
i
i

“ex4” — 2021/1/14 — 18:42 — page 1 — #1 i
i

i
i

i
i

Exercises for Lecture Course on Numerical Optimization (NUMOPT)
Albert-Ludwigs-Universität Freiburg – Winter Term 2020-2021

Exercise 4: Calculation of Derivatives,
Equality Constrained Optimization

Prof. Dr. Moritz Diehl, Dimitris Kouzoupis, Andrea Zanelli and Florian Messerer

1. Simple equality constrained optimization: Recall the simple equality constrained example dis-
cussed in the lecture,

min
x1, x2 ∈ R

x2 (1a)

s.t. x2
1 + x2

2 − 1 = 0, (1b)

which consists of a linear objective and a nonlinear equality constraint.

(a) Is this problem convex?

(b) On paper, derive the first order necessary conditions (FONC) of optimility for this problem.
Use FONC Variant 4 from the lecture notes (Theorem 11.6).

(c) These FONC define a root finding problem. Code your own implementation of Newton’s
method to solve it. To which point (or points) does your method converge?
Identify f(x) = x2, g(x) = x2

1 + x2
2 − 1. Introduce λ ∈ R.

Lagrangian: L(x, λ) = f(x)− λg(x) = x2 − λx2
1 − λx2

2 + λ
First order necessary conditions (FONC):

∇xL(x, λ) = 0 and g(x) = 0

⇔
[
−2λx1

1− 2λx2

]
= 0 and x2

1 + x2
2 − 1 = 0

Newton method converges to y∗ = (x∗1, x
∗
2, λ
∗) = (0,−1, 0.5) or ȳ = (x̄1, x̄2, λ̄) = (0, 1,−0.5),

depending on the initialization.

(d) Problem (1) has two stationary points (points that fulfill the FONC). For both, use the second
order sufficient conditions or second order necessary conditions to determine whether they are
local minima (on paper). Can you decide whether one of them is also a global minimum? If
yes, how?

∇2
xL(x, λ) =

[
−2λ 0

0 −2λ

]
H∗ = ∇2

xL(x∗, λ∗) =

[
1 0
0 1

]
H̄ = ∇2

xL(x̄, λ̄) =

[
−1 0
0 −1

]
Critical cone: C(x) = {p ∈ R2|∇g(x)>p = 0}, ∇g(x)> =

[
2x1 2x2

]>
check x∗:
H∗ � 0 ⇔ p>H∗p > 0 ∀p ∈ R2 \ {0} (i.e. independent of the critical cone)⇒ SOSC holds
⇒ x∗ is a local minimizer.
check x̄:

C(x̄) = {p ∈ R2|∇g(x̄)>p = 0} = {p ∈ R2|p2 = 0} = {
[
r
0

]
|r ∈ R}

H̄ ≺ 0⇔ p>H̄p < 0 ∀p ∈ R2 \ {0} ⇒ ∃p ∈ C(x̄) : p>H̄p < 0⇒ SONC does not hold⇒ x̄
is not a local minimizer.

1

i
i

“ex4” — 2021/1/14 — 18:42 — page 2 — #2 i
i

i
i

i
i

(e) Pick one of the stationary points. Invent an additional equality constraint, such that the linear
independence constraint qualification (LICQ) is violated at this point.
We pick x∗. Then, e.g., a constraint which at x∗ has a gradient parallel to the one of g(x). e,g,
x2 ≥ −1, or any ellipse which is obtained by stretchign the circle defined by g(x) = 0 in x1

direction (simplest case: just repeat the constraint g(x) a second time.)

2. LICQ and Newton method: Consider the following nonlinear equality constrained optimization
problem,

min
x ∈ Rn

f(x) (2a)

s.t. g(x) = 0 (2b)

with g : Rn → Rm. The linear system associated with the k-th iteration of the Newton method is[
B AT

A 0

] [
∆x
−∆λ

]
= −

[
∇f(xk)−∇g(xk)λ

g(xk)

]
(3)

with λ ∈ Rm, B = ∇2f(xk)−
∑p

i=1 λi∇2g(xk) and A = ∇g(xk)>.

Prove that if A has full row rank and ZTBZ � 0, with the columns of Z ∈ Rn×(m−n) forming a
basis for the null space of A, the iteration matrix in (3) is invertible.

Remark: this provides a sufficient condition under which a search direction can be obtained.

See Nocedal2006, Lemma 16.1, page 452.

