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o Set arithmetics

o Robust model predictive control
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Affine set parameterization

Complexity
Notation: Intervals O(n)
o Basis set: E C R™ Zono-/ Polytopes O(nm)
o 2
o Coefficients: A € R™*™ b e R"® Ellipsoids O(n%)
Polynomial set O(nt)

o Set: AxE+0b

Polynomial Set:
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E={(1,...,2))"|z € [-1,1)*}



Affine set parameterization

Notation:
o Basis set: E C R™
o Coefficients: A € R™*™ p e R"

o Set: AxE+0b

Complexity
Intervals O(n)

Zono-/ Polytopes O(nm)
Ellipsoids O(n?)
Polynomial set O(nt?)
Grid O(N™)
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Factorable functions
Notation:
o Library of atom operations: L = {+, —, x, sin, cos, log, ...}

o A function f is called factorable over L, if

f:@NO...OQDl Wlth [gpi]lasteL.

Example:
a1 = X1 *X2
sint cos as = sin(aq)

*/ x/ as = cos(zy)
/\ fl@) = ax+as

‘ f(z) = sin(zq * 22) + cos(z1) ‘
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Set arithmetics

)
TN

o Let f be a given factorable function, E basis set

o Goal: find enclosure ® such that
{f(z) [z € X} CPX)

with
X=AxE+b and O(X)=Cx+xE+d
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Construction of set arithmetics

1. Construct enclosures ®; of all atom functions ¢; € L
{i(z) | v € X} C @i(X)

2. Enclosure f =pnyo...0p; givenby & =Py o...0 Py

Remark: For larger N overestimation might grow (wrapping)
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Set arithmetic software

Sets Complexity Software

Intervals O(n) FILIB++, PROFIL

@ R.E. Moore. Interval Arithmetics, 1966

Q  G.P. McCormick. Computability of global solutions to factorable nonconvex programs, 1976
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Set arithmetic software

Sets Complexity Software
Intervals O(n) FILIB++, PROFIL
Ellipsoids O(n?) Ellips. Toolbox, MC++, CRONOS

@ A.B. Kurzhanski, P. Varaiya. Reachability analysis for uncertain systems—the ellipsoidal technique, 2002

Q M.E. Villanueva et.al.. Ellipsoidal arithmetic for multivariate systems, 2015
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Set arithmetic software

Sets Complexity Software
Intervals O(n) FILIB++, PROFIL
Ellipsoids O(n?) Ellips. Toolbox, MC++, CRONOS
Zonotopes O(nm) INTLAB

@ M. Althoff, B.H. Krogh. Zonotope bundles for the efficient computation of reachable sets, 2011

@ JK. Scott. Constrained zonotopes: A new tool for set-based estimation and fault detection, 2016
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Set arithmetic software

Sets Complexity Software
Intervals O(n) FILIB++, PROFIL
Ellipsoids O(n?) Ellips. Toolbox, MC++, CRONOS
Zonotopes O(nm) INTLAB
Polytopes O(nm)  BARON, ANTIGONE, GLOMIQO, MPT3

Q@ M. Tawarmalani, N.V. Sahinidis. A polyhedral branch-and-cut approach to global optimization, 2005

Q@ R. Misener, C.A. Floudas. ANTIGONE: Algorithms for continuous/integer global optimization of nonlinear equation, 2014
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Set arithmetic software

Sets Complexity Software
Intervals O(n) FILIB++, PROFIL
Ellipsoids O(n?) Ellips. Toolbox, MC++, CRONOS
Zonotopes O(nm) INTLAB
Polytopes O(nm) BARON, ANTIGONE, GLOMIQO, MPT3

Taylor models O(nt?) COSY INFINITY, MC++, CRONOS

Q@ M. Berz. From Taylor series to Taylor models, 1997

@ A Bompadre et.al.. Convergence analysis of Taylor and McCormick-Taylor models, 2013
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Set arithmetic software

Sets Complexity Software
Intervals O(n) FILIB++, PROFIL
Ellipsoids O(n?) Ellips. Toolbox, MC++, CRONOS
Zonotopes O(nm) INTLAB
Polytopes O(nm) BARON, ANTIGONE, GLOMIQO, MPT3
Taylor models O(nt?) COSY INFINITY, MC++, CRONOS
(ne?)

