Offline Reinforcement Learning
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What makes modern machine learning work?
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hat about reinforcement learning?
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Can we develop data-driven RL methods?
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Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20



—— Why is offline RL difficult?

ow do we design offline RL algorithms?

"% & Model-based offline RL

B

How do we evaluate offline RL methods?
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On-policy, off-policy, and offline RL

“Classic” RL diagram:
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This is a very online view of RL

on-policy RL

More typical use case:
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he RL objective
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it is very hard to optimize

this with off-policy data > 0 = arg max Erpy(r) [Z (s, at)]
directly t




he RL objective
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J if we just knew this, all would be easy
sum over all states in the dataset

so let’s learn it!

/Aside: recovering the policy

could optimize the above objective w.r.t. my directly

1 if a; = arg max,, Q™ (ss,a;)  “greedy” policy
(arlst) =

\

0 otherwise can recover with optimization (e.g., CEM)
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he Q-function

Q" (s, ar) = Z’Y r(se,ap) | =r(sear) + y(E[r(Ste1, arr1)] + YE[7(St41, ag2)]--

t'=t \ ' ]
L expectation under 7o (a;|s;) Q" (S¢t41,a441)
and p(s¢41(s¢, at)

Bellman equation:

Q" (st,ar) =7r(st,ar) + YE[Q" (St41, ar+1)]

let’s say we have a trajectory si,ai, s, as,...,Sp, ar
generated by some other policy mg

can we estimate the Bellman equation?

these come from our trajectory this is sampled from g

Q" (st,at) = r(se,a¢) + YQ™ (Se41, Ary1)

this is a single sample estimate of the expectation



he Q-function

these come from our trajectory this is sampled from gy

QW(Staat) ~ T(Sta at) + ’YQW(SHla at+1)

Rough sketch: r(ayls;) = 1 if a;, = argmax,, Q7 (s¢, ay)
I i 1. Load s¢,as, sty from buffer e 0 otherwise
n reality, we . . : :
use a minibatch, _ 2. Get a;4q ~ W@(at+1 |St—|—l) « either from explicit policy network or via max
not just one; 3. Compute target value y = r(s¢, az) + YQ™ (S¢r1,ar41)
transition!
4. Take gradient step on € = (Q7 (s¢,a;) — y)*



Off-policy RL summary

Q(s,a) < r(s,a) + Ex[Q(s',a’)] < don’t need on-policy data for this!

off-policy Q-learning;:

1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

more typical use case:
2. sample a batch (s;,a;,s;,r;) from B yP

1 Oﬂilne Learning &4 p(s1s.a) 2. Online Fine-tuning

/5

3. minimize Y, (Q(si,a;) — [r(si,;a;) + Ear [Q(s], a))]])?  “Fin” e i) v
@;{ — - Tg ch E‘ —' . Update
S _» * malals) /(j o Qg
=) !
(57 a? S,J Ir) 00
- dataset of transitions -

(“replay buffer”)

off-policy

-learning
r -\ Q
- T .\. -
v
See, e.g.

=rfepebedthogelosaton s Riedmiller, Neural Fitted Q-Iteration ‘05

Ernst et al., Tree-Based Batch Mode RL ‘05




An instantiation of this idea...
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Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills



Does it work?

Method Dataset Success | Failure
Offline QT-Opt 580k offline 87% 13%
Finetuned QT-Opt | 580k offline + 28k online 96% 4%

Kalashnikov, Irpan, Pastor, Ibarz, Herzong, Jang, Quillen, Holly, Kalakrishnan, Vanhoucke, Levine. QT-Opt: Scalable Deep Reinforcement Learning of Vision-Based Robotic Manipulation Skills



Even worse...

(a)
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Figure 2: Baseline comparison for the example task.

Neither QT-Opt [3], nor AWAC [2] can solve the task.

Yao Lu et al. AW-Opt: Learning Robotic Skills with Imitation and Reinforcement at Scale. 2021.

training on random(ized) offline data

different from training data,

/ but somewhat in-distribution

training on demo data

15



What’s the problem?

log scale (massive overestimation)
amount of data
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Hypothesis 2: Training data is not good

Usually not the case: behavioral cloning of best data does better!

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlIPS ‘19
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Distribution shift in a nutshell

Example empirical risk minimization (ERM) problem: usually we are not worried — neural nets generalize well!
: 2 : :

0 < arg in Erxnop(x),y~p(y|x) [(f@ (x) —y) } what if we pick x* < arg maxy fy(x)?

given some x*, is fp(x*) correct? Y1

Eixnop(x) y~p(ylx) [(fc? (x) — y)z} is low

Erx(x) ymp(ulx) | (fo(x) —y)?] is not, for general p(x) # p(x)

v

what if x* ~ p(x)?  not necessarily...

