Set Based Computing Methods in Optimization and Control

Boris Houska

ShanghaiTech University

Overview

- Set arithmetics
- Robust model predictive control

	Complexity	
Notation:		
• Basis set: $\mathbb{E} \subseteq \mathbb{R}^m$		
• Coefficients: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$		
a Sot: $A = \mathbb{E} + b$		
• Set. $A * \mathbb{E} + 0$		

	Complexity	
Notation:		
• Basis set: $\mathbb{E} \subseteq \mathbb{R}^m$		
• Coefficients: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$		
• Sot: $A \neq \mathbb{R} + b$		
• Set. $A * \mathbb{E} + 0$		

Intervals:

 $A \in \mathbb{R}^{n \times n}$, A diagonal

 $\mathbb{E} = \{ x \in \mathbb{R}^n \mid \|x\|_{\infty} \le 1 \}$

Complexity

Notation:	Intervals	$\mathbf{O}(n)$
• Basis set: $\mathbb{E} \subseteq \mathbb{R}^m$	Zono-/ Polytopes	$\mathbf{O}(nm)$
• Coefficients: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$	Ellipsoids	$\mathbf{O}(n^2)$
e Set: A + ℝ + b	Polynomial set	$\mathbf{O}(n\ell^q)$
• Set. $A * \blacksquare \mp 0$		$\mathbf{O}(N^n)$

Intervals:

- $A \in \mathbb{R}^{n \times n}$, A diagonal
- $\mathbb{E} = \{x \in \mathbb{R}^n \ | \ \|x\|_\infty \leq 1\}$

Complexity

Notation:	Intervals	$\mathbf{O}(n)$
$ullet$ Basis set: $\mathbb{E}\subseteq \mathbb{R}^m$	Zono-/ Polytopes	$\mathbf{O}(nm)$
• Coefficients: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$	Ellipsoids	$\mathbf{O}(n^2)$
• Set: $4 \times \mathbb{F} \perp b$	Polynomial set	$\mathbf{O}(n\ell^q)$
	Grid	$\mathbf{O}(N^n)$

Zonotopes:

$$\begin{split} &A \in \mathbb{R}^{n \times m} \\ &\mathbb{E} = \{ x \in \mathbb{R}^m \ | \ \| x \|_\infty \leq 1 \} \end{split}$$

Complexity

Notation:	Intervals	$\mathbf{O}(n)$
$ullet$ Basis set: $\mathbb{E}\subseteq\mathbb{R}^m$	Zono-/ Polytopes	$\mathbf{O}(nm)$
• Coefficients: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$	Ellipsoids	$\mathbf{O}(n^2)$
• Set: $A * \mathbb{E} + b$	Polynomial set	$\mathbf{O}(n\ell^q)$
		$\mathbf{O}(N^n)$

Polytopes:

$A \in \mathbb{R}^{n \times m}$	
$\mathbb{E} = \left\{ x \in \mathbb{R}^m_+ \right.$	$\mid \sum_{i} x_i = 1 \}$

Complexity

Notation:	Intervals	$\mathbf{O}(n)$
• Basis set: $\mathbb{E} \subseteq \mathbb{R}^m$	Zono-/ Polytopes	$\mathbf{O}(nm)$
• Coefficients: $A \in \mathbb{R}^{n imes m}$, $b \in \mathbb{R}^n$	Ellipsoids	$\mathbf{O}(n^2)$
• Set: $A \times \mathbb{F} + b$	Polynomial set	$\mathbf{O}(n\ell^q)$
• Set. $A * E \neq 0$		$\mathbf{O}(N^n)$

Ellipsoids:

- $A \in \mathbb{R}^{n \times n}$, A sym. & p.s.d.
- $\mathbb{E} = \{ x \in \mathbb{R}^n \mid \|x\|_2 \le 1 \}$

Complexity

Notation:	Intervals	$\mathbf{O}(n)$
• Basis set: $\mathbb{E} \subseteq \mathbb{R}^m$	Zono-/ Polytopes	$\mathbf{O}(nm)$
• Coefficients: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$	Ellipsoids	$\mathbf{O}(n^2)$
• Set: $A * \mathbb{F} \perp h$	Polynomial set	$\mathbf{O}(n\ell^q)$
• Set. $A \neq \Box = 0$		$\mathbf{O}(N^n)$

Polynomial Set:

 $A \in \mathbb{R}^{n \times \binom{\ell+q}{\ell}}$ $\mathbb{E} = \left\{ \left(1, \dots, x_{\ell}^{q}\right)^{\mathsf{T}} \middle| x \in [-1, 1]^{\ell} \right\}$

Complexity

Notation:	Intervals	$\mathbf{O}(n)$
• Basis set: $\mathbb{E} \subseteq \mathbb{R}^m$	Zono-/ Polytopes	$\mathbf{O}(nm)$
• Coefficients: $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^{n}$	Ellipsoids	$\mathbf{O}(n^2)$
a Set: $A * \mathbb{R} + b$	Polynomial set	$\mathbf{O}(n\ell^q)$
• Set. $\mathbf{A} \neq \mathbf{E} \neq 0$	Grid	$\mathbf{O}(N^n)$

Notation:

• Library of atom operations: $L = \{+, -, *, \sin, \cos, \log, \ldots\}$

• A function f is called factorable over L, if

 $f = \varphi_N \circ \ldots \circ \varphi_1$ with $[\varphi_i]_{\text{last}} \in L$.

