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Affine set parameterization

Notation:

Basis set: E ⊆ Rm

Coefficients: A ∈ Rn×m, b ∈ Rn

Set: A ∗ E + b

Complexity
Intervals O(n)

Zono-/ Polytopes O(nm)

Ellipsoids O(n2)

Polynomial set O(n`q)

Grid O(Nn)
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Affine set parameterization

Notation:

Basis set: E ⊆ Rm

Coefficients: A ∈ Rn×m, b ∈ Rn

Set: A ∗ E + b

Complexity
Intervals O(n)

Zono-/ Polytopes O(nm)

Ellipsoids O(n2)

Polynomial set O(n`q)

Grid O(Nn)

Zonotopes:

A ∈ Rn×m

E = {x ∈ Rm | ‖x‖∞ ≤ 1}
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Affine set parameterization

Notation:

Basis set: E ⊆ Rm

Coefficients: A ∈ Rn×m, b ∈ Rn

Set: A ∗ E + b

Complexity
Intervals O(n)

Zono-/ Polytopes O(nm)

Ellipsoids O(n2)

Polynomial set O(n`q)

Grid O(Nn)

Polytopes:

A ∈ Rn×m

E =
{
x ∈ Rm+ |

∑
i xi = 1

}
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Affine set parameterization

Notation:

Basis set: E ⊆ Rm

Coefficients: A ∈ Rn×m, b ∈ Rn

Set: A ∗ E + b

Complexity
Intervals O(n)

Zono-/ Polytopes O(nm)

Ellipsoids O(n2)

Polynomial set O(n`q)

Grid O(Nn)

Ellipsoids:

A ∈ Rn×n, A sym. & p.s.d.

E = {x ∈ Rn | ‖x‖2 ≤ 1}
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Affine set parameterization

Notation:

Basis set: E ⊆ Rm

Coefficients: A ∈ Rn×m, b ∈ Rn

Set: A ∗ E + b

Complexity
Intervals O(n)

Zono-/ Polytopes O(nm)

Ellipsoids O(n2)

Polynomial set O(n`q)

Grid O(Nn)

Polynomial Set:

A ∈ Rn×(`+q
` )

E =
{

(1, . . . , xq`)
ᵀ∣∣x ∈ [−1, 1]`

}
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Affine set parameterization

Notation:

Basis set: E ⊆ Rm

Coefficients: A ∈ Rn×m, b ∈ Rn

Set: A ∗ E + b

Complexity
Intervals O(n)
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Ellipsoids O(n2)
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Factorable functions
Notation:

Library of atom operations: L = {+,−, ∗, sin, cos, log, . . .}

A function f is called factorable over L, if

f = ϕN ◦ . . . ◦ ϕ1 with [ϕi]last ∈ L .

Example:
a1 = x1 ∗ x2

a2 = sin(a1)

a3 = cos(x1)

f(x) = a2 + a3

f(x) = sin(x1 ∗ x2) + cos(x1)
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Set arithmetics

Let f be a given factorable function, E basis set

Goal: find enclosure Φ such that

{f(x) | x ∈ X} ⊆ Φ(X)

with

X = A ∗ E + b and Φ(X) = C ∗ E + d
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Construction of set arithmetics

1. Construct enclosures Φi of all atom functions ϕi ∈ L

{ϕi(x) | x ∈ X} ⊆ Φi(X)

2. Enclosure f = ϕN ◦ . . . ◦ ϕ1 given by Φ = ΦN ◦ . . . ◦ Φ1

Remark: For larger N overestimation might grow (wrapping)
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Set arithmetic software

Sets Complexity Software

Intervals O(n) FILIB++, PROFIL

Ellipsoids O(n2) Ellips. Toolbox, MC++, CRONOS

Zonotopes O(nm) INTLAB

Polytopes O(nm) BARON, ANTIGONE, GLOMIQO, MPT3

Taylor models O(n`q) COSY INFINITY, MC++, CRONOS

Chebychev models O(n`q) CHEBFUN, MC++

R.E. Moore. Interval Arithmetics, 1966

G.P. McCormick. Computability of global solutions to factorable nonconvex programs, 1976
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Set arithmetic software

