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for all states s that can be visited under policy π

Remarks:

S (s) is intrinsically predictive (looking into the future)

Computing S (s) is “as hard as” Dynamic Programming

Data-based S (s) (e.g. via MC sampling) requires data →∞ if safety must be
ensured with probability → 1

Achieving π (s) ∈ S (s) using generic function approximations (e.g. DNN) and
sampling can be challenging
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Let’s take one step back: NLP-based Reinforcement Learning

Approximate Q⋆ using a parametric NLP

Qθ (s, a) = min
w

Φθ (w, s, a)

s.t. g
θ
(w, s, a) = 0

hθ (w, s, a) ≤ 0

where

current state & action s, a

parameters θ (to be adjusted by RL)

“auxiliary variables” w

NLP can be an MPC scheme but not
necessarily
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where

current state & action s, a

parameters θ (to be adjusted by RL)

“auxiliary variables” w

NLP can be an MPC scheme but not
necessarily

Remarks:

NLP can represent any function,
hence this form is generic

Can think of this as a
“generalization” of RL-MPC
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Safety filters - Safe RL via projections

RL can discover policy parameters θ such that policy πθ(s) has good closed-loop
performances, ignoring safety (e.g. πθ stems from a DNN). “Learning” safety
implicitly is difficult.
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Safety filters - How to obtain optimality?

Q learning: Qθ ≈ Q⋆ learned via classic RL, ignoring safety.
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True system: s+ ∼ P [ · |s, a ]
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Dispersion: f (s, a) +Wθ contains the support of
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Ensuring probability 1 is not possible
→ probabilistic guarantees

Model parameters θ must be such that (1)
holds on every known data point

s

ŝ+

Wθ

Condition

s+ − fθ (s, a) ∈Wθ

for all observed triplets (s, a, s+)
→ constraints on θ

Containing the model-system
mismatch becomes constraints in
the parameters θ. Constraints can
be readily formulated in terms of

data.
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Safe policies via robust (N)MPC

Robust (N)MPC delivers policy πθ(x0) = u⋆

0 from

u
⋆ = argmin

u
max

w∈Wθ
N

Tθ (xN) +
N−1
∑

k=0

Lθ (xk , uk)

s.t. u0,...,N ∈ U

x0,...,N is the propagation of the state dispersion

max cost treats a worst-case scenario, required for stability

w = {w0, . . . ,wN} is the disturbance with wk ∈Wθ
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N

Tθ (xN) +
N−1
∑

k=0

Lθ (xk , uk)

s.t. u0,...,N ∈ U

x1,...,N−1 (u, x0, θ,w) ∈ X, ∀w ∈Wθ

N−1

x0,...,N is the propagation of the state dispersion

max cost treats a worst-case scenario, required for stability

w = {w0, . . . ,wN} is the disturbance with wk ∈Wθ

x1,...,N−1 (u, x0, θ,w) are the trajectories subject to w
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Robust MPC - Safety-constrained learning
Robust NMPC parameters θ

Policy gradient

∇θJ = E [∇θπθ∇uAπθ
]

adjusts θ for performance

Condition

s+ − f (s, a,θ) ∈Wθ

enforces safety through θ
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∆θ = argmin
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1

2α
‖∆θ‖2 +∇θJ

⊤∆θ

s.t. s+ − f (s, a,θ +∆θ) ∈Wθ+∆θ

∀ (s, a, s+) in data set

Safe RL steps seek performance under safety constraints

Safe Reinforcement Learning Using Robust MPC, Transaction on Automatic Control, 2020
Safe Reinforcement Learning with Stability & Safety Guarantees Using Robust MPC, S.Gros, M. Zanon, Automatica 2021

S. Gros, M. Zanon (NTNU) MPC & RL August 2021 12 / 24



Outline

1 Safe RL via MPC

2 Safe RL via Robust MPC

3 Stability-constrained Learning with MPC

4 Some more results (in brief)
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Stability of MPC

Policy πMPC from

min
s,a

T (sN) +
N−1
∑

k=0

L (sk , ak)

s.t. sk+1 = f (sk , ak)

h (sk , ak) ≤ 0, sN ∈ T

Equivalent MPC

min
s,a

− λ (s0) + T̃ (sN) +

N−1
∑

k=0

L̃ (sk , ak)

s.t. sk+1 = f (sk , ak )

h (sk , ak) ≤ 0, sN ∈ T

where L̃ (s, a) ≥ κ (‖s− ss‖) , ∀ s, a

S. Gros, M. Zanon (NTNU) MPC & RL August 2021 14 / 24



Stability of MPC

Policy πMPC from

min
s,a

T (sN) +
N−1
∑

k=0

L (sk , ak)

s.t. sk+1 = f (sk , ak)

h (sk , ak) ≤ 0, sN ∈ T

Equivalent MPC

min
s,a

− λ (s0) + T̃ (sN) +

N−1
∑

k=0

L̃ (sk , ak)

s.t. sk+1 = f (sk , ak )

h (sk , ak) ≤ 0, sN ∈ T

where L̃ (s, a) ≥ κ (‖s− ss‖) , ∀ s, a

If for some K∞ function κ (“bowl-shaped”):