Example:

 $a_1 = x_1 * x_2$ $a_2 = \sin(a_1)$ $a_3 = \cos(x_1)$ $f(x) = a_2 + a_3$

$$f(x) = \sin(x_1 * x_2) + \cos(x_1)$$

Notation:

- Library of atom operations: $L = \{+, -, *, \sin, \cos, \log, \ldots\}$
- A function f is called factorable over L, if

$$f = \varphi_N \circ \ldots \circ \varphi_1$$
 with $[\varphi_i]_{\text{last}} \in L$.

Example:

 $a_1 = x_1 * x_2$ $a_2 = \sin(a_1)$ $a_3 = \cos(x_1)$ $f(x) = a_2 + a_3$

$$f(x) = \sin(x_1 * x_2) + \cos(x_1)$$

Notation:

- Library of atom operations: $L = \{+, -, *, \sin, \cos, \log, \ldots\}$
- A function f is called factorable over L, if

$$f = \varphi_N \circ \ldots \circ \varphi_1$$
 with $[\varphi_i]_{\text{last}} \in L$.

Example:

$$a_1 = x_1 * x_2$$
$$a_2 = \sin(a_1)$$
$$a_3 = \cos(x_1)$$
$$f(x) = a_2 + a_3$$

 $f(x) = \sin(x_1 * x_2) + \cos(x_1)$

Notation:

- Library of atom operations: $L = \{+, -, *, \sin, \cos, \log, \ldots\}$
- A function f is called factorable over L, if

$$f = \varphi_N \circ \ldots \circ \varphi_1$$
 with $[\varphi_i]_{\text{last}} \in L$.

Example:

$$a_1 = x_1 * x_2$$
$$a_2 = \sin(a_1)$$
$$a_3 = \cos(x_1)$$
$$f(x) = a_2 + a_3$$

$$f(x) = \sin(x_1 * x_2) + \cos(x_1)$$

Notation:

- Library of atom operations: $L = \{+, -, *, \sin, \cos, \log, \ldots\}$
- A function f is called factorable over L, if

$$f = \varphi_N \circ \ldots \circ \varphi_1$$
 with $[\varphi_i]_{\text{last}} \in L$.

Example:

$$f(x) = \sin(x_1 * x_2) + \cos(x_1)$$

Set arithmetics X Φ $\Phi(X)$

$\bullet\,$ Let f be a given factorable function, \mathbbm{E} basis set

• Goal: find enclosure Φ such that

$$\{f(x) \mid x \in X\} \subseteq \Phi(X)$$

with

 $X = A * \mathbb{E} + b$ and $\Phi(X) = C * \mathbb{E} + d$

Set arithmetics X Φ $\Phi(X)$

- $\bullet\,$ Let f be a given factorable function, \mathbbm{E} basis set
- ${\, \bullet \, }$ Goal: find enclosure Φ such that

$$\{f(x)\mid x\in X\}\subseteq \Phi(X)$$

with

 $X = A * \mathbb{E} + b$ and $\Phi(X) = C * \mathbb{E} + d$

Set arithmetics X Φ $\Phi(X)$

- $\bullet\,$ Let f be a given factorable function, \mathbbm{E} basis set
- ${\, \bullet \, }$ Goal: find enclosure Φ such that

$$\{f(x)\mid x\in X\}\subseteq \Phi(X)$$

with

$$X = A * \mathbb{E} + b$$
 and $\Phi(X) = C * \mathbb{E} + d$

Construction of set arithmetics

1. Construct enclosures Φ_i of all atom functions $\varphi_i \in L$

$\{\varphi_i(x) \mid x \in X\} \subseteq \Phi_i(X)$

2. Enclosure $f = \varphi_N \circ \ldots \circ \varphi_1$ given by $\Phi = \Phi_N \circ \ldots \circ \Phi_1$

Remark: For larger N overestimation might grow (wrapping)

Construction of set arithmetics

1. Construct enclosures Φ_i of all atom functions $\varphi_i \in L$

 $\{\varphi_i(x) \mid x \in X\} \subseteq \Phi_i(X)$

2. Enclosure $f = \varphi_N \circ \ldots \circ \varphi_1$ given by $\Phi = \Phi_N \circ \ldots \circ \Phi_1$

Remark: For larger N overestimation might grow (wrapping)