Sets Complexity Software

Intervals O(n) FILIB++, PROFIL

Ellipsoids O(n2) Ellips. Toolbox, MC++, CRONOS

Zonotopes O(nm) INTLAB

Polytopes O(nm) BARON, ANTIGONE, GLOMIQO, MPT3

Taylor models O(n`q) COSY INFINITY, MC++, CRONOS

Chebychev models O(n`q) CHEBFUN, MC++

A.B. Kurzhanski, P. Varaiya. Reachability analysis for uncertain systems—the ellipsoidal technique, 2002

M.E. Villanueva et.al.. Ellipsoidal arithmetic for multivariate systems, 2015
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Set arithmetic software

Sets Complexity Software

Intervals O(n) FILIB++, PROFIL

Ellipsoids O(n2) Ellips. Toolbox, MC++, CRONOS

Zonotopes O(nm) INTLAB

Polytopes O(nm) BARON, ANTIGONE, GLOMIQO, MPT3

Taylor models O(n`q) COSY INFINITY, MC++, CRONOS

Chebychev models O(n`q) CHEBFUN, MC++

M. Althoff, B.H. Krogh. Zonotope bundles for the efficient computation of reachable sets, 2011

J.K. Scott. Constrained zonotopes: A new tool for set-based estimation and fault detection, 2016
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Set arithmetic software

Sets Complexity Software

Intervals O(n) FILIB++, PROFIL

Ellipsoids O(n2) Ellips. Toolbox, MC++, CRONOS

Zonotopes O(nm) INTLAB

Polytopes O(nm) BARON, ANTIGONE, GLOMIQO, MPT3

Taylor models O(n`q) COSY INFINITY, MC++, CRONOS

Chebychev models O(n`q) CHEBFUN, MC++

M. Tawarmalani, N.V. Sahinidis. A polyhedral branch-and-cut approach to global optimization, 2005

R. Misener, C.A. Floudas. ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear equation, 2014

25



Set arithmetic software

Sets Complexity Software

Intervals O(n) FILIB++, PROFIL

Ellipsoids O(n2) Ellips. Toolbox, MC++, CRONOS

Zonotopes O(nm) INTLAB

Polytopes O(nm) BARON, ANTIGONE, GLOMIQO, MPT3

Taylor models O(n`q) COSY INFINITY, MC++, CRONOS

Chebychev models O(n`q) CHEBFUN, MC++

M. Berz. From Taylor series to Taylor models, 1997

A. Bompadre et.al.. Convergence analysis of Taylor and McCormick-Taylor models, 2013
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Set arithmetic software

Sets Complexity Software

Intervals O(n) FILIB++, PROFIL

Ellipsoids O(n2) Ellips. Toolbox, MC++, CRONOS

Zonotopes O(nm) INTLAB

Polytopes O(nm) BARON, ANTIGONE, GLOMIQO, MPT3

Taylor models O(n`q) COSY INFINITY, MC++, CRONOS

Chebychev models O(n`q) CHEBFUN, MC++

A. Townsend, L.N. Trefethen. An extension of Chebfun to two dimensions, 2013

J. Rajyaguru et.al.., Chebyshev model arithmetic for factorable functions, 2017
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Two-Reaction Model of Anaerobic Digestion

Mass-Balance Equations:

Ẋ1 = (µ1(S1) − αD)X1

Ẋ2 = (µ2(S2) − αD)X2

Ṡ1 = D(Sin
1 − S1) − k1µ1(S1)X1

Ṡ2 = D(Sin
2 − S2) + k2µ1(S1)X1

−k3µ2(S2)X2

Ż = D(Zin − Z)

Ċ = D(Cin − C) + k4µ1(S1)X1

+k5µ2(S2)X2 − qCO2

Biomass specific growth rates:

µ1(S1) := µ̄1
S1

S1+KS1

µ2(S2) := µ̄2
S2

S2+KS2 +S2
2/KI2

Gas-liquid mass transfer:

qCO2 := kLa(C + S2 − Z −KHPCO2 )

PCO2 :=
φCO2 −

√
φ2

CO2
−4KHPt(C+S2−Z)

