-
ing from Offline
Data
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Discussion

» What do you know about Model Predictive Control?
» What are characteristics of Reinforcement Learning?

» What are differences to Supervised Learning?




Characteristics of MPC & Reinforcement Learning

» Both are frameworks to solve sequential decision making problems
» Both automatically design controllers based on desired outcomes (reward / stage cost, constraints)

» Closed-loop system visits different regions of the state space than uncontrolled system

MPC RL
» System identification precedes control implementation, B Controller directly learned from data, trial-and-error,
model fixed during execution exploration and exploitation trade off
» Typically convex stage costs » Both shaped/concave and 0-1/sparse rewards
» Constraints imposed explicitly » Constraints are imposed via penalties
» Online optimization over prediction horizon, expensive B Typically parametrized controller, cheap online execution
» Usually combined with state estimator » Usually, history included in definition of the state



MPC & Reinforcement Learning have a long history

Linear Programming ... MPC

» Linear Programming (LP) developed by G. Dantzig in
1947

» was extended to Quadratic Programming (QP),
Nonlinear Programming (NLP), Integer Programming
(IP), ... in field of mathematical optimisation

» Online solution of LP, QP, NLP, IP used for many
planning problems and increasingly for industrial
control problems in form of MPC

Dynamic Programming ... RL

>

>

Dynamic Programming developed by R. Bellman in 1950s

was extended to approximate dynamic programming,
Monte Carlo Tree Search, Q-learning, policy search ... in
field of machine learning

Reinforcement Learning techniques are increasingly
applied to solve difficult planning and decision making
problems with impressive results e.g. in computer games
and robotics.



Some Applications of RL




Learning to Play Atari Games from Pixel Input

[Mnih et al., 2015]



Learning to Play the Game of Go Better Than Any Human

[Silver et al., 2016]




Learning Difficult Robot Manipulation Tasks from Scratch

[Riedmiller et al., 2018]




Learning to Swing Up and Balance a Pole on a Cart

Approximate Real-Time Optimal Control
Based on Sparse Gaussian Process Models

Joschka Boedecker, Jost Tobias Springenberg, Jan Wulfing, Martin Riedmiller
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[Boedecker et al., 2014]



Learning to Drive on a Highway from Human Demonstration

Deep Inverse Q-learning with Constraints

UNI
FREIBURG
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[Kalweit et al., 2020]



Some Applications of MPC




Time-Optimal Point-To-Point Motions

Control aims:
 reach end point as fast as possible
e do not violate constraints
* no residual vibrations

|dea: formulate as embedded optimization problem
in form of Model Predictive Control (MPC)

M. Diehl 15



Model Predictive Control (MPC)

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a curve

M. Diehl 16



Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value

without violation of constraints ?

simulated state trajectory

P S, S 4
+*+++

U controls (unknowns / variables)

>

prediction horizon (length also unknown for time optimal MPC)

M. Diehl 17



Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value
without violation of constraints !

simulated state trajectory

=P | 1] | controls (unknowns / variables)

>

prediction horizon (length also unknown for time optimal MPC)
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Time Optimal MPC of a Crane

T

SENSORS

*line angle

® cart position

ACTUATOR

®cart motor

Hardware: xPC Target.

Software: gpOASES [Ferreau, D., Bock, 2008]

M. Diehl 19



Time Optimal MPC of a Crane

Univ. Leuven [Vandenbrouck, Swevers, D.]

M. Diehl 20



Optimal Solutions in gpOASES Varying in Time
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Time Optimal MPC in Industry: 25cm step, 100nm accuracy

TOMPC at 250 Hz (+PID with 12 kHz)

Lieboud's results after 1 week at ETEL.:
- 25 cm step in 300 ms
- 100 nm accuracy

equivalent to: ,fly 2,5 km with MACH15,
stop with 1 mm position accuracy”
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Model Predictive Control of the Freiburg Race Cars

-
-

v N = | ) Q 1 < Z
acados coupled into ROS, optimization every 10ms
[Kloeser et al., submitted]
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Safe Motion Planning at Bosch via the Convex Inner
Approximation Method [Schels et al, 2020]

An NMPC Approach using Convex Inner Approximations for
Online Motion Planning with Guaranteed Collision Freedom

Tobias Schoels'?, Luigi Palmieni?, Kai O. Arras’, and Moritz Dichl'

-

Abstract— Even though mobile rebots have been around for
decades, trajectory oplimization and continuous time collision ‘
avoidance remains subject of active research. Existing methods N

ing & model predictive control (MPC) framework, that is based
on & novel convex inner approximation of the collision avoidance
constraint. The propesed Convex Inner ApprOximation (CIAO)
method finds a dynamically feasible and collision free trajectory
in few iterations, typically ene, and preserves feasibility during
further iterations. CIAO scales to high-dimensional systems,
is computationally efficient, and guarantees both Kinodynamic
feasibility and contisuous-time collision avoidance. Our exper-
imental evaluation shows that the approach eutperforms state
af the art baselines in terms of planning efficiency and path
quality. Furthermore real-world experiments show its capability
of unifying trajectory eptimization and tracking for safe motion
planning in dynamic environments.