Construction of set arithmetics

1. Construct enclosures Φ_i of all atom functions $\varphi_i \in L$

$$\{\varphi_i(x) \mid x \in X\} \subseteq \Phi_i(X)$$

2. Enclosure
$$f = \varphi_N \circ \ldots \circ \varphi_1$$
 given by $\Phi = \Phi_N \circ \ldots \circ \Phi_1$

Remark: For larger N overestimation might grow (wrapping)

Sets	Complexity	Software
Intervals	$\mathbf{O}(n)$	FILIB++, PROFIL
Ellipsoids	$\mathbf{O}(n^2)$	Ellips. Toolbox, MC++, CRONOS
Zonotopes	$\mathbf{O}(nm)$	INTLAB
Polytopes	$\mathbf{O}(nm)$	BARON, ANTIGONE, GLOMIQO, MPT3
Taylor models	$\mathbf{O}(n\ell^q)$	COSY INFINITY, MC++, CRONOS
Chebychev models	$\mathbf{O}(n\ell^q)$	CHEBFUN, MC++

R.E. Moore. Interval Arithmetics, 1966

G.P. McCormick. Computability of global solutions to factorable nonconvex programs, 1976

Sets	Complexity	Software
Intervals	$\mathbf{O}(n)$	FILIB++, PROFIL
Ellipsoids	$\mathbf{O}(n^2)$	Ellips. Toolbox, MC++, CRONOS
Zonotopes	$\mathbf{O}(nm)$	INTLAB
Polytopes	$\mathbf{O}(nm)$	BARON, ANTIGONE, GLOMIQO, MPT3
Taylor models	$\mathbf{O}(n\ell^q)$	COSY INFINITY, MC++, CRONOS
Chebychev models	$\mathbf{O}(n\ell^q)$	CHEBFUN, MC++

A.B. Kurzhanski, P. Varaiya. Reachability analysis for uncertain systems—the ellipsoidal technique, 2002

M.E. Villanueva et.al.. Ellipsoidal arithmetic for multivariate systems, 2015

Sets	Complexity	Software
Intervals	$\mathbf{O}(n)$	FILIB++, PROFIL
Ellipsoids	$\mathbf{O}(n^2)$	Ellips. Toolbox, MC++, CRONOS
Zonotopes	$\mathbf{O}(nm)$	INTLAB
Polytopes	$\mathbf{O}(nm)$	BARON, ANTIGONE, GLOMIQO, MPT3
Taylor models	$\mathbf{O}(n\ell^q)$	COSY INFINITY, MC++, CRONOS
Chebychev models	$\mathbf{O}(n\ell^q)$	CHEBFUN, MC++

M. Althoff, B.H. Krogh. Zonotope bundles for the efficient computation of reachable sets, 2011

J.K. Scott. Constrained zonotopes: A new tool for set-based estimation and fault detection, 2016

Sets	Complexity	Software
Intervals	$\mathbf{O}(n)$	FILIB++, PROFIL
Ellipsoids	$\mathbf{O}(n^2)$	Ellips. Toolbox, MC++, CRONOS
Zonotopes	$\mathbf{O}(nm)$	INTLAB
Polytopes	$\mathbf{O}(nm)$	BARON, ANTIGONE, GLOMIQO, MPT3
Taylor models	$\mathbf{O}(n\ell^q)$	COSY INFINITY, MC++, CRONOS
Chebychev models	$\mathbf{O}(n\ell^q)$	CHEBFUN, MC++

M. Tawarmalani, N.V. Sahinidis. A polyhedral branch-and-cut approach to global optimization, 2005

R. Misener, C.A. Floudas. ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear equation, 2014

Sets	Complexity	Software
Intervals	$\mathbf{O}(n)$	FILIB++, PROFIL
Ellipsoids	$\mathbf{O}(n^2)$	Ellips. Toolbox, MC++, CRONOS
Zonotopes	$\mathbf{O}(nm)$	INTLAB
Polytopes	$\mathbf{O}(nm)$	BARON, ANTIGONE, GLOMIQO, MPT3
Taylor models	$\mathbf{O}(n\ell^q)$	COSY INFINITY, MC++, CRONOS
Chebychev models	$\mathbf{O}(n\ell^q)$	CHEBFUN, MC++

