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Why RL and MPC?

Policy

a= mo(s)

from model

st = f(s,a,0)

and cost (reward)

L(s,a)

A
S
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0
v
Policy
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from model a si,s,a |adjust € to fit model
S+ = f(S, a, 0) S4 = f(57 a, 0)
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Does this work? Not necessarily...

Problem: does not capture the real system

E.g. what f should be if real system is stochastic?

[+

@ Can degrade performance compared to keeping initial

@ Well-known issue is data-based process optimization (RTO)
*}

Well-known issue in adaptive control
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Why RL and MPC?

0
v
Policy
a=Tg(s) SYSID
from model a si,s,a |adjust € to fit model
st = f(s,a,0) sy = f(s,a,0)
and cost (reward) to data
L(s,a)
A 10°
s

SYSID-like solutions

@ Learn real dynamics sk1 ~ P[-| sk, ax] using
statistical tools (Gaussian Processes, RKHS, etc)

Affordable MPC?

MPC complexity

@ Embed these statistical models in MPC
J (s
@ Increments towards 7, via SYSID+MPC are 10" ) J (mapc)
“exponentially” costly
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Why RL and MPC?

0
v
Policy
a=mo(s) SYSID
from model a si,s,a |adjust € to fit model
S+ = f(S, a, 0) S4 = f(57 a, 0)
and cost (reward) to data
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RL-MPC approach

@ “Milk" the performance of the MPC scheme for a given MPC structure /
modelling choice

@ Focuses directly on closed-loop performance rather than on “ever better models”
@ Not a competing strategy to “better models”, can be used in combination
In this lecture: basic principles / Next lecture: recent results
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Notation

@ Real system dynamics
P[s;|s,a] € Ry

denotes the probability (density) of observing a transition from the state-action
pair s, a to the subsequent state s
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Notation
@ Real system dynamics
P[s;|s,a] € Ry

denotes the probability (density) of observing a transition from the state-action
pair s, a to the subsequent state s

@ Cost (reward):
L(s,a) e R

assigns a value to each state-action pair. To be minimized here (RL often wants to
maximize, no difference)

@ Deterministic policy
a=m(s)
maps a state s into an action a
@ Stochastic policy
mlals] € Ry
assigns the probability (density) of taking action a for a given state s
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Markov Decision Processes (MDP)

A very general way of describing optimal control

@ Expected cost (return):

< 1=
J(7)=Exr |:Z'y L(Sk,ﬂ'(Sk)):| y

k=0

with discount v € [0, 1]

@ Fixed or random initial conditions sg '0
0.5

State-action spaces can be continuous of discrete (e.g. integer)
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Markov Decision Processes (MDP)

A very general way of describing optimal control

@ Expected cost (return):

J(m) =En [Z 7L (s, m(sk))

k=0

1¥
:| . H\’% = e =]

with discount v € [0, 1]
@ Fixed or random initial conditions s
@ MDP: find 7, solution of

m7jn J ()

. . - .. . . 05
(optimization over policies, i.e. functions)
™
3 o
-0.5
A

State-action spaces can be continuous of discrete (e.g. integer)
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Markov Decision Processes (MDP)

A very general way of describing optimal control

@ Expected cost (return):

k=0

J(m) =En [Z vkL(Sk,vr(Sk))]

with discount v € [0, 1]
@ Fixed or random initial conditions s

@ MDP: find 7, solution of
min J ()
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Optimal Value Functions

@ Value function:

Vi (5) = Ex, [Z 7 L (sk, )

k=0

So =S, ax = Ty (sk)]

gives the expected cost for policy 7., starting from given initial conditions s
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Optimal Value Functions

@ Value function:

V* (h) = Eﬂ-* |:Z fykL(sk,ak)

k=0

S0 = S, Ak = T« (Sk):|

gives the expected cost for policy 7., starting from given initial conditions s
@ Action-Value function:

oo

Q« (s,a) = En, |:Z’ykl_(5k,ak)

k=0

Sp =S, g = A, Ak>0 = Ty (sk):|

gives the expected cost for policy 7., starting from given initial conditions s, and
using action a as first input (policy 7, after that)
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Optimal Value Functions

@ Value function:
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gives the expected cost for policy 7., starting from given initial conditions s
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Q« (s,a) = En, |:Z’ykl_(5k,ak)
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gives the expected cost for policy 7., starting from given initial conditions s, and
using action a as first input (policy 7, after that)

@ Relationship:
Vi (s) = min Q. (s, a)
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Optimal Value Functions

)

Value function:

V* (h) = Eﬂ-* |:Z fykL(sk,ak)

k=0

gives the expected cost for policy 7., starting from given initial conditions s

Action-Value function:

Q« (s,a) = En, [Z’Y”‘(S"’ak)
k=0

S0 = S, Ak = T« (Sk):|

So =S, @ = &, Ak>0 = T« (Sk):|

gives the expected cost for policy 7., starting from given initial conditions s, and

using action a as first input (policy 7, after that)
Relationship:

Vi(s) = main Q. (s,a)

Optimal Policy:

7, (s) = argmin Q. (s,a)
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Optimal Value Functions

@ Value function:

V*(h 7"* |:Z'Y L(Skaak

gives the expected cost for policy 7., starting from given initial conditions s
@ Action-Value function:

Q* (Saa) = E‘ﬂ'* |:Z’Ykl-(sk7ak)
k=0

gives the expected cost for policy 7., starting from given initial conditions s, and
using action a as first input (policy 7, after that)

@ Relationship:

So =S, ax = T« (sk)]

S0 = S, a0 = A, Ak>0 = T« (Sk):|

Vi (s) = min Q (s,2)

@ Optimal Policy:
7. (s) = argmin Q. (s,a)

Can be computed via the Bellman equations, intractable for “large” state-action
spaces
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Value Functions

@ Value function:

Ve (s) =Ex [Z’ykL(Sk,ak)
k=0

So = S, ak = ”(Sk):|

gives the expected cost for policy 7r, starting from given initial conditions s
@ Action-Value function:

]

Qr (s,a) = Ex |:Z’ykL(Sk,ak)

k=0

S0 =S, a0 = A, Ak>0 = W(Sk)]

gives the expected cost for policy 7r, starting from given initial conditions s, and
using action a as first input (policy 7, after that)

@ Relationship:

Note:
Va (s) = Qn (5,7 (s1))
V7r # V*
@ Advantage function: Qr # Q.
Ax (s,a) = Qx (s,a) — Vi (s) Ar # As

compares a to policy 7r. Instrumental in policy gradient methods.