Chebychev models (0] CHEBFUN, MC++

@ A Townsend, L.N. Trefethen. An extension of Chebfun to two dimensions, 2013

@ J. Rajyaguru et.al.., Chebyshev model arithmetic for factorable functions, 2017
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Two-Reaction Model of Anaerobic Digestion

Mass-Balance Equations: Biomass specific growth rates:

X1 = (u1(S1)—aD)X; p1(S1) = ﬂlslfi}gsl
Xy = (p2(S2) — aD) X2

S1= D(Si" - S1) — k1p1(S1) X1
Sy = D(S¥ — S2) + kap1(S1) X1

S =g 22
#2(S2) #2 S2+Ks,+53/Kr,

Gas-liquid mass transfer:

=k — Z — KyP,
—ksua(S2) X2 qco, La(C + Sa 1Pco,)
. i 90y~ /980, ~1KuP(C+52-2)
Z= D(Z™-2Z) Pco, = .
C= D(C™—C)+ ks (S1)X1 bco, =C+S2—Z+ KuP;
+ksp2(S2) X2 — qco, +£—6au2(82)X2

Goal: Compute reachable sets for uncertain initial conditions
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Taylor models with interval / ellipsoidal remainder

NoTM —— ™2 —— ™3 ™4 ——

X1 [g(cell)/L]

S2 [mmol/L]

1 N ! : L L L
0 5 10 15 20
t[day]

Taylor models with ¢ > 4 + Ellipsoids = stable set integrator

O B. Houska, M.E. Villanueva, B. Chachuat. Stable Set-Valued Integration of Nonlinear Dyn. using Affine Set Parameterizations, 2015
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Model Predictive Control (MPC)

Certainty equivalent MPC:
o minimize distance to dotted line

o subject to: system dynamics and constraints
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Model Predictive Control (MPC)

i

Repeat:
o wait for new measurement

o re-optimize the trajectory
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Model Predictive Control (MPC)

Problem:
o certainty equivalent prediction is optimistic

o infeasible (worst-case) scenarios possible
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What is Robust MPC?

Main idea:
o take all possible uncertainty scenarios into account

o important: we can react to uncertainties
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What is Robust MPC?

Main idea:
o take all possible uncertainty scenarios into account

o important: we can react to uncertainties
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What is Robust MPC?

Problem:
o exponentially exploding amount of scenarios possible

© much more expensive than certainty equivalent MPC
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Tube-based Robust MPC [Langson’04, Rakovic’05,.. ]

Idea:
o optimize set-valued tube that encloses all possible scenarios

o no exponential scenario tree, but set enclosures needed

41



Tube-based Robust MPC [Langson’04, Rakovic’05,.. ]

Idea:
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Notation: closed-loop system
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Notation: constraints

u(t,z(t)) €U, z(t) eX, w(t) €W (all compact sets)
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Notation: set-valued tubes

X(taxmu) =

Ty € R"

3z e WP's, Jw e Ly : Y7 € [0,1]
IIZ(T) = f(:]](’l'),,u,(T,l‘(T)),w(T))
2(0) = xo , 2(t) =z

w(r) e W

\
)
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Mathematical Formulation of Robust MPC

Optimize over future feedback policy u:

T

inf UX (t,zo, 1)) dt + M (X (T, zo, 1) )
wRXX—=U  [q

s.t. X(t,xo,p) €X forall te[0,T].

o ¢ denotes scalar performance criterion
o M denotes terminal cost
o xg denotes current measurement

o T denotes finite prediction horizon
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Differential Inequalities

Scalar case:

o uncertain scalar ODE without controls:

z(t) = f(x(t),w(t)) with x(0) =xg
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Differential Inequalities

Scalar case:

o Interval X(t) = [2"(t),z"(t)] is robust forward invariant if

8
3
=
SN~—"
A

min,, zH(t), w
ew J(@(t),w) (Differential Inequalities)

8
C
~
~—
Y%

max,ew f(zY(t),w)
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Min-Max Differential Inequalities

Scalar case with controls:

o Interval X(t) = [z"(t),z"(t)] is robust forward invariant if

it (t) < maxyey mingew f(xH(t),u, w)
#Y(t) > mingey maxyew f(zV(t),u, w)
) < 2V(@)
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Generalized Differential Inequalities

General case:

o The state vector z(t) may have more than one component,

x(t) = fla(t),u(t),w(t)) with z(0) =1z
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Generalized Differential Inequalities

Definition:

o The support function of a compact set X is denoted by

_ T
VIX](c) = max ¢ &



Generalized Differential Inequalities

Theorem [Villanueva et al., 2017]:

o If f Lipschitz, X (t) C X convex and compact, and

x e X(t)
VIXOle) 2 migmax | ' f@ww) | T = VX))
weWw

for a.e. (t,c), then X (¢) is a robust forward invariant tube.

@ M.E. Villanueva et.al., Robust MPC via min-max differential inequalities. Automatica, 2017.