M. Berz. From Taylor series to Taylor models, 1997

A. Bompadre et.al.. Convergence analysis of Taylor and McCormick-Taylor models, 2013

Sets	Complexity	Software
Intervals	$\mathbf{O}(n)$	FILIB++, PROFIL
Ellipsoids	$\mathbf{O}(n^2)$	Ellips. Toolbox, MC++, CRONOS
Zonotopes	$\mathbf{O}(nm)$	INTLAB
Polytopes	$\mathbf{O}(nm)$	BARON, ANTIGONE, GLOMIQO, MPT3
Taylor models	$\mathbf{O}(n\ell^q)$	COSY INFINITY, MC++, CRONOS
Chebychev models	$\mathbf{O}(n\ell^q)$	CHEBFUN, MC++

A. Townsend, L.N. Trefethen. An extension of Chebfun to two dimensions, 2013

J. Rajyaguru et.al.., Chebyshev model arithmetic for factorable functions, 2017

Two-Reaction Model of Anaerobic Digestion

Mass-Balance Equations:

$$\begin{split} \dot{X}_1 &= & (\mu_1(S_1) - \alpha D) X_1 \\ \dot{X}_2 &= & (\mu_2(S_2) - \alpha D) X_2 \\ \dot{S}_1 &= & D(S_1^{\text{in}} - S_1) - k_1 \mu_1(S_1) X_1 \\ \dot{S}_2 &= & D(S_2^{\text{in}} - S_2) + k_2 \mu_1(S_1) X_1 \\ &- k_3 \mu_2(S_2) X_2 \\ \dot{Z} &= & D(Z^{\text{in}} - Z) \\ \dot{C} &= & D(C^{\text{in}} - C) + k_4 \mu_1(S_1) X_1 \\ &+ k_5 \mu_2(S_2) X_2 - q_{\text{CO}_2} \end{split}$$

Biomass specific growth rates:

$$\begin{array}{ll} \mu_1(S_1) & := \bar{\mu}_1 \frac{S_1}{S_1 + K_{S_1}} \\ \mu_2(S_2) & := \bar{\mu}_2 \frac{S_2}{S_2 + K_{S_2} + S_2^2 / K_{I_2}} \end{array}$$

Gas-liquid mass transfer:

$$\begin{split} q_{\rm CO_2} &:= k_{\rm L} a (C + S_2 - Z - K_{\rm H} P_{\rm CO_2}) \\ P_{\rm CO_2} &:= \frac{\phi_{\rm CO_2} - \sqrt{\phi_{\rm CO_2}^2 - 4K_{\rm H} P_{\rm t} (C + S_2 - Z)}}{2K_{\rm H}} \\ \phi_{\rm CO_2} &:= C + S_2 - Z + K_{\rm H} P_{\rm t} \\ &+ \frac{k_6}{k_{\rm I,a}} \mu_2(S_2) X_2 \end{split}$$

Goal: Compute reachable sets for uncertain initial conditions

Taylor models with interval / ellipsoidal remainder

Taylor models with $q \ge 4$ + Ellipsoids = stable set integrator

B. Houska, M.E. Villanueva, B. Chachuat. Stable Set-Valued Integration of Nonlinear Dyn. using Affine Set Parameterizations, 2015

Overview

- Set arithmetics
- Robust model predictive control

Overview

- Set arithmetics
- Robust model predictive control

Certainty equivalent MPC:

- minimize distance to dotted line
- subject to: system dynamics and constraints

Certainty equivalent MPC:

- minimize distance to dotted line
- subject to: system dynamics and constraints

Repeat:

- wait for new measurement
- re-optimize the trajectory

Problem:

- certainty equivalent prediction is optimistic
- infeasible (worst-case) scenarios possible

What is Robust MPC?

Main idea:

- take all possible uncertainty scenarios into account
- important: we can react to uncertainties

Main idea:

- take all possible uncertainty scenarios into account
- important: we can react to uncertainties

Main idea:

- take all possible uncertainty scenarios into account
- important: we can react to uncertainties

Main idea:

- take all possible uncertainty scenarios into account
- important: we can react to uncertainties

Problem:

- exponentially exploding amount of scenarios possible
- much more expensive than certainty equivalent MPC

Tube-based Robust MPC [Langson'04, Rakovic'05,...]

Idea:

- optimize set-valued tube that encloses all possible scenarios
- no exponential scenario tree, but set enclosures needed

Tube-based Robust MPC [Langson'04, Rakovic'05,...]