Can be computed via the Bellman equations, intractable for.“large” state-action
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MDPs and “forbidden” states

What if the system is not allowed to leave a certain subset of the state space?
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where the state of the system should always be.
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MDPs and “forbidden” states

What if the system is not allowed to leave a certain subset of the state space?

@ Say there is a “feasible” set:
F={s | h(s)<0}
where the state of the system should always be.
@ In the "MDP theory”, assign an infinite penalty to leaving F, i.e. add:

Te (s,2) = 0 if seF
FOYTU 40 if s¢F
to stage cost L.
@ In RL, oo penalties are not meaningful: “There is no backup from death”
Common approach: assign a “very large” penalty to s ¢ F instead of +oo.

@ Use of “barrier functions” in RL
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MPC & MDPs

A conceptual comparison...
MDP:

min  Er [Z’ykL (sk, ak)]
k=0

where ax = 7 (sx) and system dynamics

Skt ~ P[-|sk,ax]

=] = = = Dar
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MPC & MDPs

A conceptual comparison...

MDP: MPC: (so given)
- = k N—-1
min  Ex [ZV L(Sk’ak)] min T (sw) + > L(sk )
k=0 o8 k=0
where ax = 7 (sx) and system dynamics s.t. sk = £ (sk, ak)
sk+1 ~ P[] sk, ac] yields a5 y_1(so) and mupc (s0) = ag
v v
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MPC & MDPs

A conceptual comparison...

MDP: MPC: (so given)
mﬂin Ex |:Z’YkL(Sk,ak):| min ZL(Sk,ak)
k=0 A
where ax = 7 (sx) and system dynamics s.b. sk = (sk, ak)
Sks1 ~ P+ | sk, ax] yields a5 .. (so) and wmpc (s0) = ap
y v
Assume:

@ MPC has an infinite horizon
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MPC & MDPs

A conceptual comparison...

MDP: MPC: (so given)
min |:Z’YkL(Sk,ak):| min ZL(Sk,ak)
k=0 A
where ax = 7 (sk) and system dynamics st Ska1 = (sk, )
Sks1 ~ 0 (Skr1 — F (Sk,ax)) yields a5 .. (so) and wmpc (s0) = ap
v v
Assume:

@ MPC has an infinite horizon

@ MDP has a deterministic dynamics f
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MPC & MDPs

A conceptual comparison...

MDP: MPC: (so given)
mwin Ex |:Z’YkL(Sk,ak):| min Z'ykL(sk,ak)
k=0 A
where ax = 7 (sk) and system dynamics st Ska1 = (si, )
Ske1 ~ 6 (ka1 — £ (Sk, ax)) yields a5 .. (so) and wwmpc (so) = ap
v v
Assume:
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MPC & MDPs

A conceptual

MDP:

m"in Ex [Z ARL (sk, ak)]

k=0

where ax = 7 (sk) and system dynamics

Sk1 ~ O (sky1 — £ (sk, ax))

comparison...

MPC: (so given)

min > A L (s )
A k=0

s.t. sip1 = £ (sk, ax)

yields a5 . (so) and wypc (so) = ag

Assume:
@ MPC has an infinite horizon

@ MDP has a deterministic dynamics f
@ MPC is discounted
Then (without model error):

aj (so)

MPC sequence

ag (s)

MPC 15t control

7w (sk) =

MDP solution

= mwmpc (sk)

on the trajectories so,...,00
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MPC & MDPs

A conceptual comparison...

MDP:

m"in Ex [Z ARL (sk, ak)]

k=0

where ax = 7 (sk) and system dynamics

Sk41 ~ 1) (Sk+1 - f(sk7 ak))

MPC: (so given)

min > A L (s )
A k=0

s.b. Skp1 = f(sk,ak)

yields a5 . (so) and wypc (so) = ag

Assume:
@ MPC has an infinite horizon

@ MDP has a deterministic dynamics f
@ MPC is discounted
Then (without model error):

ag (s)

MPC 15t control

ai (so) =

MPC sequence

7w (sk) =

MDP solution

Bottom line: MPC
provides optimal policy
approximation (finite
horizon, deterministic
model), i.e. wyPC R T

4

= mwmpc (sk)

on the trajectories so,...,00
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MPC & MDPs

A conceptual comparison...

MDP:

m"in Ex [Z ARL (sk, ak)]

k=0

where ax = 7 (sk) and system dynamics

Sk1 ~ P [+ |sk,ax]

MPC: (so given)

N—-1

min 3T (sw) + > 7 L (s, a)
- k=0

s.t. skp1 = £ (sk, ak)

yields a5 y_; (so) and wumpc (s0) = a5

Assume:
@ MPC has an infinite horizon

@ MDP has a deterministic dynamics f
@ MPC is discounted
Then (without model error):

ag (s)

MPC 15t control

ai (so) =

MPC sequence

7w (sk) =

——
MDP solution

on the trajectories so,...,00

S. Gros (NTNU)

= mwmpc (sk)

Intro to RL-MPC

Bottom line: MPC
provides optimal policy
approximation (finite
horizon, deterministic
model), i.e. wyPC R T

4

MPC with stochastic
model: better
approximation, higher
computational cost

August 2021 11/24



Why discounting?