Application to Robust MPC

Conservative reformulation:

T
iI)l(f /t X (7))dr

X(t) = {4},
X(r)cX
ot x e X(1t)
VIX(8)](¢) = minmax T flz,u,w) | Te = VIX(1)(c)
weW
optional terminal constraints

o Parameterize set X (t); not the feedback law p!
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Example: Ellipsoidal Parameterization
Affine tube parameterization:
X(t) = Que(t)* E4qo(t)  with  E={az ||allz<1}
Support function:

VIX(#)](c) = \/cTQa(t)c+ gu(t)

Assumption: control and uncertainty sets are ellipsoids
U=Qut)*E+qu(t) and W= Qu(t)*E+qu(t)

. and substitute all in the Min-Max Differential Inequality (DI)
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Dynamic system:

= f(x,u,w) = Ax + Bu + Cw + nonlinear terms
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Application of Kurzhanski’s ellipsoidal calculus to

Min-Max DI

Dynamic system:

& = f(z,u,w) = Ax + Bu + Cw + nonlinear terms

Center of the ellipsoid X (t) = Qu(t)2E + ¢, (t) (with v € R™):
o = f(¢e,v; qw)

Parameteric ellipsoidal tube (with orthogonal S and A > 0,v > 0)

Q: = AQ:+QuAT+QSR[v,7]BT + BR[v,7]STQ*
+§Qx + ACQ.,CT + nonlinear terms

where

Rlv,7] = (1=7)Qu+ (1 =7 v —qu)v—qu]"



Ellipsoidal Tube MPC

Complete reformulation as implemented for a small € > 0:

Qe 0, QxS Ay

t+T
inf / é(Qwv”va)dT
t
4(t) = {2}, Qu(t) =1

E(gz, Q) CX
q-w - f(Qw7U7Qw)
s.t. Qo = AQ, + QAT + Q2 SR[v,~|BT + BR[v,7]STQ*?

+1Qu + ACQ,CT + nonlinear terms
SST =T, A>€l,vy>el

+ optional terminal constraints / cost

60



Numerical Example

T2 Tstart

il

DN | =
—

i1 (t) zo(t) +wi(t)

9-:2(t) 7koeXP(R;1)$1(t) _ hd?\;(t) + % +

wa (t)
M
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Numerical Example

T2 Tstart .
1 b state
g ! constraint
2 1
1
1
1
01 :
1
1 €y
-5 . T .
0 3 1
Spring-mass-damper system:
i) | T2 (t) + w1 (1)
5:‘2(15) o __ ko exp (X;l)ﬂﬂl(t) _ hd?\;(t) + % +

wa (t)
M
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Numerical Example

€2

state
constraint

T

N —

X9 (t) + w1 (t)

ko exp (—z1)x1 () haxa(t) u(t)
R gt ar

wo (t)
M
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Conclusions and Open Problems

Set Based Computing—State-of-the-Art

o Many existing software tools for different set arithmetics:

Intervals, Ellipsoids, Zonotopes, Polynomial image sets, ...
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Conclusions and Open Problems

Set Based Computing—State-of-the-Art

o Many existing software tools for different set arithmetics:

Intervals, Ellipsoids, Zonotopes, Polynomial image sets, ...

o Maturity of set integrators improved a lot during last decade:

o Affine set parameterizations = stable set integrator
o Can deal with nonlinear system up to approx. 10 states

o Applications in robust and global optimal control
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Conclusions and Open Problems

Set-Based Computing—Open Problems
o Different software packages use different storage formats for sets

o Difficult to interface optimization and set-based computing packages

©

Difficult to deal with large sets / highly nonlinear systems

©

Many methods regard “nonlinearities” as “uncertainties”

©

Difficult to deal with large state spaces—curse of dimensionality
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Conclusions and Open Problems

Tube MPC—State-of-the-Art

o Bound all possible scenarios by one single tube
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Conclusions and Open Problems

Tube MPC—State-of-the-Art
o Bound all possible scenarios by one single tube

o Tube MPC variants: Rigid-, Homothetic-, Elastic- Tube MPC, ...
o ... based on intervals, zontopes, ellipsoids, and so on

o This talk: Min-Max DI leads to conservative reformulation, but

parameterizes sets rather than feedback laws

7



Conclusions and Open Problems

Tube MPC—Open Problems

o optimizing sets is challenging !
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Conclusions and Open Problems

Tube MPC—Open Problems

o optimizing sets is challenging !

o not clear how to trade-off conservatism versus run-time

o most formulations either very conservative or non-convex

o no generic software packages—often tailored implementation needed

o stability theory is incomplete (non-convex economic MPC)
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