2KH

φCO2 := C + S2 − Z +KHPt

+ k6
kLa

µ2(S2)X2

Goal: Compute reachable sets for uncertain initial conditions
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Taylor models with interval / ellipsoidal remainder
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Taylor models with q ≥ 4 + Ellipsoids = stable set integrator

B. Houska, M.E. Villanueva, B. Chachuat. Stable Set-Valued Integration of Nonlinear Dyn. using Affine Set Parameterizations, 2015
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Set arithmetics
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Model Predictive Control (MPC)

Certainty equivalent MPC:

minimize distance to dotted line

subject to: system dynamics and constraints
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Certainty equivalent MPC:

minimize distance to dotted line

subject to: system dynamics and constraints
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Model Predictive Control (MPC)

Repeat:

wait for new measurement

re-optimize the trajectory
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Model Predictive Control (MPC)

Problem:

certainty equivalent prediction is optimistic

infeasible (worst-case) scenarios possible
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What is Robust MPC?

Main idea:

take all possible uncertainty scenarios into account

important: we can react to uncertainties
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What is Robust MPC?

Main idea:

take all possible uncertainty scenarios into account

important: we can react to uncertainties
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What is Robust MPC?

Problem:

exponentially exploding amount of scenarios possible

much more expensive than certainty equivalent MPC

40



Tube-based Robust MPC [Langson’04, Rakovic’05,. . .]

Idea:

optimize set-valued tube that encloses all possible scenarios

no exponential scenario tree, but set enclosures needed
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Idea:

optimize set-valued tube that encloses all possible scenarios

no exponential scenario tree, but set enclosures needed
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Notation: closed-loop system

ẋ(t) = f(x(t), µ(t, x(t)), w(t))

43



Notation: constraints

µ(t, x(t)) ∈ U , x(t) ∈ X , w(t) ∈W (all compact sets)
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Notation: set-valued tubes

X(t, x0, µ) =


xt ∈ Rnx

∣∣∣∣∣∣∣∣∣∣∣∣∣

∃x ∈Wnx
1,2 , ∃w ∈ L

nw
2 : ∀τ ∈ [0, t],

ẋ(τ) = f(x(τ), µ(τ, x(τ)), w(τ))

x(0) = x0 , x(t) = xt

w(τ) ∈W
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Mathematical Formulation of Robust MPC

Optimize over future feedback policy µ:

inf
µ:R×X→U

∫ T

0
`(X(t, x0, µ)) dt+M (X(T, x0, µ) )

s.t. X(t, x0, µ) ⊆ X for all t ∈ [0, T ] .

` denotes scalar performance criterion

M denotes terminal cost

x0 denotes current measurement

T denotes finite prediction horizon
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Differential Inequalities

Scalar case:

uncertain scalar ODE without controls:

ẋ(t) = f(x(t), w(t)) with x(0) = x0

47



Differential Inequalities

Scalar case:

Interval X(t) =
[
xL(t), xU(t)

]
is robust forward invariant if

ẋL(t) ≤ minw∈W f(xL(t), w)

ẋU(t) ≥ maxw∈W f(xU(t), w)
(Differential Inequalities)
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Min-Max Differential Inequalities

Scalar case with controls:

Interval X(t) =
[
xL(t), xU(t)

]
is robust forward invariant if

ẋL(t) ≤ maxu∈U minw∈W f(xL(t), u, w)

ẋU(t) ≥ minu∈U maxw∈W f(xU(t), u, w)

xL(t) ≤ xU(t)
49



Generalized Differential Inequalities

General case:

The state vector x(t) may have more than one component,

ẋ(t) = f(x(t), u(t), w(t)) with x(0) = x0

50



Generalized Differential Inequalities

Definition:

The support function of a compact set X is denoted by

V [X](c) = max
x∈X

cTx
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Generalized Differential Inequalities

Theorem [Villanueva et al., 2017]:

If f Lipschitz, X(t) ⊆ X convex and compact, and

V̇ [X(t)](c) ≥ min
u∈U

max
x,w

 cTf(x, u, w)

∣∣∣∣∣∣∣∣∣
x ∈ X(t)

cTx = V [X(t)](c)

w ∈W


for a.e. (t, c), then X(t) is a robust forward invariant tube.