Idea:

- optimize set-valued tube that encloses all possible scenarios
- no exponential scenario tree, but set enclosures needed

Notation: closed-loop system

 $\dot{x}(t) = f(x(t), \mu(t, x(t)), w(t))$

Notation: constraints

 $\mu(t,x(t))\in \mathbb{U}\,,\ x(t)\in \mathbb{X}\,,\ w(t)\in \mathbb{W}\quad \text{(all compact sets)}$

Notation: set-valued tubes

$$X(t, x_0, \mu) = \left\{ x_t \in \mathbb{R}^{n_x} \middle| \begin{array}{l} \exists x \in W_{1,2}^{n_x}, \ \exists w \in L_2^{n_w}: \ \forall \tau \in [0, t], \\ \dot{x}(\tau) = f(x(\tau), \mu(\tau, x(\tau)), w(\tau)) \\ x(0) = x_0, \ x(t) = x_t \\ w(\tau) \in \mathbb{W} \end{array} \right\}$$

Mathematical Formulation of Robust MPC

Optimize over future feedback policy μ :

$$\begin{split} &\inf_{\mu:\mathbb{R}\times\mathbb{X}\to\mathbb{U}} \; \int_0^T \ell(X(t,x_0,\mu)) \,\mathrm{d}t + \mathcal{M}\left(X(T,x_0,\mu)\right) \\ &\text{s.t.} \quad X(t,x_0,\mu) \subseteq \mathbb{X} \quad \text{for all} \; t \in [0,T] \;. \end{split}$$

- ℓ denotes scalar performance criterion
- ${\scriptstyle \bullet \ } {\cal M}$ denotes terminal cost
- x_0 denotes current measurement
- $\bullet\ T$ denotes finite prediction horizon

Differential Inequalities

Scalar case:

• uncertain scalar ODE without controls:

$$\dot{x}(t) = f(x(t), w(t))$$
 with $x(0) = x_0$

Differential Inequalities

Scalar case:

 ${\ \bullet \ }$ Interval $X(t) = \left[x^{\rm L}(t), x^{\rm U}(t) \right]$ is robust forward invariant if

$$\begin{aligned} \dot{x}^{\mathsf{L}}(t) &\leq \min_{w \in \mathbb{W}} f(x^{\mathsf{L}}(t), w) \\ \dot{x}^{\mathsf{U}}(t) &\geq \max_{w \in \mathbb{W}} f(x^{\mathsf{U}}(t), w) \end{aligned} (Differential Inequalities)$$

Min-Max Differential Inequalities

Scalar case with controls:

 $\bullet~ \mbox{Interval}~ X(t) = \left[x^{\rm L}(t), x^{\rm U}(t) \right]$ is robust forward invariant if

$$\begin{aligned} \dot{x}^{\mathsf{L}}(t) &\leq \max_{u \in \mathbb{U}} \min_{w \in \mathbb{W}} f(x^{\mathsf{L}}(t), u, w) \\ \dot{x}^{\mathsf{U}}(t) &\geq \min_{u \in \mathbb{U}} \max_{w \in \mathbb{W}} f(x^{\mathsf{U}}(t), u, w) \\ x^{\mathsf{L}}(t) &\leq x^{\mathsf{U}}(t) \end{aligned}$$

Generalized Differential Inequalities

General case:

• The state vector x(t) may have more than one component,

$$\dot{x}(t) = f(x(t), u(t), w(t)) \quad \text{with} \quad x(0) = x_0$$

Generalized Differential Inequalities

Definition:

• The support function of a compact set \boldsymbol{X} is denoted by

$$V[X](c) = \max_{x \in X} c^{\mathsf{T}} x$$

Generalized Differential Inequalities

Theorem [Villanueva et al., 2017]:

• If f Lipschitz, $X(t)\subseteq \mathbb{X}$ convex and compact, and

$$\dot{V}[X(t)](c) \ge \min_{u \in \mathbb{U}} \max_{x, w} \begin{cases} c^{\mathsf{T}} f(x, u, w) & x \in X(t) \\ c^{\mathsf{T}} x = V[X(t)](c) \\ w \in \mathbb{W} \end{cases}$$

for a.e. (t,c), then X(t) is a robust forward invariant tube.

M.E. Villanueva et.al., Robust MPC via min-max differential inequalities. Automatica, 2017.

Application to Robust MPC

Conservative reformulation:

$$\begin{split} \inf_{X} & \int_{t}^{t+T} \ell(X(\tau)) \, \mathrm{d}\tau \\ & \text{s.t.} \quad \begin{cases} X(t) = \{\hat{x}_t\}, \\ X(\tau) \subseteq \mathbb{X} \\ \dot{V}[X(t)](c) \geq \min_{u \in \mathbb{U}} \max_{x,w} \begin{cases} c^\mathsf{T} f(x, u, w) & x \in X(t) \\ c^\mathsf{T} x = V[X(t)](c) \\ w \in \mathbb{W} \\ \text{optional terminal constraints} \end{cases} \end{cases} \end{split}$$

• Parameterize set X(t); not the feedback law μ !