MDP:
oo Discounting is (in general) needed to
fill 1o [Z "}/kL(Sk,ak):| make the MDP well defined, is that all?

T k=0

where ax = 7 (sx) and system dynamics

sicrr ~ P[] sk, ar]
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Why discounting?
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oo Discounting is (in general) needed to
fill 1o [Z "}/kL(Sk,ak):| make the MDP well defined, is that all?

T k=0

where ax = 7 (sx) and system dynamics

Sk+1 ~ P[5k, ak]

System lifetime: assuming that the system can (irremediably) fail at any time k with
probability 1 — ~, then discounting accounts for resulting probabilistic lifetime.

S. Gros (NTNU) Intro to RL-MPC August 2021 12/24



Why discounting?

MDP:
oo Discounting is (in general) needed to
min E, [Z "}/kL(Sk,ak):| make the MDP well defined, is that all?

T k=0

where ax = 7 (sx) and system dynamics

Sk+1 ~ P[5k, ak]

System lifetime: assuming that the system can (irremediably) fail at any time k with
probability 1 — ~, then discounting accounts for resulting probabilistic lifetime.

E.g. a system with a sampling time of 1 second, and a 90% chance of having a lifetime
of 20 years, should have v = 0.999999996349275

S. Gros (NTNU) Intro to RL-MPC August 2021 12/24



Why discounting?

MDP:

m7in Ex [Zka(sk,ak)]
k=0

where ax = 7 (sx) and system dynamics

Sk+1 ~ P[5k, ak]

Discounting is (in general) needed to
make the MDP well defined, is that all?

Investment model: expected economic growth r (per time unit) implies that earning at
time k is worth (1 + r) " the same earning at time 0. Hence v = (1 +r) ™"
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Why discounting?

MDP:
oo Discounting is (in general) needed to
min E, [Z "}/kL(Sk,ak):| make the MDP well defined, is that all?

T k=0

where ax = 7 (sx) and system dynamics

Sk+1 ~ P[5k, ak]

Investment model: expected economic growth r (per time unit) implies that earning at
time k is worth (1 + r) " the same earning at time 0. Hence v = (1 +r) ™"

E.g. a system with a sampling time of 1 second and an expected return of 10% per year
should have v = 0.999999999843887
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m,in E, [Z ~KL (Sk,ak):| make the MDP well defined, is that all?
k=0

where ax = 7 (sx) and system dynamics

Sk+1 ~ P[5k, ak]

Investment model: expected economic growth r (per time unit) implies that earning at
time k is worth (1 + r) " the same earning at time 0. Hence v = (1 +r) ™"

E.g. a system with a sampling time of 1 second and an expected return of 10% per year
should have v = 0.999999999843887

Bottom line: on “engineering applications”, the discount tends to (should) be
extremely close to 1
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Why discounting?

Gain optimal MDP:

min lim Ex
T N— oo

Z %L (Sk, ak):|

where ax = 7 (sx) and system dynamics

sicrr ~ P[] sk, ar]

Policy 7

@ is said to achieve “gain optimality”

@ transients are irrelelvant as they have no contribution in the average return
@ tend to yield “"bang-bang” actions until optimal steady state is reached
*]

is not unique!
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Why discounting?

Gain optimal MDP:
What about considering average cost?

min lim Ex
T N— oo

Z %L (Sk, ak):|

where ax = 7 (sx) and system dynamics

sicrr ~ P[] sk, ar]

Policy 7

@ is said to achieve “gain optimality”

@ transients are irrelelvant as they have no contribution in the average return
@ tend to yield “"bang-bang” actions until optimal steady state is reached
*]

is not unique!

... gain optimal are of questionable use for control
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Why discounting?

Bias optimal MDP:

N What about “removing” the average
?
min B Z L (sk,ax) — V& (so) cost!

k=0
where ax = 7 (sx) and system dynamics

sicrr ~ P[] sk, ar]

v

where V¢ is the value function associated to gain optimal problem.

Policy 7
@ is said to achieve “bias optimality”
@ “best transient to gain-optimal state”

@ there are RL algorithms for bias optimality
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Why discounting?
Bias optimal MDP:

N
m1in Ex Z L (sk,ax) — V& (so)
k=0

where ax = 7 (sx) and system dynamics

sicrr ~ P[] sk, ar]

What about “removing” the average
cost?

where V¢ is the value function associated to gain optimal problem.

Policy =
@ is said to achieve “bias optimality”
@ “best transient to gain-optimal state”

@ there are RL algorithms for bias optimality

A New Framework for Computing Bias-Optimal Policies Using Discounted Reinforcement Learning, NeurlPS 2021, M.
Zanon, S. Gros (submitted)

S. Gros (NT!

Intro to RL-MPC
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© A central result on Learning-based MPC

L0
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MPC-based value functions

MDP:

min  Ex [Z fykL (sk, ak)

k=0

where ax = 7 (sx) and

Skt ~ P[] sk, a]

|

MPC: (so given)

N—-1

ns1in AN T (sn) + Z YKL (s, ax)
* k=0

s.t. Sk+1 = f (Sk7 ak)

yields a5 y_; (so) and wmpc (s0) = ag

S. Gros (NTNU) Intro to RL-MPC August 2021
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MPC-based value functions

MDP: MPC: (so given)

[e’e} N—1
m1in Ex |:Z")’kL(Sk,ak):| min VT (sw) + Z’ykL(sk,ak)

k=0 k=0
where ax = 7 (sx) and st sirn = f(sk, a)
Skr1 ~ P[] s, ax] yields a5 y_; (s0) and wnpc (o) = ag
)
Value Functions: ‘

