Exercises for Lecture Course on Numerical Optimization (NUMOPT) Albert-Ludwigs-Universität Freiburg – Winter Term 2020-2021

Exercise 5: Exam Type Question

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli and Florian Messerer

Exercise Tasks

1. A sample exam question.

Regard the following minimization problem:

$$\min_{x \in \mathbb{R}^2} \quad x_2^4 + (x_1 + 2)^4 \quad \text{s.t.} \quad \begin{cases} x_1^2 + x_2^2 \le 8 \\ x_1 - x_2 = 0. \end{cases}$$

- (a) How many scalar decision variables, how many equality, and how many inequality constraints does this problem have?
 - 2

(b) Sketch the feasible set $\Omega \in \mathbb{R}^2$ of this problem.

3

(c) Bring this problem into the NLP standard form

$$\min_{x \in \mathbb{R}^n} f(x) \quad \text{s.t.} \quad \left\{ \begin{array}{ll} g(x) & = & 0 \\ h(x) & \geq & 0 \end{array} \right.$$

by defining the functions f, g, h appropriately.

3

(d)	Is this optimization problem convex? Justify.		
(e)	Write down the Lagrangian function of this optimization problem.	2	
(f)	A feasible solution of the problem is $\bar{x}=(2,2)^T.$ What is the active set $\mathcal{A}(\bar{x})$ at this	2 poin	nt?
		2	
(g)	Is the linear independence constraint qualification (LICQ) satisfied at \bar{x} ? Justify.		
(h)	An optimal solution of the problem is $x^* = (-1, -1)^T$. What is the active set $\mathcal{A}(x)$ point?	$\begin{bmatrix} 3 \end{bmatrix}$	at this
(i)	Is the linear independence constraint qualification (LICQ) satisfied at x^{*} ? Justify.	1	
(j)	Describe the tangent cone $T_{\Omega}(x^*)$ (the set of feasible directions) to the feasible set at x^* , by a set definition formula with explicitly computed numbers.	2 this	poin
		2	

(k)	Compute the Lagrange gradient and find the multiplier vectors λ^*, μ^* so that the ab x^* satisfies the KKT conditions.	ove point
(1)	Describe the critical cone $C(x^*,\mu^*)$ at the point (x^*,λ^*,μ^*) in a set definition using	4 explicitly
()	computed numbers	1 3
(m)	Formulate the second order necessary conditions for optimality (SONC) for this pro-	3 blem and
(111)	test if they are satisfied at (x^*, λ^*, μ^*) . Can you prove whether x^* is a local or ev minimizer?	
	ſ	4
	ι	