Example: Ellipsoidal Parameterization

Affine tube parameterization:

 $X(t) = Q_x(t)^{\frac{1}{2}} \mathbb{E} + q_x(t) \quad \text{with} \quad \mathbb{E} = \{ x \mid ||x||_2 \le 1 \}$

Support function:

$$V[X(t)](c) = \sqrt{c^{\mathsf{T}}Q_x(t)c} + q_x(t)$$

Assumption: control and uncertainty sets are ellipsoids

$$\mathbb{U} = Q_u(t)^{\frac{1}{2}} \mathbb{E} + q_u(t) \quad \text{and} \quad \mathbb{W} = Q_w(t)^{\frac{1}{2}} \mathbb{E} + q_w(t)$$

... and substitute all in the Min-Max Differential Inequality (DI)

Example: Ellipsoidal Parameterization

Affine tube parameterization:

 $X(t) = Q_x(t)^{\frac{1}{2}} \mathbb{E} + q_x(t) \quad \text{with} \quad \mathbb{E} = \{ x \mid ||x||_2 \le 1 \}$

Support function:

$$V[X(t)](c) = \sqrt{c^{\mathsf{T}}Q_x(t)c} + q_x(t)$$

Assumption: control and uncertainty sets are ellipsoids

$$\mathbb{U} = Q_u(t)^{\frac{1}{2}} \mathbb{E} + q_u(t) \quad \text{and} \quad \mathbb{W} = Q_w(t)^{\frac{1}{2}} \mathbb{E} + q_w(t)$$

... and substitute all in the Min-Max Differential Inequality (DI)

Example: Ellipsoidal Parameterization

Affine tube parameterization:

 $X(t) = Q_x(t)^{\frac{1}{2}} \mathbb{E} + q_x(t) \quad \text{with} \quad \mathbb{E} = \{ x \mid ||x||_2 \le 1 \}$

Support function:

$$V[X(t)](c) = \sqrt{c^{\mathsf{T}}Q_x(t)c} + q_x(t)$$

Assumption: control and uncertainty sets are ellipsoids

$$\mathbb{U} = Q_u(t)^{\frac{1}{2}} \mathbb{E} + q_u(t) \quad \text{and} \quad \mathbb{W} = Q_w(t)^{\frac{1}{2}} \mathbb{E} + q_w(t)$$

... and substitute all in the Min-Max Differential Inequality (DI)

Application of Kurzhanski's ellipsoidal calculus to Min-Max DI

Dynamic system:

 $\dot{x} = f(x,u,w) = Ax + Bu + Cw + \text{nonlinear terms}$

Center of the ellipsoid $X(t) = Q_x(t)^{\frac{1}{2}} \mathbb{E} + q_x(t)$ (with $v \in \mathbb{R}^{n_u}$):

 $\dot{q}_x = f(q_x, v, q_w)$

Parameteric ellipsoidal tube (with orthogonal S and $\lambda > 0, \gamma > 0$)

$$\begin{split} \dot{Q}_x &= AQ_x + Q_x A^\mathsf{T} + Q^{\frac{1}{2}} SR[v,\gamma] B^\mathsf{T} + BR[v,\gamma] S^\mathsf{T} Q^{\frac{1}{2}} \\ &+ \frac{1}{\lambda} Q_x + \lambda C Q_w C^\mathsf{T} + \text{nonlinear terms} \end{split}$$

where

$$R[v,\gamma] = (1-\gamma)Q_u + (1-\gamma^{-1})[v-q_u][v-q_u]^{\mathsf{T}}$$

Application of Kurzhanski's ellipsoidal calculus to Min-Max DI

Dynamic system:

 $\dot{x} = f(x, u, w) = Ax + Bu + Cw +$ nonlinear terms

Center of the ellipsoid $X(t) = Q_x(t)^{\frac{1}{2}} \mathbb{E} + q_x(t)$ (with $v \in \mathbb{R}^{n_u}$):

$$\dot{q}_x = f(q_x, v, q_w)$$

Parameteric ellipsoidal tube (with orthogonal S and $\lambda > 0, \gamma > 0$)

$$\begin{split} \dot{Q}_x &= AQ_x + Q_x A^\mathsf{T} + Q^{\frac{1}{2}} SR[v,\gamma] B^\mathsf{T} + BR[v,\gamma] S^\mathsf{T} Q^{\frac{1}{2}} \\ &+ \frac{1}{\lambda} Q_x + \lambda C Q_w C^\mathsf{T} + \text{nonlinear terms} \end{split}$$

where

$$R[v,\gamma] = (1-\gamma)Q_u + (1-\gamma^{-1})[v-q_u][v-q_u]^{\mathsf{T}}$$

Application of Kurzhanski's ellipsoidal calculus to Min-Max DI

Dynamic system:

 $\dot{x} = f(x, u, w) = Ax + Bu + Cw +$ nonlinear terms

Center of the ellipsoid $X(t) = Q_x(t)^{\frac{1}{2}} \mathbb{E} + q_x(t)$ (with $v \in \mathbb{R}^{n_u}$):

$$\dot{q}_x = f(q_x, v, q_w)$$

Parameteric ellipsoidal tube (with orthogonal S and $\lambda > 0, \gamma > 0$)

$$\begin{split} \dot{Q}_x &= AQ_x + Q_x A^\mathsf{T} + Q^{\frac{1}{2}} SR[v,\gamma] B^\mathsf{T} + BR[v,\gamma] S^\mathsf{T} Q^{\frac{1}{2}} \\ &+ \frac{1}{\lambda} Q_x + \lambda C Q_w C^\mathsf{T} + \text{nonlinear terms} \end{split}$$

where

$$R[v,\gamma] = (1-\gamma)Q_u + (1-\gamma^{-1})[v-q_u][v-q_u]^{\mathsf{T}}$$

59

Ellipsoidal Tube MPC

Complete reformulation as implemented for a small $\epsilon > 0$:

$$\begin{split} \inf_{q_x,v,Q_x,S,\lambda,\gamma} & \int_t^{t+T} \hat{\ell}(q_x,v,Q_x) \, \mathrm{d}\tau \\ & \left\{ \begin{array}{l} q_x(t) = \{\hat{x}_t\} \,, \, Q_x(t) = \epsilon^2 I \\ & \mathcal{E}(q_x,Q_x) \subseteq \mathbb{X} \\ & \dot{q}_x = f(q_x,v,q_w) \\ & \dot{Q}_x = AQ_x + Q_x A^\mathsf{T} + Q^{\frac{1}{2}} SR[v,\gamma] B^\mathsf{T} + BR[v,\gamma] S^\mathsf{T} Q^{\frac{1}{2}} \\ & \quad + \frac{1}{\lambda} Q_x + \lambda C Q_w C^\mathsf{T} + \text{nonlinear terms} \\ & SS^\mathsf{T} = I \,, \, \lambda \geq \epsilon \mathbf{1} \,, \, \gamma \geq \epsilon \mathbf{1} \\ & \quad + \text{optional terminal constraints / cost} \end{split} \right.$$

Numerical Example

Spring-mass-damper system:

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{pmatrix} = \begin{pmatrix} x_2(t) + w_1(t) \\ -\frac{k_0 \exp\left(-x_1\right)x_1(t)}{M} - \frac{h_d x_2(t)}{M} + \frac{u(t)}{M} + \frac{w_2(t)}{M} \end{pmatrix}$$

Numerical Example

Spring-mass-damper system:

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{pmatrix} = \begin{pmatrix} x_2(t) + w_1(t) \\ -\frac{k_0 \exp\left(-x_1\right)x_1(t)}{M} - \frac{h_d x_2(t)}{M} + \frac{u(t)}{M} + \frac{w_2(t)}{M} \end{pmatrix}$$

Numerical Example

Spring-mass-damper system:

$$\begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{pmatrix} = \begin{pmatrix} x_2(t) + w_1(t) \\ -\frac{k_0 \exp\left(-x_1\right)x_1(t)}{M} - \frac{h_d x_2(t)}{M} + \frac{u(t)}{M} + \frac{w_2(t)}{M} \end{pmatrix}$$

- Many existing software tools for different set arithmetics: Intervals, Ellipsoids, Zonotopes, Polynomial image sets, ...
- Maturity of set integrators improved a lot during last decade:
 - Affine set parameterizations \Rightarrow stable set integrator
 - Can deal with nonlinear system up to approx. 10 states
 - Applications in robust and global optimal control

- Many existing software tools for different set arithmetics: Intervals, Ellipsoids, Zonotopes, Polynomial image sets, ...
- Maturity of set integrators improved a lot during last decade:
 - Affine set parameterizations \Rightarrow stable set integrator
 - $\,\circ\,$ Can deal with nonlinear system up to approx. 10 states
 - Applications in robust and global optimal control

- Many existing software tools for different set arithmetics: Intervals, Ellipsoids, Zonotopes, Polynomial image sets, ...
- Maturity of set integrators improved a lot during last decade:
 - Affine set parameterizations \Rightarrow stable set integrator
 - $\,\circ\,$ Can deal with nonlinear system up to approx. 10 states
 - Applications in robust and global optimal control

- Many existing software tools for different set arithmetics: Intervals, Ellipsoids, Zonotopes, Polynomial image sets, ...
- Maturity of set integrators improved a lot during last decade:
 - Affine set parameterizations \Rightarrow stable set integrator
 - $\, \bullet \,$ Can deal with nonlinear system up to approx. $10 \ {\rm states}$
 - Applications in robust and global optimal control

- Many existing software tools for different set arithmetics: Intervals, Ellipsoids, Zonotopes, Polynomial image sets, ...
- Maturity of set integrators improved a lot during last decade:
 - Affine set parameterizations \Rightarrow stable set integrator
 - $\, \bullet \,$ Can deal with nonlinear system up to approx. $10 \ {\rm states}$
 - Applications in robust and global optimal control