17
Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlIPS ‘19



Where do we suffer from distribution shift?

; : Lal what is the objective?
al’
Q(S? a) % T(S9 a) + Ea”\'ﬂ-new [Q(S’7 a,)]’ mén E(S,a)N'ﬂ'ﬁ (Sua) [(Q(S7 a) T y(S? a))2i|
Y /‘ \
target value
y(s, a) behavior policy °
expect good accuracy when mg(als) = mpew(als) how often does that happen?
s HalfCheetah-v2: AverageReturn ” HalfCheetah-v2: log(Q)
even worse: Myew = arg Maxy Far(als) (@ (s, a)] o — o wl = i
(what if we pick x* < arg maxy fg(x)?) W
_l“;:||]1.1|1\' 0.9K .,:'!I.\- 06K 08K 1.0K (c’:.m\' 02K “"'Hfm.sn:!'fil\- 08K 1
how well it does how well it thinks

it does (Q-values)

Kumar, Fu, Tucker, Levine. Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction. NeurlIPS ‘19
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How do prior methods address this?

Q(s,a) < r(s,a) + Earur.. [Q(s',a")] policy constraint” method

very old idea (but it had no single name?)
Thew (a]8) = arg max Ear(ajs)[Q(s,a)] s.t. Dki(n||mg) < e . o
Qs Todorov et al. [passive dynamics in linearly-

solvable MDPs
This solves distribution shift, right? ]

Kappen et al. [KL-divergence control, etc.]
No more erroneous values? . . _ .
trust regions, covariant policy gradients,

natural policy gradients, etc.

Issue 1: Estimating the behavior policy is difficult used in some form in recent papers:

. . . Fox et al. ‘15 (“Taming the Noise...”
Issue 2: This might be too conservative ( & )

(We’“ come back to th|S) Fujimoto et al. ‘18 ( Off Pollcy... )
Jaques et al. 19 (“Way Off Policy...”)

Kumar et al. ‘19 (“Stabilizing...”)

Wu et al. ‘19 (“Behavior Regularized...”)

Levine, Kumar, Tucker, Fu. Offline Reinforcement Learning: Tutorial, Review, and Perspectives on Open Problems. ‘20



When is estimating the behavior policy hard?

Issue 1: Estimating the behavior policy is difficult

» Easy case: all data comes from the same Markovian policy
e This is not very common or realistic

» Hard case: data comes from many different policies
* Very common in reality (e.g., some demo data from humans, some scripted data)
* Very common during online finetuning

. L] ! L] - - .
1. Offline Learning &= - Plsls.a) 2 Online Fine-tuning

H_F ;
. N ';‘-"‘r' B ..-
= ollpolicy data 4 | : . e
- expert demos D_ l:"’ a, s’ ‘rJ } _ s ’E—.Li'

- prior runs of RL : ’ i
! | - Update | ~ ghy- s\
51 —> oy’ QQ ;. JEE% Update
= : :
ﬂ"% 'TH{H| o Q.:;;
30




Avoiding behavior policies with implicit constraints

Tnew(@|8) = arg max Earr(als)|@(s,a)] s.t. Dxr(m||mg) < ¢

See also:
Peters et al. (REPS)
1 1 straightforward to Rawlik et al. (“psi-learning”)
* _
w(als) = e (A7) ) Ganeeatt e
w(s, a)
approximate via weighted max likelihood! 1

1 1
Tnew(a[8) = arg max Eg a)~r, {bg m(als) exp (—A"rold (s, a))]

; Z(s) A N
samples from dataset critic can be used
a ~ Tf’ﬁ(&'S) to give us this

Peng*, Kumar*, Levine. Advantage-Weighted Regression. ‘19

Nair, Dalal, Gupta, Levine. Accelerating Online Reinforcement Learning with Offline Datasets. ‘20
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Conservative Q-Learning



What about those Q-value errors?

750 4

i HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q)
30
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Q” — arg mén ml?x ozESND,aNM(a|S) (Q(s,a)] } term to push down big Q-values

regular objective { +E(s,a,s’)wD [(Q(Sa a) o (T(Sa a) + Eﬂ' [Q(Slv a,)]))z

can show that Q™ < Q™ for large enough «

true Q-function 24



Learning with Q-function lower bounds

A better bound: always pushes Q-values down  push up on (s, a) samples in data

i ! !