Vi (s) =Exr, |: ’ykL(Sk,ak):|

e 208

Q« (Saa):]E""'* |: ’YkL(S/ﬂak)

x
Il

0

=]
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MPC-based value functions

MDP: MPC: (so given)
> N—1
m;" Ex [Z v L (sk, ak)] Varpc (s0) = rrs1in AT (sw) + Z YL (s, ax)
k=0 * k=0
where ax = 7 (sx) and st sk = £ (sk, )
st ~ P[]0 2] ) i.e. MPC scheme provides a value function
Value Functions: ‘

@ MPC delivers a value function Viipc

Vi (s) =Exr, |: ’ykL(Sk,ak):|

e 208

Q* (Saa):]E""'* |: ’YkL(S/ﬂak)

x
Il

0

0=
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MPC-based value functions

MDP: MPC: (so given)

oo N—1
min - Ex [Z ’YkL(Skaak)] Quipc (50, 2) = min YT (sw) + > 7 L (sk,26)
k=0 * k=0

where ax = 7 (sx) and st sk = £ (sk, )

ap = a

ki1~ P[- [ sk, ak]

i.e. MPC scheme provides an action-value function

Value Functions: @ MPC delivers a value function Viipc

KL (s, ar) @ MPC (can) deliver an action-value
K oS function Quprc
o = ]

Vi (s) =Enr, |:

e 208

Q* (Saa):]E""'* |: ’YkL(S/ﬂak)

»
Il

0
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MPC-based value functions
MDP: MPC: (so given)
oo N—1
m1in Ex [Z fykL(sk,ak)] Quipc (s0,a) = min AV T (sy) + nykL (sk, ak)
k=0 2 k=0

where ax = 7 (sx) and st sk = £ (sk, )

apg — a
Sir1 ~ P[- [ sk, ar]

/ i.e. MPC scheme provides an action-value function

v

Value Functions: @ MPC delivers a value function Viipc

B 2 & @ MPC (can) deliver an action-value
Vi(s) = Ex, [;7 L(Sk’a")] function Qumpc
o @ MPC delivers a policy mmpc
Q* (s’a):]E_n_* |:Z,ykL(Sk,ak) ao:a:|
k=0
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MPC-based value functions

MDP: MPC: (so given)
oo N—1
min  Er [Z YL (sk, ak)] Qurpc (s0,2) =min VT (sw) + > 7L (sk,24)
k=0 5a k=0
where ax = 7 (sx) and st sk = (sk, )
apg — a
Sir1 ~ P[- [ sk, ar]

/ i.e. MPC scheme provides an action-value function

v

Value Functions: @ MPC delivers a value function Viipc

B 2 & @ MPC (can) deliver an action-value
Vi (s) = Ex, [kz; v L (s, a"):| function Qupc
. @ MPC delivers a policy mmpc
_ K
Qs (s,2) = Er, [Z'Y L(sk,ai) | a0 = a] @ Fundamental relationships satisfied:
k=0

Vatpe (s) = min Quec (s, a)

mmpc (8) = arg main Quipc (s,a)
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MPC-based value functions

MDP: MPC: (so given)
oo N—1
m1in Ex [Z ~*L (sk, ak)] Quipc (s0,a) = min AV T (sy) + Z YKL (s, ax)
k=0 o8 k=0
where ax = 7 (sx) and st sk = £ (sk, )
apg — a
Sir1 ~ P[- [ sk, ar]

/ i.e. MPC scheme provides an action-value function

v

Value Functions: @ MPC delivers a value function Viipc

B 2 & @ MPC (can) deliver an action-value
V* (S) - ]E"r* [; ! ‘ (Sk7 ak):| fUﬂCtion QMPC

@ Fundamental relationships satisfied:

Q* (S’a) = ]E""'* |:Z’YkL(Sk7ak)
k=0

@ MPC delivers a policy mmpc
" — ]

Similarly to wvpc &
Varpc (s) ~ Vi ()
Qvpc (s, a) ~ Qs (S, a)

Vatpe (s) = min Quec (s, a)

mmpc (8) = arg main Quipc (s,a)
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A central result...

MDP:

m7in Ex [Z fykL(sk,ak)]
k=0

where ax = 7 (sx) and system dynamics

MPC: (so given)
N—1
min T (sw) + > 7 L (s )
® k=0

s.t. Sk+1 = f(Sk, ak)
Sk+1NP['|Sk,ak] )
yields wypc, Varec, and Qurc

Value and Action-Value Functions:

Vi (5) = Ex, [Z vkL(Skaak)]

k=0

Q. (s,a) = Er, [Z ~YRL (sk, ax)

k=0

aoza:|

S. Gros (NTNU) Intro to RL-MPC August 2021
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A central result...

MDP:

m7in Ex [Z fykL(sk,ak)]
k=0

where ax = 7 (sx) and system dynamics

MPC: (so given)
N—1
min T (sw) + > 7 L (s )
® k=0

s.t. Sk+1 = f(Sk, ak)
Sk+1NP['|Sk,ak] )
yields wypc, Varec, and Qurc

Value and Action-Value Functions:

In general
Vi (s) = Ex, [Z ’ykL(sk,ak)] TMpPe # T, Vipe # Vi, Qurc # Q«
k=0
oo but...
Q. (5,2) =Er, |:Z’YkL(Skaak) ag = a]
k=0
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A central result...

MDP:

m7in Ex [Z fykL(sk,ak)]
k=0

where ax = 7 (sx) and system dynamics

MPC: (so given)
N—1
min T (sw) + > 7 L (s, )
® k=0

s.t. Sk+1 = f(Sk, ak)
Sk+1NP['|Sk,ak] )
yields wypc, Varec, and Qurc

Value and Action-Value Functions:

In general
Vi (s) = Ex, [Z ’ykL(sk,ak)] TMPC # T, Vipe # Vi, Qurc # Q«
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A central result...