- Different software packages use different storage formats for sets
- Difficult to interface optimization and set-based computing packages
- Difficult to deal with large sets / highly nonlinear systems
- Many methods regard "nonlinearities" as "uncertainties"
- Difficult to deal with large state spaces—curse of dimensionality

- Different software packages use different storage formats for sets
- Difficult to interface optimization and set-based computing packages
- Difficult to deal with large sets / highly nonlinear systems
- Many methods regard "nonlinearities" as "uncertainties"
- Difficult to deal with large state spaces—curse of dimensionality

- Different software packages use different storage formats for sets
- Difficult to interface optimization and set-based computing packages
- Difficult to deal with large sets / highly nonlinear systems
- Many methods regard "nonlinearities" as "uncertainties"
- Difficult to deal with large state spaces—curse of dimensionality

- Different software packages use different storage formats for sets
- Difficult to interface optimization and set-based computing packages
- Difficult to deal with large sets / highly nonlinear systems
- Many methods regard "nonlinearities" as "uncertainties"
- Difficult to deal with large state spaces—curse of dimensionality
Set-Based Computing—Open Problems

- Different software packages use different storage formats for sets
- Difficult to interface optimization and set-based computing packages
- Difficult to deal with large sets / highly nonlinear systems
- Many methods regard "nonlinearities" as "uncertainties"
- Difficult to deal with large state spaces-curse of dimensionality

- Bound all possible scenarios by one single tube
- Tube MPC variants: Rigid-, Homothetic-, Elastic- Tube MPC, ...
- ... based on intervals, zontopes, ellipsoids, and so on ...
- This talk: Min-Max DI leads to conservative reformulation, but parameterizes sets rather than feedback laws

- Bound all possible scenarios by one single tube
- Tube MPC variants: Rigid-, Homothetic-, Elastic- Tube MPC, ...
- ... based on intervals, zontopes, ellipsoids, and so on ...
- This talk: Min-Max DI leads to conservative reformulation, but parameterizes sets rather than feedback laws

- Bound all possible scenarios by one single tube
- Tube MPC variants: Rigid-, Homothetic-, Elastic- Tube MPC, ...
- $\bullet \ \ldots$ based on intervals, zontopes, ellipsoids, and so on \ldots
- This talk: Min-Max DI leads to conservative reformulation, but parameterizes sets rather than feedback laws

- Bound all possible scenarios by one single tube
- Tube MPC variants: Rigid-, Homothetic-, Elastic- Tube MPC, ...
- $\bullet \ \ldots$ based on intervals, zontopes, ellipsoids, and so on \ldots
- This talk: Min-Max DI leads to conservative reformulation, but parameterizes sets rather than feedback laws

- optimizing sets is challenging !
- not clear how to trade-off conservatism versus run-time
- most formulations either very conservative or non-convex
- no generic software packages—often tailored implementation needed
- stability theory is incomplete (non-convex economic MPC)

- optimizing sets is challenging !
- not clear how to trade-off conservatism versus run-time
- most formulations either very conservative or non-convex
- no generic software packages—often tailored implementation needed
- stability theory is incomplete (non-convex economic MPC)

- optimizing sets is challenging !
- not clear how to trade-off conservatism versus run-time
- most formulations either very conservative or non-convex
- no generic software packages—often tailored implementation needed
- stability theory is incomplete (non-convex economic MPC)

- optimizing sets is challenging !
- not clear how to trade-off conservatism versus run-time
- most formulations either very conservative or non-convex
- no generic software packages-often tailored implementation needed
- stability theory is incomplete (non-convex economic MPC)

- optimizing sets is challenging !
- not clear how to trade-off conservatism versus run-time
- most formulations either very conservative or non-convex
- no generic software packages-often tailored implementation needed
- stability theory is incomplete (non-convex economic MPC)

References

• B. Houska, M.E. Villanueva, B. Chachuat.

Stable Set-Valued Integration of Nonlinear Dynamic Systems using Affine Set Parameterizations.

SINUM, 2015.

• M.E. Villanueva, B. Houska, B. Chachuat.

Unified Framework for the Propagation of Continuous-Time Enclosures for Parametric Nonlinear ODEs.

JOGO, 2015.

 M.E. Villanueva, R. Quirynen, M. Diehl, B. Chachuat, B. Houska. Robust MPC via Min-Max Differential Inequalities. AUTOMATICA, 2017.

References

- J. Rajyaguru, M.E. Villanueva, B. Houska, B. Chachuat. Chebyshev models arithmetic for factorable functions. JOGO, 2016.
- B. Houska, M.E. Villanueva.

Robust Optimization for MPC.

In S. Raković & W.S. Levine (Eds.), Handbook of MPC, 2019.