M.E. Villanueva et.al., Robust MPC via min-max differential inequalities. Automatica, 2017.
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Application to Robust MPC

Conservative reformulation:

inf
X

∫ t+T

t

`(X(τ)) dτ

s.t.



X(t) = {x̂t} ,

X(τ) ⊆ X

V̇ [X(t)](c) ≥ min
u∈U

max
x,w

 cTf(x, u, w)

∣∣∣∣∣∣∣∣∣
x ∈ X(t)

cTx = V [X(t)](c)

w ∈W


optional terminal constraints

Parameterize set X(t); not the feedback law µ!

53



Example: Ellipsoidal Parameterization

Affine tube parameterization:

X(t) = Qx(t) 1
2 E + qx(t) with E = { x | ‖x‖2 ≤ 1}

Support function:

V [X(t)](c) =
√
cTQx(t)c+ qx(t)

Assumption: control and uncertainty sets are ellipsoids

U = Qu(t) 1
2 E + qu(t) and W = Qw(t) 1

2 E + qw(t)

... and substitute all in the Min-Max Differential Inequality (DI)
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Application of Kurzhanski’s ellipsoidal calculus to

Min-Max DI
Dynamic system:

ẋ = f(x, u, w) = Ax+Bu+ Cw + nonlinear terms

Center of the ellipsoid X(t) = Qx(t) 1
2 E + qx(t) (with v ∈ Rnu):

q̇x = f(qx, v, qw)

Parameteric ellipsoidal tube (with orthogonal S and λ > 0, γ > 0)

Q̇x = AQx +QxA
T +Q

1
2SR[v, γ]BT +BR[v, γ]STQ

1
2

+ 1
λ
Qx + λCQwC

T + nonlinear terms

where

R[v, γ] = (1− γ)Qu + (1− γ−1)[v − qu][v − qu]T
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ẋ = f(x, u, w) = Ax+Bu+ Cw + nonlinear terms

Center of the ellipsoid X(t) = Qx(t) 1
2 E + qx(t) (with v ∈ Rnu):

q̇x = f(qx, v, qw)

Parameteric ellipsoidal tube (with orthogonal S and λ > 0, γ > 0)

Q̇x = AQx +QxA
T +Q

1
2SR[v, γ]BT +BR[v, γ]STQ

1
2

+ 1
λ
Qx + λCQwC

T + nonlinear terms

where

R[v, γ] = (1− γ)Qu + (1− γ−1)[v − qu][v − qu]T

58



Application of Kurzhanski’s ellipsoidal calculus to

Min-Max DI
Dynamic system:
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Ellipsoidal Tube MPC

Complete reformulation as implemented for a small ε > 0:

inf
qx,v,Qx,S,λ,γ

∫ t+T

t

ˆ̀(qx, v,Qx) dτ

s.t.



qx(t) = {x̂t} , Qx(t) = ε2I

E(qx, Qx) ⊆ X

q̇x = f(qx, v, qw)

Q̇x = AQx +QxA
T +Q

1
2SR[v, γ]BT +BR[v, γ]STQ

1
2

+ 1
λQx + λCQwC

T + nonlinear terms

SST = I , λ ≥ ε1 , γ ≥ ε1

+ optional terminal constraints / cost
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Numerical Example

Spring-mass-damper system: ẋ1(t)

ẋ2(t)

 =

 x2(t) + w1(t)

−k0 exp (−x1)x1(t)
M − hdx2(t)

M + u(t)
M + w2(t)

M
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Conclusions and Open Problems

Set Based Computing—State-of-the-Art

Many existing software tools for different set arithmetics:

Intervals, Ellipsoids, Zonotopes, Polynomial image sets, ...

Maturity of set integrators improved a lot during last decade:

Affine set parameterizations ⇒ stable set integrator

Can deal with nonlinear system up to approx. 10 states

Applications in robust and global optimal control
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Conclusions and Open Problems

Set-Based Computing—Open Problems

Different software packages use different storage formats for sets

Difficult to interface optimization and set-based computing packages

Difficult to deal with large sets / highly nonlinear systems

Many methods regard “nonlinearities” as “uncertainties”

Difficult to deal with large state spaces—curse of dimensionality
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