MDP:

m7in Ex [Zka(sk,ak)]
k=0

where ax = 7 (sx) and system dynamics

MPC: (so given)
N—1
min T (sw) + > 7 L (s, )
® k=0

s.t. Sk+1 = f (Sk7 ak)
Sk+1NP['|Sk,ak] )
yields wypc, Varec, and Qurc

v

Value and Action-Value Functions:

] Under some assumptions, there are L Tst

Vi (5) = Ex, [Z 7 L (k. ax)

prd TMpCe = Ty, Vmpe = Vi, Qurc = @«

Q. (s,a) = Er, [Z ~YRL (sk, ax)

k=0

ap=a Assumption: trajectories of model f under
optimal policy 7, should yield bounded
v*L (sk,ax) for k =0,..., 00
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A central result...

MDP: oo
min  Er [Zka(sk,ak)]
k=0

where ax = 7 (sx) and system dynamics

MPC: (so given)
miny" T (sn) + Z A¥L (s, ax)
s,a —0
S.t. Skp1 = f (Sk7 ak)

sicrr ~ P[] sk, ar] _
yields mvpc, Vmpc, and Qurc

v

Value and Action-Value Functions:
} Under some assumptions, there are L, T s.t.

prd TMpCe = Ty, Vmpe = Vi, Qurc = @«

Vi (s) = Enr, [Z 7 L (sk, ax)

optimal policy 7, should yield bounded

ap = a} Assumption: trajectories of model f under
v*L (sk,ax) for k =0,..., 00

Q* (S7a) = Eﬂ'* |:Z ’ykL(Skaak)
k=0

@ MPC can “capture” ., Q«, Vi, even if MPC model is inaccurate
@ Requires modifications of the stage cost & constraints

@ Valid for all MPC schemes (classic, robust, stochastic, economic, etc)
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A central result...

[

where ax = 7 (sx) and system dynamics

MDP:
m|n

Sk+1 ~ P[5k, ak]

Value and Action-Value Functions:

Vi (s) = Enr, [ZVkL(Skvak):|
Qx (s,a) = En, [Z'y L (sk,ax) | ao :a:|

MPC: (so given)

(sw) + 3 7 (50, 24)

. N =
miny" T

s,a
k=0

S.t. Skp1 = f (Sk7 ak)

yields wmpe, Vapc, and Qurc

Under some assumptions, there are L Tst

TTMPC = T, Vurc = Vi, Qurc = Qx

Assumption: trajectories of model f under
optimal policy 7, should yield bounded
v*L (sk,ax) for k =0,..., 00

@ MPC can “capture” ., Q«, Vi, even if MPC model is inaccurate

@ Requires modifications of the stage cost & constraints

@ Valid for all MPC schemes (classic, robust, stochastic, economic, etc)

Data-driven Economic NMPC using Reinforcement Learning, S. Gros, M. Zanon, Transaction on Automatic-Control, 2019
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A central result...

MDP:

m7in Ex [Zka(sk,ak)]
k=0

where ax = 7 (sx) and system dynamics

MPC: (so given)

N—1
miny" T (sn) + Z A*L (sk, ak)
s,a k:O
S.t. Skp1 = f (Sk7 ak)
Sk+1NP['|Sk,ak] .
yields wmpe, Vapc, and Qurc

v

Value and Action-Value Functions:

Vi (s) = Enr, [Z VkL(Skvak)}
k=0

Q* (S7a) = E"\'* |:Z ’ykL(Skvak)
k=0

Under some assumptions, there are L Tst

TTMPC = T, Vurc = Vi, Qurc = Qx

ap=a Assumption: trajectories of model f under
optimal policy 7, should yield bounded
v*L (sk,ax) for k =0,..., 00

If you do (any) Learning+MPC and adjust the cost and/or constraints, then this
paper is formally justifying what you are doing J

Data-driven Economic NMPC using Reinforcement Learning, S. Gros, M. Zanon, Transaction on Automatic-Control, 2019
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Practical consequences...

MDP:
min  Ex [Z fykL(sk,ak)]
" k=0
where ax = 7 (sk) and system dynamics

Sir1 ~ Pl | sk, ar]

MPC: (so given)

N—1
min 3T (sn) + > 7 L (s, )
- k=0

s.t. sip1 = f (s, ax)

yields mypc, Vmpc, and Qurec
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Practical consequences...

MDP: MPC: (so given)
9 = k N—1
" En [27 L (sk, ak)] min AN T (sw) + Z v L (sk,ax)
k=0 s,a =
where a; = 7 (sx) and system dynamics st. sky1 = f(sk,ak)
Skr1 ~ P[- | sk, ax] yields wvpc, Vmpc, and Qupc

@ In principle, it is possible to “modify” the MPC scheme such that it produces

TMPC = T+, Vipc = Vi, Qurc = Qx
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Practical consequences...

MDP: MPC: (so given)
9 = k N—-1
" En [27 L(sk’ak)] min AN T (sw) + Z’)’kL(Sk,ak)
k=0 s,a =
where a; = 7 (sx) and system dynamics st. sky1 = f(sk,ak)
Skr1 ~ P[- | sk, ax] yields wvpc, Vmpc, and Qupc

@ In principle, it is possible to “modify” the MPC scheme such that it produces

TMPC = T+, Vipc = Vi, Qurc = Qx

@ Unfortunately, computing L, T is as difficult as solving the Bellman equations
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@ In principle, it is possible to “modify” the MPC scheme such that it produces

TMPC = T+, Vipc = Vi, Qurc = Qx

@ Unfortunately, computing L, T is as difficult as solving the Bellman equations

@ Not very useful in practice, unless we are working in a “learning” context...
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Practical consequences...