QT = arg mcén mjtx aEs D a~p(als)[@(s,a)] —aE (s a)~p[Q(s, a)]

+ B asen |(Q(s,2) = (1(s,a) + B [Q(s', )]

no longer guaranteed that Q™ (s,a) < Q™ (s,a) for all (s, a)

but guaranteed that Ew(a|s)[QAW(S, a)| < Erals)|Q™ (s,a)] for all s € D

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20
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How does model-based RL work?

...s0 the model’s predictions are invalid
these states are OOD

P(St+1/8¢,ar) O

what goes wrong when we can’t collect more data?

”

the model answers “what if” questions

v



MOPO: Model-Based Offline Policy Optimization

solution: “punish” the policy for exploiting - O

7(s,a) = r(s,a) — \u(s, a) \

uncertainty penalty

...and then use any existing model-based RL algorithm \ k‘

Yu*, Thomas™*, Yu, Ermon, Zou, Levine, Finn, Ma. MOPO: Model-Based Offline Policy Optimization. ‘20

See also: Kidambi et al., MORel : Model-Based Offline Reinforcement Learning. 20 (concurrent)



MOPO: Theoretical Analysis

7(s,a) =r(s,a) — \u(s, a)

we can represent the value function model error is bounded (above) by u(s, a)

N/

Theorem 4.4. Under Assumption 4.2 and 4.3, the learned policy 7 in MOPO (Algorithm 1) satisfies

true return of policy trained under model —— 7IM (7) = SEP{TFM (m) — Q}LEEQ (11)
In particular, for all § > 6y, €u(T) == {MI]ENP: [u(s, a)]
some implications: Mar (7) 2 e (%) — 209 (12)
e (7) = nar(78) — 2Xe, (7°) 5 T
m° 1= arg max N ()
» improves over behavior policy miew () <8

e (7) = '-T?M{ﬁ*_] — 2}\[:...“ (7*)

» quantifies “optimality gap” in terms of model error

Yu*, Thomas™*, Yu, Ermon, Zou, Levine, Finn, Ma. MOPO: Model-Based Offline Policy Optimization. ‘20



COMBO: Conservative Model-Based RL

Basic idea: just like CQL minimizes Q-value of policy actions, we can minimize Q-value of model state-action tuples

state-action tuples from the model

| l ~

QHI —arg II%?I-LII 3 (E5~amp[5,ﬂj [Q(s.a)] — Es.a~p [Q(s, a)])

1
2

+5Es.a,8'~d, [(Q(s:a) — B™Q" (s, a))):z] _ 4)

Intuition: if the model produces something that looks clearly different
from real data, it’s easy for the Q-function to make it look bad

Dataset type | Environment | BC | COMBO (ours) | MOPO | CQL | SAC-off | BEAR | BRAC-p | BRAC-v

random halfcheetah 2.1 38.8 354 354 30.5 25.1 24.1 31.2
random hopper 1.6 17.9 11.7 10.8 11.3 11.4 11.0 12.2
random walker2d 9.8 7.0 13.6 7.0 4.1 7.3 -0.2 1.9
medium halfcheetah 36.1 54.2 423 44.4 -4.3 41.7 43.8 46.3
medium hopper 29.0 94.9 28.0 86.6 0.8 52.1 327 311
medium walker2d 6.6 75.5 17.8 74.5 0.9 50.1 77.5 81.1
medium-replay | halfcheetah 38.4 551 53.1 46.2 -24 38.6 454 47.7
medium-replay | hopper 11.8 73.1 67.5 48.6 3.5 33.7 0.6 0.6
medium-replay | walker2d 11.3 56.0 39.0 326 1.9 19.2 -0.3 0.9
med-expert halfcheetah 35.8 90.0 63.3 62.4 1.8 53.4 442 41.9
med-expert hopper 111.9 111.1 23.7 | 111.0 1.6 96.3 1.9 0.8
med-expert walker2d 6.4 96.1 44.6 98.7 -0.1 40.1 76.9 81.6

Yu, Kumar, Rafailov, Rajeswaran, Levine, Finn. COMBO: Conservative Offline Model-Based Policy Optimization. 2021.
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How do we evaluate offline RL methods?

\_ rollout(s)

{(si .80, 1)} I
| I I
4 ——
VT]’ I buffer | |Tl
@
LT
I v | deployment
|

data collected ONCE == == == - -
with any policy training phase

\ maybe just train a

reference policy with RL?

typical protocol in prior work:

1. train mg with online RL

2. either collect data throughout training

OR
2. collect data from final policy 7z

‘this is a really bad idea ‘

If you already have a good policy, why bother with offline RL?