L (s, a) ≥ κ (‖s− ss‖) , ∀ s, a

holds, then MPC scheme is stabilizing
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L̃ (s, a) = L (s, a) + λ (s)− λ (f (s, a)) ≥ κ (‖s− ss‖) , ∀ s, a

then MPC scheme is stabilizing
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No discount γ = 1

Exact model, deterministic
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For generic L (economic), if there is λ such that

L̃ (s, a) = L (s, a) + λ (s)− λ (f (s, a)) ≥ κ (‖s− ss‖) , ∀ s, a

then MPC scheme is stabilizing

Remarks:

No discount γ = 1

Exact model, deterministic

Theory does not apply to MDPs
Can we extend to γ < 1 and stochastic

dynamics?
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Stability of MPC

Policy πMPC from

min
s,a

γN
T (sN) +

N−1
∑

k=0

γk
L (sk , ak)

s.t. sk+1 = f (sk , ak)

h (sk , ak) ≤ 0, sN ∈ T

MDP:
min
π

Eπ

[

∞
∑

k=0

γk
L (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]
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Discounted Strict Dissipativity:

L(s, a) + λ(s)− γλ(f(s, a)) ≥ κ(‖s− ss‖)
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∞
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where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Strong Discounted Strict Dissipativity:

L(s, a) + λ(s)− γλ(f(s, a)) ≥ κ(‖s− ss‖)

L(s, a) + λ(s)− λ(f(s, a)) + (γ − 1)V γ

⋆ (f(s, a)) ≥ κ(‖s− ss‖)

where V
γ

⋆ is the discounted value function of the problem.
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Stability of MPC
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s.t. sk+1 = f (sk , ak)

h (sk , ak) ≤ 0, sN ∈ T
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min
π

Eπ

[

∞
∑

k=0

γk
L (sk , ak)

]

where ak = π (sk) and system dynamics

sk+1 ∼ P [ · | sk , ak ]

Classic dissipativity does not readily extend to stochastic systems. E.g.

E [L(s, a) + λ(s)− λ(f(s, a)) ≥ κ(‖s − ss‖)]

does not work...

Lyapunov arguments do not readily apply to stochastic systems. Why?

◮ The classic notion of “steady-state” fails because of the stochasticity
◮ Decreasing Lyapunov function does not exist. E.g. for any V convex:

s+ ∼ N (s,Σ) , E [V (s+) | s ] ≥ V (s)

◮ What to do? Work on the state density rather than the state itself!
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Functional dissipativity: if there is a functional λ such that:

L [ρ,π]− λ [ρ+] + λ [ρ] ≥ κ (D (ρ || ρs)) , s ∼ ρ, s+ ∼ ρ+

then the state distribution ρ converges to ρs

where

L is the problem cost functional, e.g. L = E [L (s, a)]

D ( · || · ) is a dissimilarity measure, e.g. Kullback-Liebler Divergence
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Functional dissipativity: if there is a functional λ such that:

L [ρ,π]− λ [ρ+] + λ [ρ] ≥ κ (D (ρ || ρs)) , s ∼ ρ, s+ ∼ ρ+

then the state distribution ρ converges to ρs

where

L is the problem cost functional, e.g. L = E [L (s, a)]

D ( · || · ) is a dissimilarity measure, e.g. Kullback-Liebler Divergence

We have tools to discuss stability in the context of discounted and stochastic MPC
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Stability-constrained Learning-based MPC

Goal: given arbitrary stage cost L (s, a),
build a stable policy πθ minimizing:

J (πθ) =
∞
∑

k=0

L (sk , ak)
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Lθ (s, a) ≥ κ (‖s− ss‖) , ∀ s, a

throughout the learning

Lθ different than L (stability)

Term −λθ (s0) is required for MPC
to yield the correct Q, V functions

Parametrized policy πθ from MPC

min
s,a

− λθ (s0) + Tθ (sN) +

N−1
∑

k=0

Lθ (sk , ak )

s.t. sk+1 = fθ (sk , ak)

sN ∈ T

S. Gros, M. Zanon (NTNU) MPC & RL August 2021 16 / 24



Stability-constrained Learning-based MPC

Goal: given arbitrary stage cost L (s, a),
build a stable policy πθ minimizing:

J (πθ) =
∞
∑

k=0

L (sk , ak)

Perform undiscounted RL

Learning based on L

Impose constraint:

Lθ (s, a) ≥ κ (‖s− ss‖) , ∀ s, a

throughout the learning

Lθ different than L (stability)

Term −λθ (s0) is required for MPC
to yield the correct Q, V functions

Parametrized policy πθ from MPC

min
s,a

− λθ (s0) + Tθ (sN) +

N−1
∑

k=0

Lθ (sk , ak )

s.t. sk+1 = fθ (sk , ak)

sN ∈ T

Theorem: for a “rich” parametrization:

πθ → π⋆ if π⋆ is stabilizing†

πθ → best stabilizing† policy
otherwise
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Goal: given arbitrary stage cost L (s, a),
build a stable policy πθ minimizing:

J (πθ) =
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∑

k=0

L (sk , ak)

Constraint

Lθ (s, a) ≥ κ (‖s− ss‖) , ∀ s

is semi-infinite programming... not trivial

Some solutions:

Sum-of-Squares (SOS) prog.