MDP: MPC: (so given)
9 = k N—-1
" En [27 L(sk’ak)] min AN T (sw) + Z v L (sk,ax)
k=0 s,a =
where a; = 7 (sx) and system dynamics st. sky1 = f(sk,ak)

sir1 ~ P[- [ sk, a]

yields wumpc, Vapc, and Qupc

@ In principle, it is possible to “modify” the MPC scheme such that it produces

TMPC = T+, Vipc = Vi, Qurc = Qx

@ Unfortunately, computing L, T is as difficult as solving the Bellman equations

@ Not very useful in practice, unless we are working in a “learning” context...

® Thenl, Tis something that we learn from the closed-loop trajectories

S. Gros (NTNU)

Intro to RL-MPC August 2021

16 /24



Practical consequences...

MDP:

m"in Ex [Z 4L (s, ak)]
k=0

MPC: (so given)

N—1
min 3T (sn) + > 7 L (s, )
- k=0

where a; = 7 (sx) and system dynamics s.t. Skr1 = £ (s, ak)

sir1 ~ P[- [ sk, a]

yields wumpc, Vapc, and Qupc

In principle, it is possible to “modify” the MPC scheme such that it produces

TMPC = T+, Vipc = Vi, Qurc = Qx

e © ¢ ¢

S. Gros (NTNU)

Unfortunately, computing L, T is as difficult as solving the Bellman equations
Not very useful in practice, unless we are working in a “learning” context...
Then L, T is something that we learn from the closed-loop trajectories

E.g. RL can be used to learn L, T (+possibly MPC model)

Intro to RL-MPC August 2021
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Outline

© RL for Learning-based MPC

S. Gros (NTNU)
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Classic RL vs. RL-MPC

MDP: > MPC: s
min Ex [ZV L(Sk’ak)] min AT (sm) + 7L ()
k=0 s,a =0
where ax = 7 (sx) and system dynamics s.t. skpr = £ (sk, ax)
Skr1 ~ P[] sk, ax] yields wype, Vapc, and Qupc
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Classic RL vs. RL-MPC

MDP: oo
min  Er [Z ~*L (sk, ak)]

k=0

where a, = 7 (sk) and system dynamics

Sir1 ~ P[] sk, ar]

MPC: o
min 3T (sn) + > 7 L (s, )
- k=0

s.t. skpr = £ (sk, ax)

yields mvpc, Vmpc, and Qurc

RL with DNN
@ correct structure is unknown
@ good initialization is difficult

@ respecting constraints is difficult &
implicit

S. Gros (NTNU)
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Classic RL vs. RL-MPC
MDP: oo
min  Er ZFykL(sk,ak)

* k=0

where a, = 7 (sk) and system dynamics

ki1~ P[-|sk,ak]

MPC: o
min 3T (sn) + > 7 L (s, )
- k=0

s.t. skpr = £ (sk, ax)

yields mvpc, Vmpc, and Qurc

RL with DNN
@ correct structure is unknown
@ good initialization is difficult

@ respecting constraints is difficult &
implicit
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Classic RL vs. RL-MPC
MDP: oo
min  Er Z'ykL(sk,ak)

* k=0
where a, = 7 (sk) and system dynamics

ki1~ P[-|sk,ak]

MPC: o
min 3T (sn) + > 7 L (s, )
- k=0

S.t. Skp1 = f(sk,ak)

yields mvpc, Vmpc, and Qurc

RL with DNN
@ correct structure is unknown
@ good initialization is difficult

@ respecting constraints is difficult &
implicit

Intro to RL-MPC

MPC
® Provides Vapc = Vi,
Qurc = Q., Tupc = Ry
@ Structure and initialization given
@ Constraints enforced explicitly

@ Theory says that we can get V.,
Qx, 4 from MPC

August 2021 18 /24



RL and MPC

Parametrized MPC:

N—1
ns1in YN To (sn) + Z v*Le (sk,ax)
3 k=0

S.t.  Skp1 = fo (Sk, ak)
ho (sk,ax) <0

yields g, Vo, and Qo

RL: does

min J (7o)

on the real system, where

k=0

S. Gros (NTNU) Intro to RL-MPC August 2021
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RL and MPC

Parametrized MPC.: RL: does
i N =, min J (7o)
ns1|an v Te (SN)+Z’Y Lo (s«, ax) o
k=0 on the real system, where
s.t. skr1 =fo (Sk, ak)
< oo
hg (sk,ax) <0 J(76) = Er, [Z 'ykL(Sk,ak):|
yields g, Vi, and Qs k=0 /

@ Parametrize all functions

@ Constraints hg for forbidden
state-actions

S. Gros (NTNU) Intro to RL-MPC August 2021 19/24



RL and MPC

Parametrized MPC:

N—1
ns1in YN To (sn) + Z v*Le (sk,ax)
3 k=0

s.t. skr1 =fo (Sk, ak)
hg (sk,ax) <0

yields g, Vo, and Qo

4

@ Parametrize all functions

@ Constraints hg for forbidden
state-actions

All RL techniques can be applied to an
MPC scheme. RL adjusts the MPC
parameters to minimize the closed-loop
cost J (7o)

RL: does

moin J (o)

on the real system, where

J(mo) = Erg [kaL(skvak)

k=0

|

S. Gros (NTNU) Intro to RL-MPC

August 2021
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RL and MPC

Parametrized MPC:

N—1
ns1in YN To (sn) + Z v*Le (sk,ax)
3 k=0

s.t. Sk+1 = fe (Sk7 ak)
hg (sk,ax) <0

yields g, Vo, and Qo

4

@ Parametrize all functions

@ Constraints hg for forbidden
state-actions

All RL techniques can be applied to an
MPC scheme. RL adjusts the MPC
parameters to minimize the closed-loop
cost J (7o)

S. Gros (NTNU)

Intro to RL-MPC

RL: does

mein J (o)

on the real system, where

J(me) = Enr, [Z 'YkL(Skvak):|

k=0

Good starting point: (MPC as usual)

@ Lg, = L, hg, selected according to
the desired constraints

@ fg, selected from SYSID

but departing from that can help!!