3. Control of a dynamic system: Our goal is to drive the state xk ∈ R of a discrete time system to
the origin using controls uk ∈ R in N time intervals, where subscript k denotes discrete time. The
initial state is x0 = x̄0, the dynamics of the system are

xk+1 = φ(xk, uk) with φ(xk, uk) = xk +
T

N
((1− xk)xk + uk), (4)

k = 0, . . . , N , and T is the terminal time (corresponding to discrete time N). We can formulate this
as the following optimization problem,

min
x, u

N−1∑
k=0

u2
k + qx2

N (5a)

s.t. x0 = x̄0, (5b)
xk+1 = φ(xk, uk), k = 0, . . . , N − 1, (5c)

with control trajectory u = (u0, . . . , uN−1) ∈ RN and state trajectory x = (x0, . . . , xN) ∈ RN+1.
The objective (5a) expresses our aim to bring the terminal state xN to zero, using the least amount
of effort in terms of control actions uk. Weighting factor q ∈ R defines the trade-off between these
two aims. The equality constraints (5b) and (5c) uniquely determine the state trajectory x0, . . . xN
given controls u0, . . . , uN−1. Therefore we can write (5) in the equivalent unconstrained form:

min
u

N−1∑
k=0

u2
k + Φ(u) (6a)

using the constraints to eliminate all states xk and to define Φ(u) as

Φ(u) = ϕ(φ(. . . (φ(φ(x̄0, u0), u1), . . .), uN−1)), (7)

2

i
i

“ex4” — 2021/1/14 — 18:42 — page 3 — #3 i
i

i
i

i
i

with ϕ(xN) = qx2
N .

This function is implemented for you in MATLAB (Phi.m). You can call it as f = Phi(u,
param) where u ∈ RN is a control trajectory and param a structure with the problem parameters,
similar to the previous exercise sheet. You will now implement different methods for obtaining
derivatives of Φ and compare their results. We will use a random control trajectory urand to evaluate
the derivatives. This has already been implemented for you in test derivatives.m.

(a) Use your code from last week to differentiate Φ(u) at urand with finite differences.

(b) Using the same syntax, write a function [F,J] = i trick(fun,x,param) that calcu-
lates the Jacobian of Φ(u) using the imaginary trick.

(c) Now let’s implement both forward and backward modes of Automatic Differentiation. Before
you start coding, which of the two you think would perform faster in our example and why?
The cost of to obtain the full Jacobian with forward AD is bounded by cost(J) ≤ 2Ncost(Φ),
whereas the cost of the backward mode is cost(J) ≤ 3nΦcost(Φ) = 3cost(Φ) where nΦ = 1 is
the output dimension of Φ. Note that the backward mode is independent of the input dimension.
As we have N � nΦ = 1, we would expect the backward mode to perform faster.

(d) Write a MATLAB function [F,J] = Phi FAD(u,param) that returns the function eval-
uation and the Jacobian of Φ(u) using the forward mode of AD. You can start by copying the
code from the given function Phi.
Note: Unlike your implementations of finite difference and the imaginary trick, you will not
write a general purpose AD function. Rather, your code will be hand-tailored to the given
function Φ(·).
Hint: It is recommended that you consider function φ(·, ·) as ’elementary operation’ of which
Φ(u) is composed, instead of further decomposing φ(·, ·) into the additions and multiplications
of which it consists (as a general-purpose AD algorithm would probably do). This will greatly
simplify your implementation.

(e) Write a MATLAB function [F,J] = Phi BAD(u,param) that implements the backward
mode of AD.

(f) The ’AD’ in ’CasADi’ stands for Algorithmic Differentiation, since this is how CasADi com-
putes derivatives. Using CasADi we can compute the Jacobian of our nonlinear function within
a few lines only.
Complete the template casadi script.m to compute the Jacobian of Φ(u). Note that this
time we are not using the Opti() environment, since we are interested in derivatives only.

(g) Once you have everything implemented, run the script test derivatives.m to check (and
demonstrate) that your results are correct. Which order of magnitude should the difference
between the results of the various differentiation methods be? If you did not implement all
methods, comment out or delete the corresponding lines.

(h) Use MATLAB’s tic toc to measure the total time spent in the derivative calculations for
the different functions you have implemented, with N = 200. For CasADi make sure you
are only measuring the function evaluation time, i.e., without the setup time / time for running
casadi script.m. How do the timings change if you set N = 1000? Give a short reason
for this behaviour. Report the time values for all methods and both values of N .
Remark: Depending on the performance of your CPU you may adapt the given values of N
for purpose of better demonstration / to decrease the runtime. The cost of calling one of your
derivative functions should be in the order of magnitude from approx. 10−5 to 1 seconds.
IncreasingN should lead to a substantial increase in the timings of finite differences, imaginary
trick and forward AD, as they depend onN . For backward AD and CasADi, the timings should
stay roughly the same, as they do not depend on N . (CasADi decides via heuristics to use
backward AD for this function.)

3

i
i

“ex4” — 2021/1/14 — 18:42 — page 4 — #4 i
i

i
i

i
i

(i) Extra: Solve the optimization problem in (5) using the BFGS method with globalization sim-
ilarly to the previous exercise (you can simply adapt your code from the last exercise sheet).
Plot the state and controls as a function of time to confirm that the system behaves as expected.
Don’t forget to add the derivative of the quadratic term

∑N−1
k=0 u

2
k to your result for ∇Φ(u)>

when computing the Jacobian of your objective function. Use N = 50, x0 = 2, T = 5 and
q = 50.

4

