Types of optimization problems

Regard the following optimization problem:

$$\min_{\substack{x \in \mathbb{R}^n \\ \text{s.t.}}} \frac{1}{2} x^\top Q x + c^\top x$$

s.t.
$$Ax + b = 0,$$

$$Cx + d \ge 0,$$

where $Q \in \mathbb{R}^{n \times n}$, $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{p \times n}$, $b \in \mathbb{R}^p$, $C \in \mathbb{R}^{q \times n}$, $d \in \mathbb{R}^q$. Which of the following types of optimization problems does it belong to?

Choose all that apply.

- (a) Linear program (LP)
- (b) Quadratic program (QP)
- (c) Nonlinear program (NLP)
- (d) Nondifferentiable optimization problems

Convexity of sets

Which of the following sets are convex? $(b \in \mathbb{R}^m, A \in \mathbb{R}^{m \times n})$ Choose all that apply.

(a)
$$\{x \in \mathbb{R}^n \mid ||Ax||_2^2 \le 10\}$$

(b) $\{x \in \mathbb{R}^n \mid ||x||_2^2 = 10 \& Ax \le b\}$
(c) $\{x \in \mathbb{R}^n \mid ||Ax + b||_1 \ge 5\}$
(d) $\{X \in \mathbb{S}^n \mid X \succeq 0\}$
(where $\mathbb{S}^n = \{Q \in \mathbb{R}^{n \times n} \mid Q = Q^{\top}\}$)

Convexity of functions

- Which of the following functions are convex? $(x,c\in\mathbb{R}^n,\;A\in\mathbb{R}^{m\times n}$)
- Choose all that apply.

(a)
$$f_1(x) = \exp(\|x\|_2^2)$$

(b) $f_2(x) = \max(\|x\|_2, x^{\top}x) + \|Ax\|_2$
(c) $f_3(x) = \|Ax\|_2 + \log(c^{\top}x)$
(d) $f_4(x) = \sin(\|x\|_2)$

Convexity of optimization problems

Which of the following optimization problems are convex? Choose all that apply.

(a)
$$\min_{x, y \in \mathbb{R}} 3x^2 + \exp y$$
 s.t. $\begin{array}{c} x + 3y \leq 0, \\ y + 10 \geq 0. \end{array}$
(b) $\min_{x \in \mathbb{R}} 7x^4$ s.t. $x^2 - 2 = 0.$
(c) $\min_{x \in \mathbb{R}} x^2 + 4y^2$ s.t. $x^2 + y^2 - 1 \geq 0$

(c) $\min_{x,y \in \mathbb{R}} x^2 + 4y^2$ s.t. $x^2 + y^2 - 1 \ge 0$.

(d) $\min_{x \in \mathbb{R}} \frac{1}{x}$ s.t. $1 \le x \le 10$.

Newton's method

Regard the following equation system:

$$\sin(x) - y = 0,$$

$$x^2 + y^2 - 1 = 0.$$

We summarize it as F(w) = 0, where w = (x, y) and $F : \mathbb{R}^2 \to \mathbb{R}^2$. We want to solve this root finding problem using (exact) Newton's method. Our current iterate is $w_k = (0, 1)$ (i.e., $x_k = 0, y_k = 1$.) Use Newton's method to find the next iterate $w_{k+1} = (x_{k+1}, y_{k+1})$.

As answer, please enter the value of x_{k+1} :

 $x_{k+1} = \dots ?$

If necessary, round the value to two decimal digits after the decimal separator by simply dropping the superfluous digits (e.g. "3.149" becomes "3.14").

Optimization using CasADi

Regard the following optimization problem:

$$\min_{w \in \mathbb{R}^3} 2w_1^2 + w_1w_3 + 2w_3^2 + 3w_2 - \log(w_3 + 1)$$

s.t.
$$-2w_1^2 - \frac{1}{2}w_2^2 + 3 \ge 0,$$
$$1 \le w_3 \le 4,$$

where $w = (w_1, w_2, w_3)$. Use CasADi and the solver IPOPT to find the minimizer $w^* = (w_1^*, w_2^*, w_3^*)$ of this problem. As answer, please enter the value of w_2^* :

$$w_2^* = ...?$$

If necessary, round the value to two decimal digits after the decimal separator by simply dropping the superfluous digits (e.g. "3.149" becomes "3.14").

Globalization

Regard the following optimization problem:

$$\min_{x \in \mathbb{R}} \quad \sqrt{1+x^2}.$$

We want to solve this problem using a globalized version of Newton's method. Currently we are at the iterate $x_k = 2$, such that the full Newton step would be $p_k = -10$. Our next iterate is $x_{k+1} = x_k + t_k p_k$.

Use the backtracking algorithm to find the value of t_k such that it fulfills Armijo's sufficient decrease condition. The algorithm parameters are $\beta = \frac{1}{2}$, $\gamma = \frac{1}{10}$ and $t_{\text{max}} = 1$. You are allowed to use a calculator.

Having found t_k , the value of the next iterate is $x_{k+1} = \dots$?

If necessary, round the value to two decimal digits after the decimal separator by simply dropping the superfluous digits (e.g. "3.149" becomes "3.14").