August 2021 19/24



RL and MPC

Parametrized MPC:

N—1
ns1in N Te (sN)—i-Z’ykLa (sk, ax)
3 k=0

s.t. Sk+1 = fe (Sk7 ak)
hg (sk,ax) <0

yields g, Vo, and Qo

4

@ Parametrize all functions

@ Constraints hg for forbidden
state-actions

All RL techniques can be applied to an
MPC scheme. RL adjusts the MPC
parameters to minimize the closed-loop
cost J (7o)

S. Gros (NTNU)

RL: does

mein J (o)

on the real system, where

J(me) = Enr, [Z 'YkL(Skvak):|

k=0

Good starting point: (MPC as usual)

@ Lg, = L, hg, selected according to
the desired constraints

@ fg, selected from SYSID

but departing from that can help!!

Note: MPC model tuning via RL #
SYSID J

Intro to RL-MPC

August 2021 19/24



RL methods - Reminder

Form function approximators:
Qo (s,a), Vo (s), me(s)

via ad-hoc parametrization

=] = = = E DA
S. Gros (NTNU) Intro to RL-MPC



RL methods - Reminder @ Q-learning methods adjust 6 to get

Qo (s,a) = Q« (s,a)

Form function approximators: Yields policy:
Qo (s,a), Vo (s), mo(s) o (s) = amain Qo (s,a) ~ amain Q. (s,a) = m, (s)
via ad-hoc parametrization E.g. basic Q-learning uses:

6 +— 0 + adVe Qo (sk, ax)
0 = L(sk,ax) + Vo (sk+1) — Qo (sk, ax)
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RL methods - Reminder @ Q-learning methods adjust 6 to get

Qo (s,a) ~ Q« (s,a)

Form function approximators: Yields policy:
Qo (s,a), Vo (s), me (s) 7o (s) = amain Qo (s,a) =~ amain Q« (s,a) = 74 (s)
via ad-hoc parametrization E.g. basic Q-learning uses:

0+ 0+ adVeQe (Sk,ak)
0 = L(sk,ak) +vVe (skr1) — Qo (s, ax)

@ Policy gradient methods adjust 6 to get
Ve J(ﬂ'e) =0

yields policy g (x) ~ 7. (x) directly.
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RL methods - Reminder @ Q-learning methods adjust 6 to get

Qo (s,a) = Q« (s,a)

Form function approximators: Yields policy:
Qo (s,a), Vo (s), mo(s) o (s) = amain Qo (s,a) ~ amain Q. (s,a) = m, (s)
via ad-hoc parametrization E.g. basic Q-learning uses:

0 <+ 0+ adVeQe (s, ax)
8 = L(sk,ax) + v Ve (sk+1) — Qo (Sk, ax)

@ Policy gradient methods adjust 6 to get
Ve J(ﬂ'e) =0
yields policy 7o (x) ~ 7, (x) directly. E.g.

Vo J(ﬂ'g) =E [Veﬂ‘e VaQ‘lrg]

@ Derivative-free methods

> Build a surrogate of J(7g)
» Optimize over that model
» Difficult over large parameter spaces
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RL methods - Reminder @ Q-learning methods adjust 6 to get

Qo (s,a) = Q« (s,a)

Form function approximators: Yields policy:
Qo (s,a), Vo (s), mo(s) o (s) = amain Qo (s,a) ~ amain Q. (s,a) = m, (s)
via ad-hoc parametrization E.g. basic Q-learning uses:

0 <+ 0+ adVeQe (s, ax)

Derivative-based methods 0 = L(sk,ak) + 7 Vo (sk+1) — Qo (sk, ak)

require Qo, Vo, ™o and
computing their sensitivities
ie. Voor 2
(I e e or 89) V@ J(ﬂ.e) =0

@ Policy gradient methods adjust 6 to get

yields policy 7o (x) ~ 7, (x) directly. E.g.

Vo J(ﬂ'g) =E [Veﬂ‘e VaQ‘n’g]

@ Derivative-free methods

> Build a surrogate of J(7g)
» Optimize over that model
» Difficult over large parameter spaces
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RL methods - Reminder

Form function approximators:
Qo (s,a), Vo (s), me(s)

via ad-hoc parametrization
v

Derivative-based methods
require Qo, Vo, ™o and
computing their sensitivities
(i.e. Vo or 2)

In the RL-MPC context, Qg,
Vi, e are coming from an
MPC scheme, typically cast
as Nonlinear Program. What

about the sensitivities?

S. Gros (NTNU)

@ Q-learning methods adjust 0 to get
Qo (s,2) ~ Qi (s, a)
Yields policy:

7o (s) = amin Qp (s,a) =~ amin Q. (s,a) = m, (s)

E.g. basic Q-learning uses:
0 <+ 0+ adVeQe (s, ax)
§ = L (sk,ax) + v Vo (sk+1) — Qo (sk, ax)

@ Policy gradient methods adjust 6 to get
Vo J(mg) =0
yields policy 7o (x) ~ 7, (x) directly. E.g.
Vo J(me) =E[Vome VaQn,)

@ Derivative-free methods

> Build a surrogate of J(7g)
» Optimize over that model
» Difficult over large parameter spaces
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Implementation of Basic RL Algorithms for MPC

MPC is a Nonlinear Program
Optimal value
Vo (s) = min & (w,s,0)

st. g(w,s,0)=0
h(w,s,0) <0

Optimal solution
wp (s) =amin & (w,s,0)
w

S.t.
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Implementation of Basic RL Algorithms for MPC

MPC is a Nonlinear Program
Optimal value
Vo (s) = min & (w,s,0)

st. g(w,s,0)=0
h(w,s,0) <0

Optimal solution
wp (s) =amin & (w,s,0)
w

S.t.