trade off between path quality, computational complexity, and i :

kinodynamic feasibility. This work approaches the problem wus-

I. INTRODUCTION

Several existing mobile robotics applications (e.g. intra-
logistic and service robotics) require robots to operate in
dynamic environments among other agents, such as humans

oo odhor antanamaons evetame In theer wronanne the reactive
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Nonlinear Mixed-Integer Control of a Solar Adsorptive Cooling Machine
[BUrger et al., 2019]
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After discretisation of PDE
components, obtain nonlinear ODE
with 39 states, 6 continuous and 2
binary inputs.

Predict 24 hours. Aim: minimise
electricity consumption.
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Model Overview
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Experimental MPC Results from Sept 14-17, 2019
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Every 2 minutes, a new optimization problem is solved, using a real-time
algorithm based on CasADi, IPOPT [Wachter and Biegler 2006], and
Pycombina [Burger et al, 2019], an implementation of the combinatorial
integral approximation (CIA) method [Sager 2009].
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Human sized quadcopter control (Nonlinear MPC)

[Zanelli, Horn, Frison, D., 2018]



Electrical Compressor Control at ABB (Norway)

- work of Dr. Joachim Ferreau and Dr. Thomas
Besselmann, ABB

- nonlinear MPC with gpOASES and ACADO, 1ms
sampling time
- first tests at 48 MW Drive

- currently, 15% of Norwegian Gas Exports are
controlled by Nonlinear MPC

Joachim Ferreau (email from 7.3.2016):

The NMPC installations in Norway (actually 5
compressors at two different sites) are
doing fine since last autumn — roughly 80
billion NMPC instances solved by now. In
addition, they have proven to work as
expected when handling external voltage
dips.

M. Diehl 29



ecod4wind: MPC for wind turbine control

Industrial partners: 1AV, SENVION

Nonlinear MPC with about 40 states based on ACADO code generation with QP solver
HPIPM running on industrial hardware at 1AV

M. Diehl 30



Time Optimal “drawing” by crane
Univ. Leuven [Wannes Van Loock et al,] (CasADi)

I KU LEUVEN
Department Of Mechanical Engineering (PMA) _
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Time-optimal “*hand writing” by robot

Univ. Leuven [Debrouwere, Swevers] using [Verscheure et al, IEEE TAC 2009]
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Predictive control of flight carousel (in Freiburg)

M. Diehl 33



Flight carousel (in Leuven, by M. Vukov)
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Nonlinear MPC and Moving Horizon Estimation (MHE)

Closed loop experiments
with NMPC & NMHE

HIGHWIND
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|
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4 kHz Nonlinear Model Predictive Control for RSM

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL -, NO. -, - 1

Continuous Control Set Nonlinear Model Predictive
Control of Reluctance Synchronous Machines

Andrea Zanelli, Julian Kullick, Hisham Eldeeb, Gianluca Frison, Christoph Hackl, Moritz Diehl

Aim:

- reliably control torque of reluctance synchronous machine (RSM) at all reachable speeds

- track flux setpoints corresponding to maximum-torque-per-ampere (MTPA) , 8
* respect circular voltage constraints in (d,q)-frame (inscribing hexagon) '

Model Predictive Control (MPC) setup:

- use two-stage voltage source inverter in order to convert from (d,q)-frame N
- predict 3.2ms with nonlinear differential equation model P VY T Y/ S
* penalise least squares tracking error | '
- use open-source software acados on dSPACE
- every 0.25ms, solve one MPC optimisation problem, i.e., sample at 4kHz

g
I
3
g
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RSM: Control Oriented Differential Algebraic Equation Model
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- differential algebraic equation (DAE)

* currents Is as implicitly defined algebraic states
- analytical flux map approximations:
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Optimization Problem resulting from Direct Multiple Shooting:
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RSM: Video from NMPC Experiments at TU Munich
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CS-NMPC significantly better than Pl Controller

CS-NMPC (exp.) gain scheduled PI (exp.)
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Figure 8: Current steps at 157 % (experiment): results obtained using the proposed CS-NMPC controller (left) and gain-scheduled PI controller (right). The
CS-NMPC controller outperforms the PI controller, especially when the input constraints become active (e.g., between t = 0.75s and ¢ = 1.00).

At the same time, as it can be seen especially between ¢t = 1.25s and ¢t = 1.50 s, a faster transient can be achieved, even when the constraints are
active only for a short time.
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Time Slots Monday Tuesday Wednesday Thursday Friday
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