Convex representation of Lθ

Something else?

Parametrized policy πθ from MPC
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sN ∈ T

Theorem: for a “rich” parametrization:

πθ → π⋆ if π⋆ is stabilizing†

πθ → best stabilizing† policy
otherwise

†We are talking about nominal stability
here...

Change of philosophy from “classic”
dissipativity theory. Stable design rather

than stability analysis.
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πθ → π⋆ if π⋆ is stabilizing†

πθ → best stabilizing† policy
otherwise

†We are talking about nominal stability
here...

Change of philosophy from “classic”
dissipativity theory. Stable design rather

than stability analysis.

Stability-Constrained Markov Decision Processes Using MPC, Automatica 2021
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RL & SYSID are doing two different things (closed-loop performance vs. model
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X RL supersedes SYSID, can be implemented via null-space approaches in
Q-learning

X Extension to policy gradient understood, some technical difficulties, to be
published...
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RL & Mixed integer problem in MPC

Mixed-integer problems are common.
Mixed-integer MPC schemes are expensive but
realistic . Can we combine them to RL as well?
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With Q-learning, fairly trivial... incorrect if no exploration, though

For policy gradient, devil is in the details

X Integer inputs best treated via stochastic policy approach, continuous ones
via deterministic policy

X Propose a hybrid policy gradient method combining deterministic and
stochastic policies, with corresponding compatible linear Aπθ

approximations
X Works well on mixed-integer MPC examples

Reinforcement Learning for mixed-integer problems based on MPC, S. Gros, M. Zanon, IFAC 2020
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RL & MHE-MPC

The full state of the system is often not
available, or not even modelled, use

observer (e.g. MHE). Can we still do RL
and how?
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X Propose an RL scheme that tunes MHE and MPC jointly for closed loop
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better than model fitting
X Extension to policy gradient understood, to be published
X Works also if MPC model omits some of the real states
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RL & MPC for “strongly economic” problems

Some policies are dominated by “switches”, difficult to treat in RL because
∇θπθ = 0 on most of the state space. Hence

∇θJ (πθ) = E [∇θπθ∇uAπθ
]

is based on the contribution from a very small number of samples. Parameter
updates become “infrequent and jumpy”.
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RL & MPC for “strongly economic” problems

Some policies are dominated by “switches”, difficult to treat in RL because
∇θπθ = 0 on most of the state space. Hence

∇θJ (πθ) = E [∇θπθ∇uAπθ
]

is based on the contribution from a very small number of samples. Parameter
updates become “infrequent and jumpy”.

X Proposed policy relaxation techniques based on Interior-Point formulations, such
that ∇θπθ 6= 0 almost everywhere

X Converge the policy to the true one over the learning
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MPC-based Reinforcement Learning for Economic Problems with Application to Battery Storage, A. Kordabad, W. Cay, S.

Gros, ECC 2021
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Tuning of the MPC “meta”-parameters

MPC “meta”-parameters:

Horizon length N

When to recompute control sequence
(event-based MPC)

MPC:
min
s,a

T (sN) +

N−1
∑

k=0

L (sk , ak)

s.t. sk+1 = f (sk , ak )

h (sk , ak) ≤ 0

yields πMPC (s0) = a⋆0

Event-triggered:

apply input profile a⋆0,...,n until re-computation is triggered

often used to reduce computational demand, energy, etc.
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Fairly simple idea, requires some care to be treated correctly:

X Define augmented state to preserve Markov property (essential for RL methods)

X Stochastic policy gradient methods required, must define the densities very
carefully

Optimization of the Model Predictive Control Update Interval Using Reinforcement Learning, E. BÃ¸hn, S. Gros, S. Moe,
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RL to evaluate the storage function

Policy πMPC from

min
s,a

T (sN) +
N−1
∑

k=0

L (sk , ak)

s.t. sk+1 = f (sk , ak)

h (sk , ak) ≤ 0, sN ∈ T

If for some λ function:

L (s, a) + λ (s)− λ (f (s, a)) ≥ κ (‖s− ss‖) , ∀ s, a

holds, then MPC scheme is stabilizing

How to evaluate λ?

Approximate f as a polynomial, then Sum-of-Squares technique can be used

We propose: parametrize λ and evaluate it via Q-learning

To finish
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