How to obtain:

Vo Ve, VoQo, Vows

?
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Implementation of Basic RL Algorithms for MPC

MPC is a Nonlinear Program
Optimal value
Ve (s) = mvjn ® (w,s,0)
st. g(w,s,0)=0
h(w,s,0) <0
Optimal solution
wp (s) = amin & (w,s,0)

S.t.

How to obtain:

Vo Ve, VoQo, Vows

?

S. Gros (NTNU)

NLP solution satisfies (KKT conditions)

Vvl

r= g =0
hip;
h<0,p>0

where Lagrange function is
L=d+Ag+p'h

and A\, p are “auxiliary variables” (multipliers)
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Implementation of Basic RL Algorithms for MPC
NLP solution satisfies (KKT conditions)

MPC is a Nonlinear Program

Optimal value

Vo (s) = min & (w,s,0)
st. g(w,s,0)=0
h(w,s,0) <0

Optimal solution
wp (s) =amin & (w,s,0)
w

S.t.

How to obtain:

Vo Ve, VoQo, Vows

?
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Vvl

r= g =0
hip;
h<0,p>0

where Lagrange function is

L=d+A"g+pu'h

and A\, p are “auxiliary variables” (multipliers)

Solve NLP for x, 6, provides w, A, u, then:

Vo Ve (s) = VoL (W,s,0,, )

is a simple function evaluation
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Implementation of Basic RL Algorithms for MPC

MPC is a Nonlinear Program
Optimal value
Ve (s) = m“in ® (w,s,0)
st. g(w,s,0)=0
h(w,s,0) <0
Optimal solution
wp (s) = amin & (w,s,0)

S.t.

How to obtain:

Vo Ve, VoQo, Vows

?
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NLP solution satisfies (KKT conditions)

Vvl

r= g =0
hip;
h<0,p>0

where Lagrange function is
L=d+A"g+pu'h

and A\, p are “auxiliary variables” (multipliers)

Solve NLP for s, 8, provides w, A, p, then:

owg O tor

00 ~  ow 06

=il S .
already built in the solver, exists if

LICQ / SOSC

@ Or
with =
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Implementation of Basic RL Algorithms for MPC

MPC is a Nonlinear Program
Optimal value
Ve (s) = m“in ® (w,s,0)
st. g(w,s,0)=0
h(w,s,0) <0
Optimal solution
wp (s) = amin & (w,s,0)

S.t.

How to obtain:

Vo Ve, VoQo, Vows

?
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NLP solution satisfies (KKT conditions)

Vvl

r= g =0
hip;
h<0,p>0

where Lagrange function is
L=d+Ag+p'h

and A\, p are “auxiliary variables” (multipliers)

Sensitivities do not exist for all s, a.
Does that matter?
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Implementation of Basic RL Algorithms for MPC
NLP solution satisfies (KKT conditions)

MPC is a Nonlinear Program

Optimal value

Vo (s) = min & (w,s,0)
st. g(w,s,0)=0
h(w,s,0) <0

Optimal solution
wp (s) =amin & (w,s,0)
w

S.t.

How to obtain:

Vo Ve, VoQo, Vows

?
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VLl

r= g =0
hip;
h<0,p>0

where Lagrange function is

and A, p are “auxiliary variables” (multipliers)

L=d+A"g+pu'h

Sensitivities do not exist for all s, a.

In general no: they exist almost everywhere, and
always appear inside E[-]. If the MDP has
well-defined underlying densities, then we are

Does that matter?

good.
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Model-based RL methods vs. RL-MPC: Data flow

Common setup for “classic RL:

@ Build statistical model of the
real system

@ Generate simulated samples

@ Feed RL with real and
simulated samples

Remarks:
High Fidelity
Model

@ Simulated data much cheaper
than real ones, most data will
Simulated be simulated ones

Samples @ With mostly simulated data:

> =sequivalent to
approximate DP

> policy optimality relies
on model quality
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Model-based RL methods vs. RL-MPC: Data flow
Basic setup for “RL-MPC”:

@ Build MPC model of the real
system

@ Pass it to MPC scheme
@ Feed RL with real samples

Remarks:
@ RL tunes MPC for real
system

@ MPC model may be
“detuned” from SYSID

version

@ Real data are expensive...
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Model-based RL methods vs. RL-MPC: Data flow

“Mixed” setup for “RL-MPC”:

@ Build MPC model of the real
system

@ MPC model is typically
“simple”

@ Build statistical model of the
real system

High Fidelity
Model

@ Generate simulated samples

@ Feed RL with real and
Simulated simulated samples

Samples  Remarks:
@ Simple MPC model
@ Complex simulation model

@ MPC model may be
“detuned” from SYSID

version
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What did we discuss?

Learning-based MPC: we accept that the MPC model will never be “right”, seek
closed-loop performance rather than model fitting

MPC serves as a policy & value functions approximation. This is a classic object in
RL, but MPC is highly structured, while classic approximations in RL are not.

Modifying the MPC cost and constraints allows MPC to be close-to optimality
despite inaccurate model

... but it is also formally justified: in principle it allows to capture the optimal
policy and value functions with a wrong model

We discussed how to implement RL methods on MPC (basics)

There is still room for high-fidelity modelling, can be used to produce virtual
training data
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So what's next?

@ Stability of MPC under learning?

@ Safety of MPC under learning?

@ General MPC stability theory for deterministic, undiscounted problems. How to
extend it to MDPs?

@ Some more results:

Bias in policy gradient methods with constrained policies
Combining RL and SYSID?

RL and MPC for mixed-integer problems?

RL and MPC with state observers?

RL and MPC with strongly economic policies?

RL for tuning the ‘“meta” MPC parameters?

vyVVvyVYyVvYVvYy
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