In the real world, data might come from non-Markovian
“policies”

* Human users

* Hand-engineered policies

Must use data that is representative of real-world settings
and leaves lots of room for improvement

Offline RL must learn policies that are much better than the
behavior policy!

without testing these properties, we
cannot trust that our algorithms are good!




D4RL: Datasets for Data-Driven Deep RL

What are some important principles to keep in mind?

Data from non-RL policies, including data from humans

simulation & human data from

Stitching: data where dynamic programming can find Rajeswaran et al.

much better solutions . I I

Realistic tasks

33

Fu, Kumar, Nachum Tucker, Levine. D4RL: Datasets for Data-Driven Deep Reinforcement Learning. ‘20



How does CQL compare?

“1%” dataset from Agarwal et al.

Task Name | QR-DOQN | REM || CQL(H)

Pong (1%) -13.8 -6.9 19.3

Breakout 7.9 11.0 61.1

baseline: just Q*bert 383.6 | 1.5~ 6x b A0 2.0

‘ Asterix® 166.3 386.5 292.4

Domain Task Name BC | SAC | BEAR | BRAC-p | BRAC-v CQL(H) | CQL(p
antmaze-umaze 65.0 0.0 73.0 50.0 70.0 74.0 735
nothin antmaze-umaze-diverse 55.0 0.0 61.0 40.0 70.0 84.0 61.0
y & r AntMaze antmaze-medi Lo Q.00 .0 Q.0 0.0 0.0 61.2 4.6
works on ‘ antmaze-med i 0.1 “Infinjtap,» 53.7 5.1
the harder antmaze-larg CQL seems to work qunte 0.0 ely better 15.8 3.2
mazes? = antmaze-largd  well across many tasks! 0.0 0.0 14.9 2.3
T pen-human ———— = 8.1 0.6 37.5 55.8
hammer-humg 0.3 1.5 4.4 2.1
door-human | And we seem to know why | 03 | > SXbetter . 99 91
nothing Adroit re]ﬂca[e-hl__lmz it works! -0.3 -0,31 0.20 0.35
pen-cloned : 1.6 -2.5 39.2 40.3
beats _ hammer-cloned 0% n2 T 03 %M 2.1 5.7
behavioral doorcloned | Byt there is still plenty of | —p=] Dy 04 o3
cloning? relocate-clon . -0. -0. -0. \
, kitchen-comp|  room for improvement... 0.0 fg 0 T 438 31.3
Kitchen kitchen-partiak —— — 0.0 "~ === 1.3y bett 49.8 50.1
_ kitchen-undirected 47.5 2.5 47.2 0.0 vu o or 510 524

Kumar, Zhou, Tucker, Levine. Conservative Q-Learning for Offline Reinforcement Learning. ‘20



Which offline RL method should | use?

CQL-like methods AWR-like methods

seems to get best results on external

benchmarks (e.g., D4RL) —~—_

seems to get best results on external

these are purel
purety o benchmarks when finetuning

empirical observations,
and they might change
with better
implementations!

from my experience, harder to use with
online finetuning (too conservative)

seems to be much worse than CQL on
benchmarks (e.g., D4RL) in fully offline mode

modifies the critic modifies the actor

\ seems to imply we can P

combine to get the
best of both worlds

we have not been
successful at this so far



Summary and takeaways

training buffers \ Bellman updaters

» Offline RL algorithms can be built out of Q-Learning
methods

off-policy (s,a,s’,r) |=f=——p | compute Qr(s,a) =
7 + maxa Qo(s’, a’)

on-policy (s,a,s’,r)

stored data from all
past experlments
Sz: a;,8; }z

» But this can fail if there is narrow coverage (often the
case in IL+RL)

q
labeled (s, a, Q7 (s, a)) )J_ -
training threads

SSen B

» Offline RL is difficult because of distributional shift

min [|Qo(s, a) — Qr(s,a
» Solutions typically mitigate this in some way ST T— g

» AWR & AWAC: implicit constraint formed by using a

HalfCheetah-v2: AverageReturn HalfCheetah-v2: log(Q))

weighted imitation learning objective (weighted using ‘ - — wom =

the critic!) Y i wll— eomome| .
» CQL: conservative critic objective that directly avoids | REE 55%: :

overestimation o

0 -
0.0K 02K 04K 06K 08K 10K 00K 02K 04K 06K 08K LOK
TrainSteps TrainSteps

v

Model-based offline RL: similar principle, avoid
overestimating by penalizing value far from data

how well it does

how well it thinks
it does (Q-values)



